JPH09182283A - Secondary battery protective circuit - Google Patents

Secondary battery protective circuit

Info

Publication number
JPH09182283A
JPH09182283A JP7352119A JP35211995A JPH09182283A JP H09182283 A JPH09182283 A JP H09182283A JP 7352119 A JP7352119 A JP 7352119A JP 35211995 A JP35211995 A JP 35211995A JP H09182283 A JPH09182283 A JP H09182283A
Authority
JP
Japan
Prior art keywords
circuit
voltage
level
protection
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7352119A
Other languages
Japanese (ja)
Other versions
JP3597618B2 (en
Inventor
Yoshifumi Sakaguchi
芳文 坂口
Takashi Yamaguchi
剛史 山口
Takehisa Yokohama
武久 横浜
Shinji Tanaka
伸児 田中
Eiji Matsumasa
栄二 松政
Koichi Horisaki
浩一 堀崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Maxell Holdings Ltd
Original Assignee
Hitachi Microcomputer System Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Microcomputer System Ltd, Hitachi Maxell Ltd filed Critical Hitachi Microcomputer System Ltd
Priority to JP35211995A priority Critical patent/JP3597618B2/en
Publication of JPH09182283A publication Critical patent/JPH09182283A/en
Application granted granted Critical
Publication of JP3597618B2 publication Critical patent/JP3597618B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve substantial discharge capacity by turning off an overdischarge protective switch with the output signal of safety condition on one level of a latch circuit, and turning on it with the output signal of safety condition on the other level. SOLUTION: The battery voltage VCC between the terminals T1 and T2 of a circuit device IC is divided with series resistors R1-R6, and the partial voltage at the junction between resistors R1 and R2 is supplied to the input terminal + of a voltage comparison circuit COMP1, and the input terminal - is supplied with reference voltage V1. Moreover, the potential VM of the - terminal of a battery pack is taken in a circuit IC, and is supplied to the input end terminal + of a voltage comparison circuit CMOP3, and the input terminal- is supplied with reference voltage V3. Then, if load is connected between the + and - terminal of a battery pack, with MOSFET Q2 off, the comparison circuit COMP 3 detects the surge of minus potential and changes the output signal to high level, so MOSFETQ2 is tuned on to supply load with a current. As a result, substantial discharge capacity can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、二次電池保護回
路に関し、過充電と過放電の保護回路としてリチュウム
(Li)イオン電池とともに電池パックに搭載されるも
のに利用して有効な技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery protection circuit, and more particularly to a technology effectively used as a protection circuit for overcharge and overdischarge, which is installed in a battery pack together with a lithium (Li) ion battery. Is.

【0002】[0002]

【従来の技術】携帯型の電子機器に用いられる二次電池
としてLiイオン二次電池がある。このLiイオン二次
電池は、過充電を行うと金属Liが析出して事故につな
がる。また、過放電を行うと繰り返し充放電使用回数が
極端に悪くなる。このため、過充電や過放電を検出する
と、電池と機器本体とを切り離すパワーMOSFET等
からなる保護用のスイッチが設けられる。このようなL
iイオン二次電池に関しては、日経マグロウヒル社、1
995年11月20日付「日経エレクトロニクス」第1
00頁〜第117頁がある。
2. Description of the Related Art Li-ion secondary batteries are secondary batteries used in portable electronic devices. When this Li-ion secondary battery is overcharged, metallic Li is deposited, leading to an accident. Moreover, when over-discharging is performed, the number of times of repeated charging / discharging becomes extremely poor. For this reason, when overcharge or overdischarge is detected, a protective switch including a power MOSFET or the like for disconnecting the battery from the device body is provided. Such L
For i-ion secondary batteries, Nikkei McGraw-Hill, 1
1st "Nikkei Electronics", November 20, 995
There are pages 00 to 117.

【0003】[0003]

【発明が解決しようとする課題】Liイオン二次電池
は、所定の電圧以下に放電させられると、繰り返し充放
電回数が極端に悪くなってしまう。このような過放電の
判定にあたっては、図2に示すように、電池電圧VCC
が放電動作を停止させるべき終止電圧に近くなると、そ
の電圧マージンが小さくなり、急激な負荷変動、言い換
えるならば負荷に対する過電流が流れると、電池の持つ
内部インピーダンスにより一時的に電池電圧VCCが終
止電圧以下となり、放電電圧そのものが終止電圧以下に
なったと誤った判定されて実質的に放電能力が実力以下
に低くされてしまう。
When the Li-ion secondary battery is discharged below a predetermined voltage, the number of times of repeated charging / discharging becomes extremely poor. When determining such over-discharge, as shown in FIG. 2, the battery voltage VCC
When the voltage nears the cutoff voltage at which the discharge operation should be stopped, the voltage margin becomes smaller, and when the load changes rapidly, in other words, when an overcurrent flows to the load, the battery voltage VCC is temporarily cut off due to the internal impedance of the battery The discharge voltage itself becomes lower than the voltage, and it is erroneously determined that the discharge voltage itself becomes lower than the cutoff voltage, so that the discharge capacity is substantially lowered to below the actual capacity.

【0004】この発明の目的は、実質的な放電能力を向
上と安全性を図り、使い勝手を良くした二次電池保護回
路を提供することにある。この発明の前記ならびにその
ほかの目的と新規な特徴は、本明細書の記述および添付
図面から明らかになるであろう。
SUMMARY OF THE INVENTION An object of the present invention is to provide a secondary battery protection circuit which has substantially improved discharge capability and safety and is easy to use. The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

【0005】[0005]

【課題を解決するための手段】本願において開示される
発明のうち代表的なものの概要を簡単に説明すれば、下
記の通りである。すなわち、二次電池の保護回路におい
て、電池電圧の過電圧又は過放電を電圧検出回路で検出
し、かかる検出信号が過充電又は過放電状態のときに対
応した一方のレベルにされている間に計数動作を行う分
周カウンタを有するタイマー回路を設け、その計数出力
が所定の時間設定に対応した計数値になると出力信号を
形成し、かかる出力信号によりによりラッチ回路を一方
のレベルに安定させ、上記電圧検出回路の検出信号が他
方のレベルが出力されることにより上記ラッチ回路を他
方のレベルに反転させ、上記ラッチ回路の一方のレベル
での安定状態における出力信号により過放電保護スイッ
チをオフ状態にし、上記他方のレベルでの安定状態にお
ける出力信号により過放電保護スイッチオン状態にさせ
る。
The following is a brief description of an outline of a typical invention among the inventions disclosed in the present application. That is, in the secondary battery protection circuit, the voltage detection circuit detects overvoltage or overdischarge of the battery voltage, and counts while the detection signal is at one level corresponding to the overcharge or overdischarge state. A timer circuit having a frequency-dividing counter for performing an operation is provided, and when the count output reaches a count value corresponding to a predetermined time setting, an output signal is formed, and the output signal stabilizes the latch circuit at one level. When the detection signal of the voltage detection circuit outputs the other level, the latch circuit is inverted to the other level, and the overdischarge protection switch is turned off by the output signal in the stable state at one level of the latch circuit. , The overdischarge protection switch is turned on by the output signal in the stable state at the other level.

【0006】[0006]

【発明の実施の形態】図1には、この発明に係る二次電
池保護回路のうち、過放電保護用に向けられた一実施例
の回路図が示されている。同図の各回路素子は、後述す
る他の保護回路とともに公知の半導体集積回路の製造技
術により、1個の半導体基板上において形成される。特
に制限されないが、保護すべき電池はLiイオン二次電
池である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a circuit diagram of one embodiment of a secondary battery protection circuit according to the present invention, which is directed to over discharge protection. Each circuit element in the figure is formed on one semiconductor substrate by a well-known semiconductor integrated circuit manufacturing technique together with other protection circuits described later. Although not particularly limited, the battery to be protected is a Li-ion secondary battery.

【0007】スイッチMOSFETQ1は、過放電を禁
止するためのものである。このようなスイッチMOSF
ETQ1をオフ状態にして放電動作を停止させるか否か
の過放電の判定にあたっては、前記の図2を用いて説明
したように、電池電圧VCCが放電動作を停止させるべ
き終止電圧に近くなると、その電圧マージンが小さくな
り、急激な負荷変動、言い換えるならば負荷に対する過
電流が流れると、電池の持つ内部インピーダンスにより
一時的に電池電圧VCCが終止電圧以下となり、誤って
放電電圧そのものが終止電圧以下になったと判定されて
しまう。
The switch MOSFET Q1 is for inhibiting over-discharge. Such switch MOSF
When determining the over-discharging to turn off the ETQ1 to stop the discharging operation, as described with reference to FIG. 2, when the battery voltage VCC becomes close to the end voltage at which the discharging operation should be stopped, When the voltage margin becomes smaller and a sudden load change, in other words, an overcurrent flows to the load, the battery voltage VCC temporarily becomes lower than the cutoff voltage due to the internal impedance of the battery, and the discharge voltage itself becomes falsely lower than the cutoff voltage. Will be determined to have become.

【0008】このような誤動作を防止して、電池の有す
る終止電圧まで放電動作を継続できるようにするため、
言い換えるならば、実質的な電池寿命を長くするため
に、次のようなタイマー回路が設けられる。電圧比較回
路COMP4は、後述するような抵抗回路で形成された
分圧電圧VCC/Nと、かかる分圧電圧との関係で上記
終止電圧に対応させた基準電圧V4とを比較し、電池電
圧VCCが終止電圧以下になったときに、ロウレベルの
検出信号を形成する。この検出信号は、上記のような一
時的な過電流にも応答して形成される。
In order to prevent such malfunction and enable the discharge operation to be continued up to the final voltage of the battery,
In other words, the following timer circuit is provided in order to substantially extend the battery life. The voltage comparison circuit COMP4 compares a divided voltage VCC / N formed by a resistance circuit as described later with a reference voltage V4 corresponding to the above-mentioned end voltage in relation to the divided voltage, and compares the battery voltage VCC. When the voltage drops below the cutoff voltage, a low level detection signal is formed. This detection signal is formed in response to the temporary overcurrent as described above.

【0009】この検出信号により直ちに過放電保護のス
イッチMOSFETQ1をオフ状態にさせるのではな
く、タイマー回路により設定された一定期間継続して上
記検出信号が形成されるか否かが判定される。タイマー
回路は、内蔵の発振回路により形成された発振パルスを
分周カウンタに供給することより時間信号を形成する。
上記分周カウンタは、上記電圧比較回路の出力信号がリ
セット端子に供給されており、正常時には強制的にリセ
ット状態にされている。
The detection signal does not immediately turn off the switch MOSFET Q1 for over-discharge protection, but it is determined whether or not the detection signal is continuously formed for a certain period set by the timer circuit. The timer circuit forms the time signal by supplying the oscillation pulse generated by the built-in oscillation circuit to the frequency dividing counter.
The output signal of the voltage comparison circuit is supplied to the reset terminal of the frequency division counter, and in the normal state, it is forcibly set to the reset state.

【0010】上記電圧比較回路COMP4により、電池
電圧VCCが終止電圧以下にされたと判定されたなら、
その間検出信号がロウレベルにされて分周カウンタのリ
セットが解除されて、上記発振パルスの計数動作を行
う。分周カウンタの計数出力は、デコーダを構成するゲ
ート回路G3に供給され、ここで設定された時間に相当
する計数動作の判定が行われる。上記計数値に達する前
に上記電池電圧VCCがもとの状態に復帰すると、リセ
ット信号が発生されて分周カウンタは計数途中でリセッ
ト状態にされる。したがって、上記デコーダでの計数設
定を負荷変動を校了して比較的長い時間に設定すれば、
かかる負荷変動に対応して電池電圧VCCが一時的に終
止電圧以下にされても無視される。
If it is determined by the voltage comparison circuit COMP4 that the battery voltage VCC has become equal to or lower than the final voltage,
During that time, the detection signal is set to the low level, the reset of the frequency division counter is released, and the counting operation of the oscillation pulse is performed. The count output of the frequency division counter is supplied to the gate circuit G3 forming the decoder, and the counting operation corresponding to the time set here is determined. When the battery voltage VCC returns to the original state before the count value is reached, a reset signal is generated and the frequency division counter is reset during counting. Therefore, if the count setting in the decoder is set to a relatively long time after the load fluctuation is completed,
Even if the battery voltage VCC is temporarily reduced to the final voltage or less in response to such load fluctuation, it is ignored.

【0011】上記負荷変動は、かかる電池パックが使用
される電子機器に搭載される各種電子回路に対応して種
々である。例えば、モータドライバを搭載した電子機器
では、そのモータの性能に対応してモータ起動時に要す
る時間が判っているので、かかる負荷が接続される電池
パックに搭載されるタイマー回路においては、それより
も長い時間に設定される。このように負荷に応じて、電
池電圧が一時的に低下する時間がさまざまであるので、
上記デコーダを構成するゲート回路G3の入力と、分周
カウンタの出力との間は、特に制限されないが、マスタ
ースライス方式により負荷に合わせて、言い換えるなら
ば、電池パックの用途に合わせてプログラマブルに設定
可能にされる。
The above-mentioned load fluctuations are various corresponding to various electronic circuits mounted on electronic equipment in which such a battery pack is used. For example, in an electronic device equipped with a motor driver, the time required to start the motor is known according to the performance of the motor. Therefore, in a timer circuit installed in a battery pack to which such a load is connected, Set for a long time. In this way, depending on the load, the time during which the battery voltage temporarily drops varies,
The input between the gate circuit G3 that constitutes the decoder and the output of the frequency division counter are not particularly limited, but are set programmable according to the load by the master slice method, in other words, according to the use of the battery pack. Enabled

【0012】上記のような時間設定の自由度をより高く
するために、言い換えるならば、保護用のICを形成し
た後でも設定可能にするために、ポリシリコン層等から
なるヒューズに電流を流して選択的に切断するような回
路を搭載し、その選択的な切断により時間設定を行うよ
うにしてもよい。あるいは、時間設定用の外部端子を設
けておいて、かかる外部端子にハイレベル/ロウレベル
を供給することにより時間設定を行うようにしてもよ
い。
In order to increase the degree of freedom in setting the time as described above, in other words, in order to make the setting possible even after the protection IC is formed, a current is passed through a fuse made of a polysilicon layer or the like. It is also possible to mount a circuit that selectively disconnects and set the time by selectively disconnecting the circuit. Alternatively, an external terminal for time setting may be provided and the time setting may be performed by supplying a high level / low level to the external terminal.

【0013】上記タイマー回路は、上記電圧比較回路C
OMP4の出力信号とその遅延信号とを論理回路に供給
して、上記遅延時間内での出力信号を無効にする回路に
することも考えられる。しかしながら、このような回路
においては、遅延信号を形成するために比較的大きな時
定数回路を半導体集積回路に形成しなければならず、キ
ャパシタ等の外付部品点数が増加してしまう等の問題が
ある。キャパシタを内蔵させると、設定時間が固定化さ
れてしまい複数種類の保護用ICを用意しなければなら
なくなる。
The timer circuit includes the voltage comparison circuit C.
It is also conceivable to supply the output signal of the OMP4 and its delayed signal to the logic circuit so that the output signal within the delay time is invalidated. However, in such a circuit, a relatively large time constant circuit must be formed in the semiconductor integrated circuit in order to form a delay signal, which causes a problem that the number of external parts such as a capacitor increases. is there. When a capacitor is built in, the set time is fixed and it becomes necessary to prepare a plurality of types of protection ICs.

【0014】上記デコーダの出力信号は、特に制限され
ないが、ラッチ回路LT2のクロック端子CKに供給さ
れる。このラッチ回路LT2の入力には、定常的にハイ
レベルの電源電圧VCCが供給されており、上記クロッ
クCKが入力された時点でセット状態にされる。このラ
ッチ回路LT2の出力信号Qは、上記セット状態により
ハイレベルに変化し、ドライバとしてのインバータ回路
IV1と外部端子T3を介して過放電保護のスイッチM
OSFETQ1のゲートをロウレベルにし、かかるスイ
ッチMOSFETQ1をオフ状態にさせる。上記ラッチ
回路LT2のリセット端子Rには、上記電圧比較回路C
OMP4の出力信号が供給され、充電動作によりVCC
が終止電圧以上に回復すると、リセット状態にされる。
上記ラッチ回路LT2がリセットされるまでの充電電流
は、MOSFETQ1がオフ状態であるで、ドレインと
ソース間の寄生ダイオードD1を介して流れるようにさ
れる。
The output signal of the decoder is supplied to the clock terminal CK of the latch circuit LT2, although not particularly limited. The power supply voltage VCC of high level is constantly supplied to the input of the latch circuit LT2, and the latch circuit LT2 is set to the set state when the clock CK is input. The output signal Q of the latch circuit LT2 changes to a high level according to the set state, and the switch M for over-discharge protection is passed through the inverter circuit IV1 as a driver and the external terminal T3.
The gate of the OSFET Q1 is set to low level, and the switch MOSFET Q1 is turned off. The voltage comparison circuit C is connected to the reset terminal R of the latch circuit LT2.
The output signal of OMP4 is supplied and VCC is supplied by the charging operation.
When the voltage exceeds the cutoff voltage, it is reset.
The charging current until the latch circuit LT2 is reset flows through the parasitic diode D1 between the drain and the source because the MOSFET Q1 is in the off state.

【0015】上記分周カウンタでの電流消費を低減させ
るために、分周カウンタのキャリー信号により入力部に
設けられたゲート回路G2がゲートを閉じるよう制御さ
れる。これにより、発振パルスが分周カウンタに入力さ
れることが停止させられる。つまり、電池電圧VCCが
終止電圧以下になって分周カウンタが最大計数動作を行
うと、それ以後の無駄な計数動作が停止させられるの
で、消費電流の削減を図ることができる。
In order to reduce the current consumption in the frequency dividing counter, the gate circuit G2 provided in the input section is controlled by the carry signal of the frequency dividing counter to close the gate. This stops the oscillation pulse from being input to the frequency division counter. That is, when the battery voltage VCC becomes equal to or lower than the final voltage and the frequency division counter performs the maximum counting operation, the wasteful counting operation thereafter is stopped, so that the current consumption can be reduced.

【0016】図3には、この発明に係る二次電池保護回
路の他の部分の一実施例の回路図が示されている。Li
イオン電池の両端の電圧は、保護回路を構成する半導体
集積回路装置ICの端子T1とT2に供給され、動作電
圧VCCとしても利用される。上記二次電池の正極側の
電極は、そのまま正側の電池パック端子+に接続され
る。
FIG. 3 is a circuit diagram showing another embodiment of the secondary battery protection circuit according to the present invention. Li
The voltage across the ion battery is supplied to the terminals T1 and T2 of the semiconductor integrated circuit device IC that constitutes the protection circuit, and is also used as the operating voltage VCC. The positive electrode of the secondary battery is directly connected to the positive battery pack terminal +.

【0017】上記二次電池の負極側の電極と負側の電池
パック端子−との間には、保護用のスイッチMOSFE
TQ1とQ2とが直列形態に接続される。スイッチMO
SFETQ1は上記図1で説明した放電保護のスイッチ
であり、スイッチMOSFETQ2は充電保護用のスイ
ッチである。かかるスイッチMOSFETQ1とQ2の
ソースは基板(チャンネル)に接続される。それ故、ド
レインとチャンネル間のPN接合が寄生ダイオードD1
とD2として、上記スイッチMOSFETQ1とQ2に
それぞれ並列形態に設けられる。
A protective switch MOSFE is provided between the negative electrode of the secondary battery and the negative battery pack terminal.
TQ1 and Q2 are connected in series. Switch MO
The SFET Q1 is the discharge protection switch described in FIG. 1, and the switch MOSFET Q2 is the charge protection switch. The sources of the switch MOSFETs Q1 and Q2 are connected to the substrate (channel). Therefore, the PN junction between the drain and the channel is a parasitic diode D1.
And D2 are provided in parallel with the switch MOSFETs Q1 and Q2, respectively.

【0018】上記半導体集積回路装置ICにおいて、端
子T1とT2の両端の電池電圧VCCは、直列抵抗R1
〜R6により分圧され、特に制限されないが、抵抗R1
とR2の接続点における分圧電圧は、電圧比較回路CO
MP1の一方の入力端子+に供給される。かかる電圧比
較回路COMP1の他方の入力端子−には、図示しない
基準電圧発生回路で形成された基準電圧V1が供給され
る。この電圧検出回路COMP1は、第1の電圧検出回
路を構成する。かかる第1の電圧検出回路の検出信号
は、ラッチ回路LT1のリセット端子Rに供給される。
上記ラッチ回路LT1の出力信号Qは、セット状態のと
きにハイレベルにされ、リセット状態のときにロウレベ
ルにされる。この出力信号Qは、端子T4介して上記充
電保護のスイッチであるMOSFETQ2のゲートに供
給される。
In the above semiconductor integrated circuit device IC, the battery voltage VCC across the terminals T1 and T2 is the series resistance R1.
Is divided by R6 and is not particularly limited, but the resistance R1
The divided voltage at the connection point of R2 and R2 is
It is supplied to one input terminal + of MP1. A reference voltage V1 formed by a reference voltage generation circuit (not shown) is supplied to the other input terminal-of the voltage comparison circuit COMP1. The voltage detection circuit COMP1 constitutes a first voltage detection circuit. The detection signal of the first voltage detection circuit is supplied to the reset terminal R of the latch circuit LT1.
The output signal Q of the latch circuit LT1 is set to high level in the set state and set to low level in the reset state. The output signal Q is supplied to the gate of the MOSFET Q2, which is the charge protection switch, via the terminal T4.

【0019】特に制限されないが、抵抗R4とR5の接
続点における分圧電圧は、電圧比較回路COMP2の一
方の入力端子−に供給される。かかる電圧比較回路CO
MP2の他方の入力端子+には、図示しない基準電圧発
生回路で形成された基準電圧V2が供給される。この電
圧比較回路COMP2の出力信号は、オア(論理和)ゲ
ート回路G1を通して上記ラッチ回路LT1のセット端
子Sに供給される。上記基準電圧V2は、電池の充電動
作を指示する規定の電圧に対応したものとされる。つま
り、分圧電圧(電池電圧)が上記規定の基準電圧V2よ
り低下すると、電圧比較回路COMP2の出力信号がハ
イレベルに変化し、上記ラッチ回路LT1をセットし、
かかるラッチ回路LT1の出力信号Qにより上記過充電
保護のスイッチMOSFETQ2をオン状態にさせる。
Although not particularly limited, the divided voltage at the connection point of the resistors R4 and R5 is supplied to one input terminal-of the voltage comparison circuit COMP2. Such voltage comparison circuit CO
A reference voltage V2 formed by a reference voltage generating circuit (not shown) is supplied to the other input terminal + of MP2. The output signal of the voltage comparison circuit COMP2 is supplied to the set terminal S of the latch circuit LT1 through the OR (logical sum) gate circuit G1. The reference voltage V2 corresponds to a specified voltage for instructing the charging operation of the battery. That is, when the divided voltage (battery voltage) becomes lower than the specified reference voltage V2, the output signal of the voltage comparison circuit COMP2 changes to the high level, and the latch circuit LT1 is set.
The output signal Q of the latch circuit LT1 turns on the switch MOSFET Q2 for overcharge protection.

【0020】この実施例では、誤って過電圧されたと
き、上記電圧比較回路COMP1がこれを検出し、上記
ラッチ回路LT1をリセットして上記過充電保護のスイ
ッチMOSFETQ2をオフ状態にさせる。本願発明に
おいては、上記スイッチMOSFETQ2は過充電によ
って、上記Liが析出されてしまうことによる発熱等に
より事故を防ぐためであり、それに負荷をつなげて放電
させることには何ら問題ないし、むしろ放電させて正常
状態に戻すことが望ましいことに着目し、次のような負
荷接続を検出する機能が付加される。
In this embodiment, when an overvoltage is erroneously detected, the voltage comparison circuit COMP1 detects this and resets the latch circuit LT1 to turn off the overcharge protection switch MOSFET Q2. In the invention of the present application, the switch MOSFET Q2 is for preventing an accident due to heat generation or the like caused by Li being deposited by overcharging, and there is no problem in connecting a load to the switch MOSFET Q2 for discharging, but rather for discharging. Focusing on the fact that it is desirable to return to a normal state, the following function for detecting load connection is added.

【0021】上記スイッチMOSFETQ2の出力側、
言い換えるならば、電池パック端子−の電位がVMが端
子T5を介して半導体集積回路ICの内部に取り込ま
れ、電圧比較回路COMP3の入力端子+に供給され
る。この電圧比較回路COMP3の他方の入力端子−に
は、基準電圧V3が供給される。この基準電圧V3は、
上記寄生ダイオードD2の順方向電圧Vfを検出するた
めの比較的低い電位にされる。上記電圧比較回路COM
P3は、第2の電圧検出回路を構成する。
The output side of the switch MOSFET Q2,
In other words, the potential of the battery pack terminal − is taken into the semiconductor integrated circuit IC via the terminal T5 and supplied to the input terminal + of the voltage comparison circuit COMP3. The reference voltage V3 is supplied to the other input terminal-of the voltage comparison circuit COMP3. This reference voltage V3 is
It is set to a relatively low potential for detecting the forward voltage Vf of the parasitic diode D2. The voltage comparison circuit COM
P3 constitutes a second voltage detection circuit.

【0022】上記過充電によりラッチ回路LT1がリセ
ットされてしまい、その結果MOSFETQ2がオフ状
態にされた状態で、電池パック端子+と−との間に負荷
(電気機器)を接続させると、上記のような過電圧状態
では上記MOSFETQ2と直列形態に接続された過放
電保護用はスイッチMOSFETQ1がオン状態である
ために、端子T2を基準にした回路の接地電位に対して
寄生ダイオードD2を介して電池の負極側に電流が流れ
込んで、上記電池パック端子−の電位が上記寄生ダイオ
ードD2の順方向電圧Vfだけ浮き上がる。
If the latch circuit LT1 is reset due to the overcharge and the MOSFET Q2 is turned off as a result, and a load (electrical device) is connected between the battery pack terminals + and-, In such an overvoltage state, since the switch MOSFET Q1 for over-discharge protection connected in series with the MOSFET Q2 is in the ON state, the battery of the battery is connected via the parasitic diode D2 to the ground potential of the circuit based on the terminal T2. A current flows into the negative electrode side, and the potential of the battery pack terminal − rises by the forward voltage Vf of the parasitic diode D2.

【0023】上記電圧比較回路COMP3は、上記のよ
うな放電経路が形成されたこと、言い換えるならば、電
池パック端子+と−の間に負荷としての電子機器が接続
されて、上記電池パック端子−の電位の浮き上がりを端
子T5からの電圧VMにより検出し、その出力信号をロ
ウレベルからハイレベルに変化させる。これにより、オ
アゲート回路G1を介して上記リセット状態のラッチ回
路LT1がセット状態に反転させられるために、その出
力信号Qがロウレベルからハイレベルに変化して上記M
OSFETQ2が再びオン状態になり、上記負荷に対し
て電流供給を行うようにすることができる。このような
負荷の接続による放電動作によって、自動的に過充電状
態も開放されて電圧比較回路COMP1の出力もロウレ
ベルに復帰する。上記抵抗R7は、端子T5での静電破
壊防止等のために付加されているが、省略してもよい。
In the voltage comparison circuit COMP3, the discharge path as described above is formed, in other words, an electronic device as a load is connected between the battery pack terminals + and-and the battery pack terminal- The floating of the potential of is detected by the voltage VM from the terminal T5, and the output signal is changed from low level to high level. As a result, the latch circuit LT1 in the reset state is inverted to the set state via the OR gate circuit G1, so that the output signal Q thereof changes from the low level to the high level and the M signal is output.
The OSFET Q2 is turned on again, and current can be supplied to the load. By the discharging operation by connecting such a load, the overcharged state is automatically released and the output of the voltage comparison circuit COMP1 also returns to the low level. The resistor R7 is added to prevent electrostatic breakdown or the like at the terminal T5, but may be omitted.

【0024】上記の実施例から得られる作用効果は、下
記の通りである。すなわち、 (1) 二次電池の保護回路において、電池電圧の過電
圧又は過放電を電圧検出回路で検出し、かかる検出信号
が過充電又は過放電状態のときに対応した一方のレベル
にされている間に計数動作を行う分周カウンタを有する
タイマー回路を設け、その計数出力が所定の時間設定に
対応した計数値になると出力信号を形成し、かかる出力
信号によりによりラッチ回路を一方のレベルに安定さ
せ、上記電圧検出回路の検出信号が他方のレベルが出力
されることにより上記ラッチ回路を他方のレベルに反転
させ、上記ラッチ回路の一方のレベルでの安定状態にお
ける出力信号により過放電保護スイッチをオフ状態に
し、上記他方のレベルでの安定状態における出力信号に
より過放電保護スイッチオン状態にさせるとにより、過
渡的な放電電圧の低下に応答せず実質的な放電能力を向
上させることができるという効果が得られる。
The functions and effects obtained from the above embodiment are as follows. That is, (1) In the secondary battery protection circuit, an overvoltage or overdischarge of the battery voltage is detected by the voltage detection circuit, and the detection signal is set to one level corresponding to the overcharge or overdischarge state. A timer circuit with a frequency dividing counter that performs a counting operation is provided between them, and when the count output reaches a count value corresponding to a predetermined time setting, an output signal is formed and the output signal stabilizes the latch circuit at one level. When the detection signal of the voltage detection circuit outputs the other level, the latch circuit is inverted to the other level, and the overdischarge protection switch is activated by the output signal in the stable state at one level of the latch circuit. Transient discharge occurs when the over-discharge protection switch is turned on by the output signal in the stable state at the other level mentioned above. There is an advantage that it is possible to improve the substantial discharge capacity does not respond to the drop in pressure.

【0025】(2) 上記分周カウンタを、電圧検出回
路が他方のレベルによりリセット状態にし、その計数動
作のオーバーフロー信号が計数パルスの入力部に設けら
れたゲートを閉じるように制御して計数動作を停止させ
ることにより、分周カウンタでの無駄な電流消費を抑え
ることができるという効果が得られる。
(2) Counting operation is performed by controlling the frequency dividing counter to reset the voltage detecting circuit according to the other level and controlling the overflow signal of the counting operation to close the gate provided in the input portion of the counting pulse. By stopping the operation, it is possible to obtain an effect that wasteful current consumption in the frequency division counter can be suppressed.

【0026】(3) 上記保護回路は、電池パックとし
てリチュウムイオン電池と一体的に組み込まれることに
より、実質的な放電能力を向上させせつつ、使い勝手を
良くすることができるという効果が得られる。
(3) By incorporating the protection circuit as a battery pack integrally with the lithium-ion battery, it is possible to improve the actual discharge capacity and improve the usability.

【0027】(4) 上記保護回路及びスイッチは過放
電保護用のものであり、かかるスイッチには過充電保護
用のスイッチを直列形態に接続し、かかる過充電保護用
のスイッチを、それに対応した保護回路によりスイッチ
制御させることにより、実質的な放電能力を向上と、安
全性を確保しつつ、使い勝手を良くすることができると
いう効果が得られる。
(4) The protection circuit and the switch are for over-discharge protection, and a switch for over-charge protection is connected in series to the switch, and the switch for over-charge protection corresponds to it. By performing the switch control by the protection circuit, it is possible to obtain the effects that the discharge capability is substantially improved, the safety is ensured, and the usability is improved.

【0028】以上本発明者よりなされた発明を実施例に
基づき具体的に説明したが、本願発明は前記実施例に限
定されるものではなく、その要旨を逸脱しない範囲で種
々変更可能であることはいうまでもない。例えば、スイ
ッチ素子は、MOSFETの他にバイポーラ型トランジ
スタや他のスイッチ素子を用いるようにしてもよい。上
記MOSFETの場合には、ドレインとソース間の寄生
ダイオードを利用することができるが、このような寄生
ダイオードが無いときには、それと同等な電流を流すよ
うなダイオードを各スイッチに並列的に設けるようにす
ればよい。
Although the invention made by the present inventor has been specifically described based on the embodiments, the invention of the present application is not limited to the embodiments and various modifications can be made without departing from the scope of the invention. Needless to say. For example, as the switch element, a bipolar transistor or another switch element may be used instead of the MOSFET. In the case of the above-mentioned MOSFET, a parasitic diode between the drain and the source can be used. However, when such a parasitic diode does not exist, a diode capable of flowing a current equivalent to that can be provided in parallel with each switch. do it.

【0029】上記電圧検出回路は、前記のような電圧比
較回路を用いるもの他、例えば寄生ダイオードD2の順
方向電圧に対応した電池パックの負極端子−の浮き上が
りを検出するものは、MOSFETのしきい値電圧を利
用するものであってもよい。つまり、寄生ダイオードD
2の順方向電圧より低いしきい値電圧を持つようにされ
たNチャンネル型MOSFETのゲートに上記端子5の
電圧VM供給し、ソースに電池の負極電位に対応した回
路の接地電位を供給し、かかるMOSFETのドレイン
からオン状態/オフ状態に対応したロウレベル/ハイレ
ベルの検出信号を形成し、それをインバータ回路で反転
させて上記セット信号に用いるようにしてもよい。
The voltage detection circuit uses the above-mentioned voltage comparison circuit, and, for example, the MOSFET threshold is used for detecting the floating of the negative terminal of the battery pack corresponding to the forward voltage of the parasitic diode D2. A value voltage may be used. That is, the parasitic diode D
The voltage VM of the terminal 5 is supplied to the gate of the N-channel MOSFET having a threshold voltage lower than the forward voltage of 2 and the ground potential of the circuit corresponding to the negative potential of the battery is supplied to the source. A low level / high level detection signal corresponding to an on state / off state may be formed from the drain of the MOSFET, and may be inverted by an inverter circuit to be used as the set signal.

【0030】電圧比較回路に供給される基準電圧は、共
通化された1つの定電圧であってもよい。これを基準に
して、電池電圧VCCを分圧抵抗回路により分圧し、そ
の分圧比の設定により、上記過充電、ラッチ回路のセッ
トをさせる規定電圧、放電動作を停止させる終止電圧の
それぞれに対応した分圧電圧を形成するようにすればよ
い。この発明は、過充電の保護を行う必要のある各種二
次電池保護回路として広く利用することができる。
The reference voltage supplied to the voltage comparison circuit may be one common constant voltage. Based on this, the battery voltage VCC is divided by the voltage dividing resistor circuit, and the division ratio is set to correspond to each of the overcharge, the specified voltage for setting the latch circuit, and the final voltage for stopping the discharge operation. A divided voltage may be formed. INDUSTRIAL APPLICABILITY The present invention can be widely used as various secondary battery protection circuits that require protection against overcharge.

【0031】[0031]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば、下
記の通りである。すなわち、二次電池の保護回路におい
て、電池電圧の過電圧又は過放電を電圧検出回路で検出
し、かかる検出信号が過充電又は過放電状態のときに対
応した一方のレベルにされている間に計数動作を行う分
周カウンタを有するタイマー回路を設け、その計数出力
が所定の時間設定に対応した計数値になると出力信号を
形成し、かかる出力信号によりによりラッチ回路を一方
のレベルに安定させ、上記電圧検出回路の検出信号が他
方のレベルが出力されることにより上記ラッチ回路を他
方のレベルに反転させ、上記ラッチ回路の一方のレベル
での安定状態における出力信号により過放電保護スイッ
チをオフ状態にし、上記他方のレベルでの安定状態にお
ける出力信号により過放電保護スイッチオン状態にさせ
るとにより、過渡的な放電電圧の低下に応答せず実質的
な放電能力を向上させることができる。
The effects obtained by typical ones of the inventions disclosed in the present application will be briefly described as follows. That is, in the secondary battery protection circuit, the voltage detection circuit detects overvoltage or overdischarge of the battery voltage, and counts while the detection signal is at one level corresponding to the overcharge or overdischarge state. A timer circuit having a frequency-dividing counter for performing an operation is provided, and when the count output reaches a count value corresponding to a predetermined time setting, an output signal is formed, and the output signal stabilizes the latch circuit at one level. When the detection signal of the voltage detection circuit outputs the other level, the latch circuit is inverted to the other level, and the overdischarge protection switch is turned off by the output signal in the stable state at one level of the latch circuit. , When the over-discharge protection switch is turned on by the output signal in the stable state at the other level, the transient discharge voltage becomes low. It is possible to improve the substantial discharge capacity not respond to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る二次電池保護回路のうち過放電
保護用に向けられた一実施例を示す回路図である。
FIG. 1 is a circuit diagram showing an embodiment of a secondary battery protection circuit according to the present invention, which is directed to over discharge protection.

【図2】上記スイッチMOSFETQ1を制御する保護
回路の動作を説明するための特性図である。
FIG. 2 is a characteristic diagram for explaining the operation of a protection circuit that controls the switch MOSFET Q1.

【図3】この発明に係る二次電池保護回路のうち過充電
保護用に向けられた他の保護回路の一実施例を示す回路
図である。
FIG. 3 is a circuit diagram showing an embodiment of another protection circuit for overcharge protection of the secondary battery protection circuit according to the present invention.

【符号の説明】[Explanation of symbols]

R1〜R7…抵抗、LT1,LT2…ラッチ回路、G1
〜G3…論理ゲート回路、IV1…インバータ回路、C
OMP1〜CPMP4…電圧比較回路、Q1〜Q2…M
OSFET、D1,D2…ダイオード。
R1 to R7 ... Resistors, LT1, LT2 ... Latch circuit, G1
~ G3 ... Logic gate circuit, IV1 ... Inverter circuit, C
OMP1 to CPMP4 ... voltage comparison circuit, Q1 to Q2 ... M
OSFET, D1, D2 ... Diode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横浜 武久 東京都小平市上水本町5丁目22番1号 株 式会社日立マイコンシステム内 (72)発明者 田中 伸児 東京都小平市上水本町5丁目22番1号 株 式会社日立マイコンシステム内 (72)発明者 松政 栄二 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 (72)発明者 堀崎 浩一 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takehisa Yokohama, 5-22-1 Kamimizuhoncho, Kodaira-shi, Tokyo Inside Hitachi Microcomputer System Co., Ltd. (72) Nobuko Tanaka, 5-chome, Mizumizumoto-cho, Kodaira-shi, Tokyo 22-1 No. 1 In Hitachi Microcomputer System Co., Ltd. (72) Inventor Eiji Matsumasa 1-88 Irakura, Ibaraki City, Osaka Prefecture 1-88 Hitachi Maxell Co., Ltd. (72) Inventor Koichi Horizaki 1-chome, Iragi City No. 1-88 in Hitachi Maxell Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 二次電池の両端の電圧を受け、かかる電
池電圧で動作させられる二次電池保護回路であって、 上記電池電圧の過電圧又は過放電を検出する電圧検出回
路と、 かかる電圧検出回路から一方のレベルが出力されている
間に計数動作を行うカウンタを含み、かかる分周カウン
タの出力を受けて所定の時間設定に対応した計数値にな
ると出力信号を形成するタイマー回路と、 上記タイマー回路の出力信号により一方のレベルに安定
し、上記電圧検出回路から他方のレベルが出力されるこ
とにより他方のレベルに反転させられるラッチ回路と、 上記ラッチ回路の一方のレベルでの安定状態における出
力信号によりオフ状態にされ、上記他方のレベルでの安
定状態における出力信号によりオン状態にされ、かつ上
記二次電池の電流経路に直列に挿入された過放電又は過
充電保護スイッチとを含むことを特徴とする二次電池保
護回路。
1. A secondary battery protection circuit which receives a voltage across a secondary battery and is operated at such a battery voltage, and a voltage detection circuit for detecting an overvoltage or overdischarge of the battery voltage, and such a voltage detection circuit. A timer circuit that includes a counter that performs a counting operation while one level is being output from the circuit, and that forms an output signal when a count value corresponding to a predetermined time setting is received by the output of the frequency dividing counter; A latch circuit that is stabilized at one level by the output signal of the timer circuit and is inverted to the other level when the other level is output from the voltage detection circuit, and a stable state at one level of the latch circuit It is turned off by the output signal, turned on by the output signal in the stable state at the other level, and is connected to the current path of the secondary battery. The rechargeable battery protection circuit which comprises a overdischarge or overcharge protection switch is inserted into the column.
【請求項2】 上記分周カウンタは、電圧検出回路が他
方のレベルによりリセット状態にされ、その計数動作の
オーバーフロー信号が計数パルスの入力部に設けられた
ゲートを閉じるように制御して計数動作を停止させる回
路が付加されるものであることを特徴とする請求項1の
二次電池保護回路。
2. The frequency dividing counter is configured so that the voltage detecting circuit is reset by the other level and the overflow signal of the counting operation is controlled to close the gate provided in the input portion of the counting pulse to perform the counting operation. The secondary battery protection circuit according to claim 1, further comprising a circuit for stopping the battery.
【請求項3】 上記保護回路は、電池パックとしてリチ
ュウムイオン電池と一体的に組み込まれるものであるこ
とを特徴とする請求項1又は請求項2の二次電池保護回
路。
3. The secondary battery protection circuit according to claim 1 or 2, wherein the protection circuit is integrated with a lithium ion battery as a battery pack.
【請求項4】 上記保護回路及びスイッチは過放電保護
用のものであり、かかるスイッチには過充電保護用のス
イッチが直列形態に接続され、かかる過充電保護用のス
イッチは、それに対応した保護回路によりスイッチ制御
されるものであることを特徴とする請求項3の二次電池
保護回路。
4. The protection circuit and the switch are for over-discharge protection, and a switch for over-charge protection is connected in series to the switch, and the switch for over-charge protection has a corresponding protection. The secondary battery protection circuit according to claim 3, which is switch-controlled by a circuit.
JP35211995A 1995-12-27 1995-12-27 Secondary battery protection circuit Expired - Lifetime JP3597618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35211995A JP3597618B2 (en) 1995-12-27 1995-12-27 Secondary battery protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35211995A JP3597618B2 (en) 1995-12-27 1995-12-27 Secondary battery protection circuit

Publications (2)

Publication Number Publication Date
JPH09182283A true JPH09182283A (en) 1997-07-11
JP3597618B2 JP3597618B2 (en) 2004-12-08

Family

ID=18421909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35211995A Expired - Lifetime JP3597618B2 (en) 1995-12-27 1995-12-27 Secondary battery protection circuit

Country Status (1)

Country Link
JP (1) JP3597618B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176730A (en) * 2000-09-28 2002-06-21 Ricoh Co Ltd Charge/discharge protective circuit, battery pack incorporating the same, and electronic apparatus using the battery pack
US6501248B2 (en) 2000-09-28 2002-12-31 Ricoh Company, Ltd. Charge/discharge protection apparatus having a charge-state overcurrent detector, and battery pack including the same
US6563292B2 (en) 2000-12-26 2003-05-13 Ricoh Company, Ltd. Charge/discharge protection circuit with latch circuit for protecting a charge control FET from overheating
KR100546714B1 (en) * 1997-11-25 2006-04-17 로무 가부시키가이샤 Battery protection device and battery device using same
JP2006262574A (en) * 2005-03-16 2006-09-28 Ricoh Co Ltd Secondary battery protection circuit, battery pack and electronic equipment
JP2008177638A (en) * 2007-01-16 2008-07-31 Seiko Instruments Inc Delay circuit
JP2009519697A (en) * 2005-12-15 2009-05-14 エヌエックスピー ビー ヴィ Battery recharge prevention method for short-term battery voltage drop
JP2009245635A (en) * 2008-03-28 2009-10-22 Panasonic Electric Works Co Ltd Battery pack
KR100943749B1 (en) * 2007-04-16 2010-02-23 에너그린(주) Solar photovoltaic street light
KR100954652B1 (en) * 2003-09-17 2010-04-27 세이코 인스트루 가부시키가이샤 Charging and discharging control circuit and charging type power supply device
JP2010166631A (en) * 2009-01-13 2010-07-29 Sony Corp Battery pack and control method
JP2010213559A (en) * 2009-02-12 2010-09-24 Mitsumi Electric Co Ltd Dc power supply and dc-dc converter
CN110095646A (en) * 2019-04-24 2019-08-06 南京中感微电子有限公司 Detection of negative pressure circuit and battery protecting circuit
TWI787358B (en) * 2017-10-13 2022-12-21 日商艾普凌科有限公司 Charge and discharge control circuit and battery device having the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4667157B2 (en) 2005-08-08 2011-04-06 株式会社リコー Secondary battery protection semiconductor device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100546714B1 (en) * 1997-11-25 2006-04-17 로무 가부시키가이샤 Battery protection device and battery device using same
US6501248B2 (en) 2000-09-28 2002-12-31 Ricoh Company, Ltd. Charge/discharge protection apparatus having a charge-state overcurrent detector, and battery pack including the same
US6812673B2 (en) 2000-09-28 2004-11-02 Ricoh Company, Ltd. Charge/discharge protection apparatus having a charge-state overcurrent detector, and battery pack including the same, and mobile electronic system
JP2002176730A (en) * 2000-09-28 2002-06-21 Ricoh Co Ltd Charge/discharge protective circuit, battery pack incorporating the same, and electronic apparatus using the battery pack
US6563292B2 (en) 2000-12-26 2003-05-13 Ricoh Company, Ltd. Charge/discharge protection circuit with latch circuit for protecting a charge control FET from overheating
US6768289B2 (en) 2000-12-26 2004-07-27 Ricoh Company, Ltd. Charge/discharge protection circuit with latch circuit for protecting a charge control FET from overheating in a portable device
KR100954652B1 (en) * 2003-09-17 2010-04-27 세이코 인스트루 가부시키가이샤 Charging and discharging control circuit and charging type power supply device
JP2006262574A (en) * 2005-03-16 2006-09-28 Ricoh Co Ltd Secondary battery protection circuit, battery pack and electronic equipment
JP4535910B2 (en) * 2005-03-16 2010-09-01 株式会社リコー Secondary battery protection circuit, battery pack and electronic device
JP2009519697A (en) * 2005-12-15 2009-05-14 エヌエックスピー ビー ヴィ Battery recharge prevention method for short-term battery voltage drop
US8035353B2 (en) 2005-12-15 2011-10-11 St-Ericsson Sa Battery recharge prevention principle for short battery voltage dips
JP2008177638A (en) * 2007-01-16 2008-07-31 Seiko Instruments Inc Delay circuit
KR100943749B1 (en) * 2007-04-16 2010-02-23 에너그린(주) Solar photovoltaic street light
JP2009245635A (en) * 2008-03-28 2009-10-22 Panasonic Electric Works Co Ltd Battery pack
JP2010166631A (en) * 2009-01-13 2010-07-29 Sony Corp Battery pack and control method
JP2010213559A (en) * 2009-02-12 2010-09-24 Mitsumi Electric Co Ltd Dc power supply and dc-dc converter
TWI787358B (en) * 2017-10-13 2022-12-21 日商艾普凌科有限公司 Charge and discharge control circuit and battery device having the same
CN110095646A (en) * 2019-04-24 2019-08-06 南京中感微电子有限公司 Detection of negative pressure circuit and battery protecting circuit
CN110095646B (en) * 2019-04-24 2021-07-09 南京中感微电子有限公司 Negative pressure detection circuit and battery protection circuit

Also Published As

Publication number Publication date
JP3597618B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
JPH09182282A (en) Secondary battery protective circuit
US6340880B1 (en) Method of protecting a chargeable electric cell
US5705911A (en) Charging circuit
EP0794480B1 (en) Circuit for selecting and designating a master battery pack in a computer system
JPH11215716A (en) Battery managing apparatus, battery package, and electronic appliance
JPH09182283A (en) Secondary battery protective circuit
US20030141848A1 (en) Charge/discharge protection circuit with latch circuit for protecting a charge control FET from overheating
KR20200137965A (en) Secondary battery protection circuit, secondary battery protection device, battery pack and method of controlling secondary battery protection circuit
US20070210759A1 (en) Charge/discharge protection circuit and power-supply unit
US10622819B2 (en) Rechargeable battery protection integrated circuit, rechargeable battery protection device, and battery pack
US5526215A (en) Secondary cell protection unit for protecting a secondary cell from overdischarge or overcharge without excessive power consumption
US20070013342A1 (en) Battery pack
US20190280341A1 (en) Circuits, systems, and methods for protecting batteries
JP3326324B2 (en) Secondary battery protection circuit
US6920341B2 (en) Secondary battery control circuit
JP3190597B2 (en) Charge / discharge control circuit and rechargeable power supply
JP2002320323A (en) Power source circuit
US20080157719A1 (en) Semiconductor device and rechargeable power supply unit
JP2000102182A (en) Overcharge/overdischarge preventive circuit for secondary battery
EP1339154A1 (en) Monolithic battery protection circuit
JP3358559B2 (en) Low power consumption circuit and secondary battery protection circuit
JP3420672B2 (en) Secondary battery protection circuit
JP7277775B2 (en) Secondary battery protection circuit, secondary battery protection device, battery pack, and control method for secondary battery protection circuit
JP2799261B2 (en) Battery charge control device
TW200415836A (en) Battery state monitoring circuit and battery device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term