JPH09180757A - High-molecular solid electrolyte battery - Google Patents

High-molecular solid electrolyte battery

Info

Publication number
JPH09180757A
JPH09180757A JP7338570A JP33857095A JPH09180757A JP H09180757 A JPH09180757 A JP H09180757A JP 7338570 A JP7338570 A JP 7338570A JP 33857095 A JP33857095 A JP 33857095A JP H09180757 A JPH09180757 A JP H09180757A
Authority
JP
Japan
Prior art keywords
solid electrolyte
negative electrode
battery
electrolyte
heterocyclic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7338570A
Other languages
Japanese (ja)
Inventor
Yasunobu Kodama
康伸 児玉
Takashi Oda
貴史 小田
Kazuo Terashi
和生 寺司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7338570A priority Critical patent/JPH09180757A/en
Publication of JPH09180757A publication Critical patent/JPH09180757A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-molecular solid electrolyte battery, of which cycle characteristic is improved, by forming a battery of a negative electrode, a positive electrode and the high-molecular solid electrolyte, which contacts the negative electrode active material and which contains the heterocyclic compound including double-coupled element. SOLUTION: In a high-molecular solid electrolyte battery, which is formed of a negative electrode, a positive electrode and the high-molecular electrolyte, as the high-molecular solid electrolyte, polyethylene oxide, which contains the heterocyclic compound having a double-coupled element such as thiophene at 0.05-5% by weight and which contains the organic matter plasticizer such as ethylene carbonate at need, is used. The negative electrode is desirably made of lithium or the carbonaceous material, and the high-molecular solid electrolyte contacts this negative electrode active material. The high-molecular solid electrolyte is desirable formed integrally with the negative electrode and/or the positive electrode. Affinity of the high-molecular solid electrolyte to the active material is thereby improved, and the power generating ability and the battery cycle characteristic can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高分子固体電解質
電池に関し、詳しくは高分子固体電解質の改良に関す
る。
TECHNICAL FIELD The present invention relates to a polymer solid electrolyte battery, and more particularly to improvement of a polymer solid electrolyte.

【0002】[0002]

【従来の技術】イオン導電性高分子固体電解質を用いた
電池は、漏液や蒸発損失に起因する電池性能の低下や、
漏液等に原因する機器の損傷の恐れがないので、有機電
解液型電池に比べ信頼性、安全性に優れ、また電解質が
セパレータとしての役割をも果たすので電池の一層の小
型化が図れるという特徴を有している。特に、極めて卑
な電位を有するリチウムまたは炭素質材料を負極活物質
として用いた高分子固体電解質電池は、長期信頼性に加
え高出力、高エネルギー密度の電池とできる可能性を秘
めている。このため、近年の携帯電子機器の発達にとも
ない、その駆動電源やバックアップ電源用の二次電池と
して有望視され、現在盛んに研究開発が行われている。
2. Description of the Related Art Batteries using ion-conductive polymer solid electrolytes have the following problems: deterioration of battery performance due to leakage and evaporation loss;
Since there is no risk of equipment damage due to liquid leakage, etc., it is superior in reliability and safety compared to organic electrolyte type batteries, and since the electrolyte also functions as a separator, further downsizing of the battery can be achieved. It has features. In particular, a polymer solid electrolyte battery using lithium or a carbonaceous material having an extremely base potential as a negative electrode active material has the potential to be a battery with high output and high energy density in addition to long-term reliability. Therefore, with the recent development of portable electronic devices, they are promising as secondary batteries for their drive power supplies and backup power supplies, and research and development are being actively conducted at present.

【0003】しかしながら、一般に負極活物質は反応性
が高いため、電池の充放電に際して高分子固体電解質を
組成している高分子化合物や有機物可塑剤と反応し、固
体電解質を変質乃至分解してその機能を低下させるとい
う問題がある。電解質機能の低下は直ちに電池性能の低
下に繋がるため、従来のこの種の電池では十分なサイク
ル寿命が得られていない。
However, since the negative electrode active material is generally highly reactive, it reacts with the polymer compound or the organic plasticizer forming the polymer solid electrolyte during charge / discharge of the battery to alter or decompose the solid electrolyte and There is a problem of degrading the function. Since the deterioration of the electrolyte function immediately leads to the deterioration of the battery performance, the conventional battery of this type does not have a sufficient cycle life.

【0004】[0004]

【発明が解決しようとする課題】本発明は、リチウムま
たは炭素質材料などの反応性に富む負極活物質を用いた
高分子固体電解質電池において、負極活物質の高分子固
体電解質に対する悪作用を抑制することにより、サイク
ル特性に優れた高分子固体電解質電池を提供しようとす
るものであり、特にリチウムまたは炭素質材料を負極と
する高分子固体電解質電池のサイクル特性を向上させる
ことを主な目的とする。
The present invention, in a polymer solid electrolyte battery using a highly reactive negative electrode active material such as lithium or carbonaceous material, suppresses the adverse effect of the negative electrode active material on the polymer solid electrolyte. By doing so, it is intended to provide a polymer solid electrolyte battery having excellent cycle characteristics, and particularly with the main purpose of improving the cycle characteristics of the polymer solid electrolyte battery having a lithium or carbonaceous material as a negative electrode. To do.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、負極と、正極と、二重結合
を有する複素環式化合物を含有する高分子固体電解質と
を構成要素とする高分子固体電解質電池であることを特
徴とする。
To achieve the above object, the invention according to claim 1 comprises a negative electrode, a positive electrode, and a solid polymer electrolyte containing a heterocyclic compound having a double bond. It is characterized by being a polymer solid electrolyte battery as an element.

【0006】請求項2記載の発明は、請求項1記載の高
分子固体電解質電池において、前記高分子固体電解質
が、負極活物質と接触していることを特徴とする。
According to a second aspect of the invention, in the polymer solid electrolyte battery according to the first aspect, the polymer solid electrolyte is in contact with the negative electrode active material.

【0007】請求項3記載の発明は、請求項2記載の高
分子固体電解質電池において、前記高分子固体電解質
が、負極および/または正極と一体化されていることを
特徴とする。
According to a third aspect of the present invention, in the solid polymer electrolyte battery of the second aspect, the solid polymer electrolyte is integrated with a negative electrode and / or a positive electrode.

【0008】請求項4記載の発明は、請求項1または請
求項2または請求項3記載の高分子固体電解質電池にお
いて、前記負極が、リチウムまたは炭素質材料から構成
されていることを特徴とする。
According to a fourth aspect of the present invention, in the polymer solid electrolyte battery according to the first aspect, the second aspect, or the third aspect, the negative electrode is made of lithium or a carbonaceous material. .

【0009】請求項5記載の発明は、請求項4記載の高
分子固体電解質電池において、前記高分子固体電解質
が、前記複素環式化合物を0.05重量%〜5重量%含
有することを特徴とする。
According to a fifth aspect of the present invention, in the polymer solid electrolyte battery according to the fourth aspect, the polymer solid electrolyte contains 0.05 wt% to 5 wt% of the heterocyclic compound. And

【0010】請求項6記載の発明は、請求項5記載の高
分子固体電解質電池において、前記高分子固体電解質
が、有機物可塑剤を含有することを特徴とする。
According to a sixth aspect of the invention, in the polymer solid electrolyte battery according to the fifth aspect, the polymer solid electrolyte contains an organic plasticizer.

【0011】高分子固体電解質電池は、マトリックスと
しての高分子化合物にキャリアとしての電解質塩を添加
したもの、またはこれに有機物可塑剤を添加してイオン
導電性を一層向上させたもの、またはこれ以外の有機物
を主体とするイオン導電性高分子固体電解質からなる電
解質膜と、電解質膜の各面にそれぞれ密着配置した負極
と正極とで構成されるが、この種の電池では、固体電解
質のイオン導電性や固体電解質と活物質との密着性の良
否が、電池性能の良否を決定する要因となる。しかし
て、負極活物質は反応性に富む物質であり、特にリチウ
ムまたは炭素質材料は極めて高い反応性を有するので、
充電時に直接接触している電解質に作用して電解質を組
成している高分子化合物や有機物可塑剤を変性ないし分
解する。この結果、電解質のイオン導電性が低下すると
ともに、電解質膜の収縮により電極表面から剥離した
り、更には分解ガスにより電極/固体電解質界面の電気
的接触性が阻害され、サイクルの進行に伴って電極反応
の効率が低下する。
The polymer solid electrolyte battery is prepared by adding an electrolyte salt as a carrier to a polymer compound as a matrix, or by adding an organic plasticizer to the battery to further improve ionic conductivity, or other than this. Electrolyte membrane consisting of ion-conductive polymer solid electrolyte mainly composed of organic matter, and a negative electrode and a positive electrode closely arranged on each surface of the electrolyte membrane, respectively, in this type of battery, the ionic conductivity of the solid electrolyte And the adhesion between the solid electrolyte and the active material are factors that determine the battery performance. Thus, the negative electrode active material is a highly reactive material, and particularly lithium or carbonaceous materials have extremely high reactivity.
It acts on the electrolyte that is in direct contact during charging, and modifies or decomposes the polymer compound and organic plasticizer that make up the electrolyte. As a result, the ionic conductivity of the electrolyte is reduced, and the electrolyte membrane contracts and peels off from the electrode surface, and the decomposition gas impairs the electrical contact property of the electrode / solid electrolyte interface. The efficiency of the electrode reaction is reduced.

【0012】然るに、上記構成の本発明では、高分子固
体電解質に二重結合を有する複素環式化合物(以下、単
に複素環式化合物とする)が配合されているので、この
複素環式化合物が負極活物質に化学吸着して、高分子固
体電解質の活物質に対する親和性を向上させるように作
用するとともに、いわば保護膜のように作用して活物質
の高分子固体電解質に対する悪作用を抑制する。したが
って、本発明によれば、電極/固体電解質界面における
電気的接触性が向上するとともに、高分子固体電解質の
変性ないし分解が防止できる。よって、発電能力の向上
とともに電池サイクル特性の向上を図ることができるこ
とになる。
However, in the present invention having the above-mentioned constitution, since the heterocyclic compound having a double bond (hereinafter, simply referred to as a heterocyclic compound) is mixed in the solid polymer electrolyte, the heterocyclic compound is It chemisorbs to the negative electrode active material and acts to improve the affinity of the solid polymer electrolyte for the active material, and at the same time acts as a protective film to suppress the adverse effect of the active material on the solid polymer electrolyte. . Therefore, according to the present invention, the electrical contact property at the electrode / solid electrolyte interface can be improved, and the modification or decomposition of the polymer solid electrolyte can be prevented. Therefore, it is possible to improve the power generation capacity and the battery cycle characteristics.

【0013】このような本発明高分子固体電解質電池
は、基本的には従来電池と同様、高分子固体電解質膜を
介して負極と正極とを重ね合わせて構成される。しか
し、本発明における各発電要素は、必ずしも各々別個独
立に作製されたものを意味しない。即ち、複素環式化合
物を含有する高分子固体電解質膜を電極とは別個独立的
に作製して、この電解質膜の各面に正極、負極をそれぞ
れ密着配置する製法で作製した電池であってもよく、ま
た、先ず複素環式化合物を含有する電解質と電極とを一
体化させた所謂複合負極および/または正極を作製し、
その後、これらの電極を電解質面を内側にして重ね合わ
せる製法の電池であってもよい。更に、例えば複素環式
化合物を含有する電解質を用いた複合負極の上に複素環
式化合物を含有しない電解質層を形成したもの、或いは
複素環式化合物を含有しない電解質を用いた複合正極の
上に複素環式化合物を含有する電解質層を形成したもの
を用いた電池でもよい。更にまた、例えば、複素環式化
合物を含有する電解質を用いた複合負極と複合正極のそ
れぞれの電解質面に前駆体電解質(プレポリマー等)を
塗布し重ね合わせた後、全体を加熱することにより前駆
体電解質を熱重合し、電解質層を形成すると同時に正負
電極を結着する製法により一体型の電池となすこともで
きる。
Such a solid polymer electrolyte battery of the present invention is basically constructed by stacking a negative electrode and a positive electrode via a solid polymer electrolyte membrane, as in the conventional battery. However, each power generation element in the present invention does not necessarily mean that each power generation element is independently manufactured. That is, even a battery prepared by a manufacturing method in which a solid polymer electrolyte membrane containing a heterocyclic compound is prepared independently of the electrodes, and a positive electrode and a negative electrode are closely arranged on each surface of the electrolyte membrane Well, first, a so-called composite negative electrode and / or positive electrode in which an electrolyte containing a heterocyclic compound and an electrode are integrated is prepared,
After that, the battery may be manufactured by stacking these electrodes with the electrolyte surface inside. Furthermore, for example, on a composite negative electrode using an electrolyte containing a heterocyclic compound, an electrolyte layer containing no heterocyclic compound is formed, or on a composite positive electrode using an electrolyte containing no heterocyclic compound. A battery using an electrolyte layer containing a heterocyclic compound may be used. Furthermore, for example, a precursor electrolyte (prepolymer or the like) is applied to the respective electrolyte surfaces of a composite negative electrode and a composite positive electrode using an electrolyte containing a heterocyclic compound, and the precursor electrolyte is preheated by heating the whole. It is also possible to form an integral type battery by a manufacturing method in which a body electrolyte is thermally polymerized to form an electrolyte layer and, at the same time, positive and negative electrodes are bound.

【0014】本発明では、好ましくは複素環式化合物を
含有する高分子固体電解質が直接負極活物質に接触する
構成とするのがよい。このような構成であると、負極活
物質に吸着してその悪作用を抑制するという複素環式化
合物独自の作用効果が発揮され易くなるからである。な
お、複合負極等を用い正負両電極を重ね合わせると同時
に電池を構成する製法等では、電極と一体化した高分子
固体電解質膜が構成されため、外形的には電極と高分子
固体電解質膜(複素環式化合物を含有した電解質層を含
む)とが明瞭に区別し得ない場合がある。
In the present invention, it is preferable that the solid polymer electrolyte containing the heterocyclic compound is in direct contact with the negative electrode active material. This is because with such a configuration, the action and effect unique to the heterocyclic compound of adsorbing on the negative electrode active material and suppressing its adverse action can be easily exhibited. Incidentally, in a manufacturing method in which a positive electrode and a negative electrode are superposed on each other by using a composite negative electrode and the like, and a battery is formed at the same time, a polymer solid electrolyte membrane integrated with the electrode is formed. (Including an electrolyte layer containing a heterocyclic compound) may not be clearly distinguished.

【0015】ところで、電解質と電極を一体化し複合電
極となす製法によると、電極と電解質との密着性を高め
電極/固体電解質界面の電気的接触性を向上させること
ができるので好ましいが、電極と電解質との密着性を高
めることは活物質と電解質との反応性(悪作用)を高め
ることでもある。したがって、複合負極を用いた従来の
電池では、当初の発電能力を高めることができるもの
の、サイクルの進行とともに急速に発電能力が低下す
る。よって、十分なサイクル寿命が得られていなかっ
た。
By the way, according to the manufacturing method in which the electrolyte and the electrode are integrated to form a composite electrode, the adhesion between the electrode and the electrolyte can be improved and the electrical contact property of the electrode / solid electrolyte interface can be improved, but it is preferable. Increasing the adhesion with the electrolyte also means increasing the reactivity (bad action) between the active material and the electrolyte. Therefore, in the conventional battery using the composite negative electrode, although the initial power generation capacity can be increased, the power generation capacity is rapidly reduced as the cycle progresses. Therefore, sufficient cycle life was not obtained.

【0016】これに対し本発明によれば、電極と電解質
との密着性が高い程、複素環式化合物の作用効果が顕著
に発揮される。よって、密着性の向上をそのままの電池
性能の向上に繋げることができるので、本発明電池の製
造においては、複合電極となす製法が好ましく、特に炭
素質材料を負極活物質とする場合において複合負極とす
るのがよい。なぜなら、炭素質材料は粉体材料であるの
で、炭素質材料のみで負極を構成した場合、十分なイオ
ン導電性が得られないため、炭素質材料に高分子固体電
解質や少量のイオン導電性有機溶媒(本発明にいう有機
物可塑剤はこの働きをも有するものである)などを加え
て複合負極となす必要がある。ここで、推測であるが、
前記電解質が複素環式化合物を含むものであると、複素
化合物が炭素質材料の表面にあるラジカルと反応して保
護膜を形成して炭素質材料のイオン導電性有機溶媒等に
対する悪作用を抑制すると考えられる。したがって、炭
素質材料の発電能力が長期にわたり好適に発揮されるよ
うになると考えられる。
On the other hand, according to the present invention, the higher the adhesion between the electrode and the electrolyte is, the more remarkable the effect of the heterocyclic compound is. Therefore, since improvement in adhesion can be directly linked to improvement in battery performance, in the production of the battery of the present invention, a method of forming a composite electrode is preferable, and particularly when a carbonaceous material is used as the negative electrode active material, the composite negative electrode is used. It is good to say Because the carbonaceous material is a powder material, if the negative electrode is composed of only the carbonaceous material, sufficient ion conductivity cannot be obtained. It is necessary to add a solvent (the organic plasticizer referred to in the present invention also has this function) and the like to form a composite negative electrode. Here is a guess,
When the electrolyte contains a heterocyclic compound, it is considered that the hetero compound reacts with radicals on the surface of the carbonaceous material to form a protective film and suppresses adverse effects of the carbonaceous material on the ion conductive organic solvent and the like. To be Therefore, it is considered that the power generation capacity of the carbonaceous material will be suitably exerted over a long period of time.

【0017】なお、粒状リチウム(リチウム合金を含
む)を負極活物質として用いた複合負極においても、上
記と同様なことがいえる。
The same applies to a composite negative electrode using granular lithium (including a lithium alloy) as a negative electrode active material.

【0018】このように高分子固体電解質に複素環式化
合物を含有させることによる本発明所定の作用効果は、
反応性が高いことからリチウムまたは炭素質材料を活物
質とする負極において一層顕著に発揮されるが、本発明
はこれら活物質を構成要素とする負極に限定されるもの
ではない。例えば、TiO2 、MnO2 等の無機質物質
を用いた負極であってもよく、これらの負極において
も、上記した本発明所定の作用効果が得られる。
As described above, the action and effect prescribed by the present invention due to the inclusion of the heterocyclic compound in the solid polymer electrolyte is as follows.
Since it has high reactivity, it is more remarkably exhibited in a negative electrode containing lithium or a carbonaceous material as an active material, but the present invention is not limited to the negative electrode containing these active materials as constituent elements. For example, a negative electrode using an inorganic substance such as TiO 2 or MnO 2 may be used, and these negative electrodes can also obtain the above-described effects of the present invention.

【0019】上記本発明電池で使用できる上記複素環式
化合物としては、例えばチオフェン、フラン、ピロー
ル、2−メチルピロール、2−メチルフラン、ピラン、
チオピラン、ピリジンを挙げることができる。但し、こ
れらに限定されるものではない(以下、同様)。
Examples of the above-mentioned heterocyclic compound which can be used in the battery of the present invention include thiophene, furan, pyrrole, 2-methylpyrrole, 2-methylfuran, pyran,
Examples thereof include thiopyran and pyridine. However, it is not limited to these (the same applies hereinafter).

【0020】また、高分子化合物としては、ポレエチレ
ンオキシド、ポリエチレンイミン、ポリアクリロニトリ
ルやこれら物質の混合物などの可塑性高分子、またはポ
リエチレングリコールジアクリレート、ポリエチレング
リコールトリアクリレート、ポリエチレングリコールジ
メタクリレート、メトキシポリエチレングリコールモノ
メタクリレートやこれらの混合物などのプレポリマーか
らなるポリマー、または前記熱可塑性高分子と前記プレ
ポリマーを混合したものからなる硬化性物質などが例示
できる。なお、プレポリマーは熱、電磁波、電子線等の
エネルギーを加えて重合・硬化され、この際、重合反応
を促進するためにプレポリマーと共にアゾイソブチロニ
トリルやベンジルジメチルケタールなどの重合開始剤を
添加するのもよい。
As the polymer compound, a plastic polymer such as polyethylene oxide, polyethyleneimine, polyacrylonitrile or a mixture of these substances, or polyethylene glycol diacrylate, polyethylene glycol triacrylate, polyethylene glycol dimethacrylate, methoxy polyethylene glycol mono is used. Examples thereof include a polymer composed of a prepolymer such as methacrylate or a mixture thereof, or a curable substance composed of a mixture of the thermoplastic polymer and the prepolymer. The prepolymer is polymerized and cured by applying energy such as heat, electromagnetic waves, and electron beams.At this time, a polymerization initiator such as azoisobutyronitrile or benzyl dimethyl ketal is used together with the prepolymer to accelerate the polymerization reaction. It may be added.

【0021】上記高分子化合物ともに使用する電解質塩
としては、LiPF6 、LiCl4、LiBF4 、Li
CF3 SO3 などが例示できる。そして、これら電解質
塩と前記高分子化合物に加え、電解質層と電極との密着
性を向上させることができ且つ電解質のイオン導電性を
高めることのできる有機物可塑剤を用いて高分子固体電
解質と成すのが好ましい。このような有機物可塑剤とし
ては、例えばエチレンカーボネート、ビニレンカーボネ
ート、プロビレンカーボネート、ジメチルカーボネー
ト、ジエチルカーボネート、1,2-ジエトキシエタン、エ
トキシメトキシエタンなどの有機溶剤、またはこれらの
混合溶剤を挙げることができる。
Examples of the electrolyte salt used together with the above polymer compound include LiPF 6 , LiCl 4 , LiBF 4 , and Li.
Such as CF 3 SO 3 can be exemplified. Then, in addition to these electrolyte salt and the polymer compound, a polymer solid electrolyte is formed by using an organic plasticizer capable of improving the adhesion between the electrolyte layer and the electrode and enhancing the ionic conductivity of the electrolyte. Is preferred. Examples of such organic plasticizers include organic solvents such as ethylene carbonate, vinylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, 1,2-diethoxyethane, ethoxymethoxyethane, and mixed solvents thereof. You can

【0022】更に、負極活物質としての前記「リチウ
ム」としては、Li金属、Li−Al合金、Li−Mg
合金、Li−Al−Ni合金などが例示できる。また、
炭素質材料としては、グラファイト、カーボンブラッ
ク、コークス、ガラス状炭素、炭素繊維、またはこれら
の焼成体などが例示できる。他方、正極に使用できる好
ましい正極活物質としては、LiCoO2 、LiNiO
2 、LiMnO2 などのリチウム複合酸化物が例示でき
る他、ポリアニリン、ポリピロールなどの導電性高分子
を正極活物質として用いることもできる。なお、本発明
の要旨を損なわない範囲で上記の各例示物質以外の物質
を使用することができることは勿論である。
Further, the "lithium" as the negative electrode active material includes Li metal, Li-Al alloy, Li-Mg.
Examples thereof include alloys and Li-Al-Ni alloys. Also,
Examples of the carbonaceous material include graphite, carbon black, coke, glassy carbon, carbon fiber, and a fired body thereof. On the other hand, preferable positive electrode active materials that can be used for the positive electrode include LiCoO 2 and LiNiO 2 .
2 , lithium composite oxides such as LiMnO 2 can be exemplified, and conductive polymers such as polyaniline and polypyrrole can also be used as the positive electrode active material. Needless to say, substances other than the above-exemplified substances can be used as long as the gist of the present invention is not impaired.

【0023】[0023]

【実施の形態】以下、実施例を通じ本発明の実施の形態
を具体的に明らかにする。 〔本発明例1〕先ず、プロピレンカーボネート6gとチ
オフェン0.05gおよびLiCLO 4 1gからなる混
合溶液に、ポリエチレングリコールジメタクリレート
(オキシエチレンユニット数=9;日本樹脂株式会社
製)1.5gと、メトキシポリエチレングリコールモノ
メタクリレート(オキシエチレンユニット数=9;日本
樹脂株式会社製)1.5gとを加えて混合したものに、
アゾビスイソブチロニトリル2000ppm を混合して有
機ポリマー溶液〔A1 〕を作製した。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below through examples.
Will be specifically disclosed. [Invention Example 1] First, 6 g of propylene carbonate and chi
Offen 0.05g and LiCLO FourMixture consisting of 1g
Polyethylene glycol dimethacrylate in the combined solution
(Number of oxyethylene units = 9; Nippon Resin Co., Ltd.
1.5 g) and methoxy polyethylene glycol mono
Methacrylate (Number of oxyethylene units = 9; Japan
(Made by Resin Co., Ltd.) and mixed with 1.5 g,
2,000 azobisisobutyronitrile mixed
Machine polymer solution [A1] Was produced.

【0024】また、アゾビスイソブチロニトリルの代わ
りに、ベンジルメチルケタール(2000ppm )を用い
たこと以外は、前記有機ポリマー溶液〔A1 〕と同様に
して有機ポリマー溶液〔A2 〕を作製した。
An organic polymer solution [A 2 ] was prepared in the same manner as the organic polymer solution [A 1 ] except that benzyl methyl ketal (2000 ppm) was used instead of azobisisobutyronitrile. .

【0025】次いで、LiCoO2 とケッチェンブラッ
クを90:10の重量比率で混合したものと、前記有機
ポリマー溶液〔A1 〕を3:1の重量比率で混合し、こ
の混合物をアルミニウムからなる正極集電板に塗着・圧
延し、更に80℃で1時間加熱して重合成分を加熱重合
し、本発明例1にかかる複合正極を作製した。
Then, a mixture of LiCoO 2 and Ketjenblack in a weight ratio of 90:10 and the organic polymer solution [A 1 ] were mixed in a weight ratio of 3: 1, and this mixture was used as a positive electrode made of aluminum. The composite positive electrode according to the present invention example 1 was produced by coating and rolling on a current collector plate and further heating at 80 ° C. for 1 hour to heat-polymerize the polymerization components.

【0026】他方、リチウム金属(負極活物質)をステ
ンレス集電板に圧着し、このリチウム金属の上に前記有
機ポリマー溶液〔A2 〕をドクターナイフアプリケータ
ーを用いて流延し、その後室温において紫外線を6mW
/cm2 の光量で20分間照射し重合成分を重合して、
表面にイオン導電性高分子固体電解質層を形成した本発
明例1にかかる負極を作製した。
On the other hand, lithium metal (negative electrode active material) is pressure-bonded to a stainless steel current collector, the above-mentioned organic polymer solution [A 2 ] is cast on the lithium metal using a doctor knife applicator, and then ultraviolet light is applied at room temperature. 6mW
Irradiation with a light amount of / cm 2 for 20 minutes to polymerize the polymerization components,
A negative electrode according to the present invention example 1 having an ion conductive polymer solid electrolyte layer formed on the surface was produced.

【0027】更に、前記複合正極と前記負極とをイオン
導電性高分子固体電解質層を内側にして重ね合わせ、本
発明例1のイオン導電性高分子固体電解質電池を作製し
た。このイオン導電性高分子固体電解質電池の発電面積
は10cm2 であり、設計電池容量は20mAhであ
る。なお、本発明例2以下の電池も同様に設計してあ
る。
Further, the composite positive electrode and the negative electrode were superposed with the ion conductive polymer solid electrolyte layer on the inner side to prepare an ion conductive polymer solid electrolyte battery of Inventive Example 1. The power generation area of this ion conductive polymer solid electrolyte battery is 10 cm 2 , and the designed battery capacity is 20 mAh. The batteries of Inventive Example 2 and below are designed in the same manner.

【0028】〔本発明例2〕体積比1:1のエチレンカ
ーボネート/ジエチルカーボネート溶液6gと、ピロー
ル0.05gおよびLiClO4 1gからなる混合溶液
に、ポリエチレングリコールジメタクリレート(オキシ
エチレンユニット数=9;日本油脂株式会社製)1.5
gと、メトキシポリエチレングリコールモノメタクリレ
ート(オキシエチレンユニット数=9;日本油脂株式会
社製)1.5gとを加えて混合したものに、アゾビスイ
ソブチロニトリルを2000ppm混合したものを有機
ポリマー溶液〔B1 〕とした。
[Inventive Example 2] Polyethylene glycol dimethacrylate (the number of oxyethylene units = 9) was added to a mixed solution of 6 g of an ethylene carbonate / diethyl carbonate solution having a volume ratio of 1: 1 and 0.05 g of pyrrole and 1 g of LiClO 4 . Nippon Oil & Fat Co., Ltd.) 1.5
g and methoxypolyethylene glycol monomethacrylate (the number of oxyethylene units = 9; manufactured by NOF CORPORATION) were added and mixed, and then 2000 ppm of azobisisobutyronitrile was mixed into the organic polymer solution [ B 1 ].

【0029】また、アゾビスイソブチロニトリルの代わ
りに、ベンジルメチルケタール(2000ppm )を用い
たこと以外は、有機ポリマー溶液〔B1 〕と同様にして
作製したものを有機ポリマー溶液〔B2 〕とした。
An organic polymer solution [B 2 ] was prepared in the same manner as the organic polymer solution [B 1 ] except that benzyl methyl ketal (2000 ppm) was used instead of azobisisobutyronitrile. And

【0030】前記有機ポリマー溶液〔A1 〕の代わりに
上記有機ポリマー溶液〔B1 〕を用いたこと以外は、上
記本発明例1と同様にして本発明例2にかかる複合正極
を作製した。
A composite positive electrode according to Inventive Example 2 was prepared in the same manner as in Inventive Example 1 except that the above organic polymer solution [B 1 ] was used instead of the above organic polymer solution [A 1 ].

【0031】他方、表面にイオン導電性高分子固体電解
質を形成した複合負極を次のようにして作製した。黒鉛
粉末と上記有機ポリマー溶液〔B1 〕を黒鉛粉末:〔B
1 〕=3:1(重量比)で混合し、この混合物を銅から
なる負極集電板上に塗着・圧延し、更に80℃で1時間
加熱して重合成分を重合して複合負極を作製した。更に
この複合負極の表面(集電板と反対側表面)に上記有機
ポリマー溶液〔B2 〕をドクターナイフアプリケーター
を用いて流延し、室温において6mW/cm2の光量の
紫外線を20分間照射して重合成分を重合させた。この
ようにして表面にイオン導電性高分子固体電解質層の形
成された本発明例2にかかる複合負極を作製し、この複
合負極と上記複合正極とを固体電解質層を挟んで重ね合
わせ、本発明例2のイオン導電性高分子固体電解質電池
を作製した。
On the other hand, a composite negative electrode having an ion conductive polymer solid electrolyte formed on its surface was prepared as follows. Graphite powder and the above organic polymer solution [B 1 ] were mixed with graphite powder: [B
1 ] = 3: 1 (weight ratio), and the mixture is applied onto a negative electrode current collector plate made of copper and rolled, and further heated at 80 ° C. for 1 hour to polymerize the polymerization components to form a composite negative electrode. It was made. Further, the organic polymer solution [B 2 ] was cast on the surface of the composite negative electrode (the surface opposite to the current collector plate) using a doctor knife applicator, and irradiated with ultraviolet light having a light amount of 6 mW / cm 2 at room temperature for 20 minutes. To polymerize the polymerization component. In this way, a composite negative electrode according to Example 2 of the present invention having an ion conductive polymer solid electrolyte layer formed on the surface thereof was produced, and the composite negative electrode and the composite positive electrode were superposed with the solid electrolyte layer sandwiched therebetween. The ion conductive polymer solid electrolyte battery of Example 2 was produced.

【0032】〔本発明例3〕ピロールの添加量を0.0
05gとしたこと以外は、上記本発明例2における有機
ポリマー溶液〔B1 〕と同様にして有機ポリマー溶液
〔C1 〕を作製した。また、アゾビスイソブチロニトリ
ルの代わりに、ベンジルメチルケタール(2000ppm
)を用いたこと以外は有機ポリマー溶液〔B2 〕と同
様にして有機ポリマー溶液〔C2 〕を作製した。そして
これらの有機ポリマーを用い、上記本発明例2と同様に
して複合正極及び表面にイオン導電性高分子固体電解質
層の形成された複合負極を作製し、これらを重ね合わせ
て本発明例3のイオン導電性高分子固体電解質電池を作
製した。
[Invention Example 3] The amount of pyrrole added was 0.0
An organic polymer solution [C 1 ] was produced in the same manner as the organic polymer solution [B 1 ] in Inventive Example 2 except that the amount was 05 g. Also, instead of azobisisobutyronitrile, benzyl methyl ketal (2000ppm
An organic polymer solution [C 2 ] was prepared in the same manner as the organic polymer solution [B 2 ] except that (1) was used. Then, using these organic polymers, a composite positive electrode and a composite negative electrode having an ion-conducting polymer solid electrolyte layer formed on the surface thereof were produced in the same manner as in the above-mentioned Invention Example 2, and these were superposed on each other to prepare the composite material of Example 3 of the present invention. An ion conductive polymer solid electrolyte battery was produced.

【0033】〔本発明例4〕ピロールの添加量を0.5
gとしたこと以外は、上記本発明例2における有機ポリ
マー溶液〔B1 〕と同様にして有機ポリマー溶液
〔D1 〕を作製した。また、アゾビスイソブチロニトリ
ルの代わりに、ベンジルメチルケタール(2000ppm
)を用いたこと以外は有機ポリマー溶液〔B2 〕と同
様にして有機ポリマー溶液〔D2 〕を作製した。そして
これらの有機ポリマーを用い、上記本発明例2と同様に
して複合正極及び表面にイオン導電性高分子固体電解質
層の形成された複合負極を作製し、これらを重ね合わせ
て本発明例4のイオン導電性高分子固体電解質電池を作
製した。
[Invention Example 4] The amount of pyrrole added was 0.5.
An organic polymer solution [D 1 ] was prepared in the same manner as the organic polymer solution [B 1 ] in Inventive Example 2 except that the amount was changed to g. Also, instead of azobisisobutyronitrile, benzyl methyl ketal (2000ppm
An organic polymer solution [D 2 ] was prepared in the same manner as the organic polymer solution [B 2 ] except that Then, using these organic polymers, a composite positive electrode and a composite negative electrode having an ion-conducting polymer solid electrolyte layer formed on the surface were prepared in the same manner as in the above-mentioned Invention Example 2, and these were superposed to superimpose them on each other. An ion conductive polymer solid electrolyte battery was produced.

【0034】〔比較例1〕前記本発明例1においてチオ
フェン(二重結合を有する複素環式化合物)を全く添加
しなかったこと以外は、前記本発明例1と同様にして比
較例1のイオン導電性高分子固体電解質電池を作製し
た。
Comparative Example 1 The ion of Comparative Example 1 was prepared in the same manner as in Example 1 of the present invention except that thiophene (heterocyclic compound having a double bond) was not added in Example 1 of the present invention. A conductive polymer solid electrolyte battery was produced.

【0035】〔比較例2〕前記本発明例2においてピロ
ール(二重結合を有する複素環式化合物)を全く添加し
なかったこと以外は、前記本発明例2と同様(本発明例
3、4とも同様)にして比較例2のイオン導電性高分子
固体電解質電池を作製した。
Comparative Example 2 The same as Example 2 of the present invention (Examples 3 and 4 of the present invention) except that pyrrole (heterocyclic compound having a double bond) was not added in Example 2 of the present invention. Then, an ion conductive polymer solid electrolyte battery of Comparative Example 2 was produced.

【0036】以上で作製した各種電池の違いを判り易く
するために、各電池に使用した有機ポリマー組成および
正負両極活物質の種類を表1〜2に一覧表示する。な
お、表1〜2中、ECはエチレンカーボネート、DEC
はジエチルカーボネート、PEG-DMAcはポリエチレングリ
コールジメタクリレート、mtxyPEGmonoMAcはメトキシポ
リエチレングリコールモノメタクリレートを表す。
In order to make it easier to understand the difference between the various batteries produced as described above, Tables 1 and 2 list the organic polymer composition and the types of positive and negative active materials used in each battery. In Tables 1 and 2, EC is ethylene carbonate, DEC
Represents diethyl carbonate, PEG-DMAc represents polyethylene glycol dimethacrylate, and mtxy PEGmonoMAc represents methoxy polyethylene glycol monomethacrylate.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】本発明例1〜4及び比較例1〜2の電池に
ついて、電池容量(20mAh)の0.1Cの電流値で
電池電圧が4.2Vになるまで充電した後、0.1Cの
電流値で電池電圧が3.0Vになるまで放電するという
サイクルを繰り返し、各サイクルにおける放電容量を求
めた。その結果を、電池放電容量とサイクル数との関係
で図1に示す。
The batteries of Examples 1 to 4 of the present invention and Comparative Examples 1 and 2 were charged at a current value of 0.1 C with a battery capacity (20 mAh) until the battery voltage reached 4.2 V, and then a current of 0.1 C was applied. The cycle of discharging until the battery voltage reached 3.0 V in value was repeated, and the discharge capacity in each cycle was obtained. The results are shown in FIG. 1 as the relationship between the battery discharge capacity and the number of cycles.

【0040】図1から明らかになるように、サイクル特
性は、良好なものから順に本発明例1>本発明例2>本
発明例4>本発明例3>比較例2>比較例1であり、本
発明例電池1〜4は、複素環式化合物を含有しない比較
例電池1〜2に比べ、良好なサイクル特性を示した。
As is apparent from FIG. 1, the cycle characteristics are, in order from good one, Inventive Example 1> Inventive Example 2> Inventive Example 4> Inventive Example 3> Comparative Example 2> Comparative Example 1. The present invention batteries 1 to 4 showed better cycle characteristics than the comparative batteries 1 and 2 containing no heterocyclic compound.

【0041】即ち、本発明例1と比較例1とは二重結合
を有する複素環式化合物の有無のみが異なるだけである
が、本発明例1の電池は比較例1に比べ顕著に良好なサ
イクル特性を示し、本発明例2と比較例2との比較にお
いても同様な結果が得られた(表1、2参照)。
That is, the present invention example 1 and the comparative example 1 are different only in the presence or absence of the heterocyclic compound having a double bond, but the battery of the present invention example 1 is remarkably better than the comparative example 1. The cycle characteristics were shown, and similar results were obtained in the comparison between Inventive Example 2 and Comparative Example 2 (see Tables 1 and 2).

【0042】また、複素環式化合物の配合量を変化させ
た本発明例2〜4および比較例2の電池における結果に
おいて、複素環式化合物の含有量(電解質に対する重量
%)とサイクル特性の関係を見ると、サイクル特性は良
好なものから順に0.5%含有電池>5%含有電池>
0.05%含有電池>0%含有電池の順であった。この
結果から、少なくとも複素環式化合物の含有量が0.0
05%以上であれば、比較例電池(0%含有)よりも良
好なサイクル特性が得られることが判る。また、複素環
式化合物の含有量とサイクル特性の向上効果との関係
は、直線的ではなく極大値を有する放物線的関係にある
ことが判る。つまり、高分子固体電解質に添加する複素
環式化合物の割合(含有量)は、多すぎても少なすぎて
も好ましくなく、効率的にサイクル特性を高めるために
は、複素環式化合物の含有量を0.005%〜5%の範
囲にするのが好ましい。
Further, in the results of the batteries of Examples 2 to 4 of the present invention and Comparative Example 2 in which the compounding amount of the heterocyclic compound was changed, the relationship between the content of the heterocyclic compound (% by weight with respect to the electrolyte) and the cycle characteristics. Looking at, the cycle characteristics are in order from good to good: 0.5% content battery> 5% content battery>
Batteries containing 0.05%> batteries containing 0% were in that order. From this result, the content of at least the heterocyclic compound was 0.0
It can be seen that when the content is 05% or more, better cycle characteristics can be obtained than the comparative battery (containing 0%). Further, it is understood that the relationship between the content of the heterocyclic compound and the effect of improving the cycle characteristics is not a linear one but a parabolic one having a maximum value. That is, the ratio (content) of the heterocyclic compound added to the polymer solid electrolyte is not too large or too small, and in order to efficiently improve the cycle characteristics, the content of the heterocyclic compound is Is preferably in the range of 0.005% to 5%.

【0043】なお、本発明例1と本発明例2、および比
較例1と比較例2の間におけるサイクル特性の差は、主
に負極活物質の違いに原因するものと考えられる。
The difference in cycle characteristics between Inventive Example 1 and Inventive Example 2 and Comparative Example 1 and Comparative Example 2 is considered to be mainly due to the difference in the negative electrode active material.

【0044】[0044]

【発明の効果】以上から明らかになるように、二重結合
を有する複素環式化合物を必須要素とする本発明にかか
る高分子固体電解質では、複素環式化合物がリチウムま
たは炭素質材料などの負極活物質に吸着し、負極活物質
との親和性を高めるとともに、電解質と負極活物質との
反応を抑制するように作用する。その結果、電極反応の
効率が高まり、また充放電サイクルによっても電解質の
イオン導電性の低下や電極/電解質界面の電気的接触不
良が防止される。したがって、本発明によれば、高出力
でサイクル寿命の長い高分子固体電解質電池を提供でき
る。
As is apparent from the above, in the polymer solid electrolyte according to the present invention in which the heterocyclic compound having a double bond is an essential element, the heterocyclic compound is a negative electrode such as lithium or a carbonaceous material. It is adsorbed on the active material and acts to increase the affinity with the negative electrode active material and suppress the reaction between the electrolyte and the negative electrode active material. As a result, the efficiency of the electrode reaction is increased, and the deterioration of the ionic conductivity of the electrolyte and the poor electrical contact at the electrode / electrolyte interface are prevented even by the charge / discharge cycle. Therefore, according to the present invention, a polymer solid electrolyte battery having high output and long cycle life can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明例電池および比較例電池のサイクル特性
を示すグラフである。
FIG. 1 is a graph showing cycle characteristics of an inventive battery and a comparative battery.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 4/02 H01M 4/02 D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01M 4/02 H01M 4/02 D

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 負極と、正極と、二重結合を有する複素
環式化合物を含有する高分子固体電解質と、を構成要素
とする高分子固体電解質電池。
1. A polymer solid electrolyte battery comprising a negative electrode, a positive electrode, and a polymer solid electrolyte containing a heterocyclic compound having a double bond.
【請求項2】 前記高分子固体電解質は、負極活物質と
接触していることを特徴とする請求項1記載の高分子固
体電解質電池。
2. The polymer solid electrolyte battery according to claim 1, wherein the polymer solid electrolyte is in contact with a negative electrode active material.
【請求項3】 前記高分子固体電解質は、負極および/
または正極と一体化されていることを特徴とする請求項
2記載の高分子固体電解質電池。
3. The solid polymer electrolyte is a negative electrode and / or
3. The polymer solid electrolyte battery according to claim 2, which is integrated with a positive electrode.
【請求項4】 前記負極は、リチウムまたは炭素質材料
から構成されていることを特徴とする請求項1または請
求項2または請求項3記載の高分子固体電解質電池。
4. The polymer solid electrolyte battery according to claim 1, 2 or 3, wherein the negative electrode is made of lithium or a carbonaceous material.
【請求項5】 前記高分子固体電解質は、前記複素環式
化合物を0.05重量%〜5重量%含有することを特徴
とする請求項4記載の高分子固体電解質電池。
5. The polymer solid electrolyte battery according to claim 4, wherein the polymer solid electrolyte contains 0.05 wt% to 5 wt% of the heterocyclic compound.
【請求項6】 前記高分子固体電解質が、有機物可塑剤
を含有することを特徴とする請求項5記載の高分子固体
電解質電池。
6. The polymer solid electrolyte battery according to claim 5, wherein the polymer solid electrolyte contains an organic plasticizer.
JP7338570A 1995-12-26 1995-12-26 High-molecular solid electrolyte battery Pending JPH09180757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7338570A JPH09180757A (en) 1995-12-26 1995-12-26 High-molecular solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7338570A JPH09180757A (en) 1995-12-26 1995-12-26 High-molecular solid electrolyte battery

Publications (1)

Publication Number Publication Date
JPH09180757A true JPH09180757A (en) 1997-07-11

Family

ID=18319423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7338570A Pending JPH09180757A (en) 1995-12-26 1995-12-26 High-molecular solid electrolyte battery

Country Status (1)

Country Link
JP (1) JPH09180757A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6913856B2 (en) * 2000-04-18 2005-07-05 Sony Corporation Nonaqueous electrolyte secondary battery
CN112042038A (en) * 2018-05-07 2020-12-04 本田技研工业株式会社 Nonaqueous electrolyte secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6913856B2 (en) * 2000-04-18 2005-07-05 Sony Corporation Nonaqueous electrolyte secondary battery
CN112042038A (en) * 2018-05-07 2020-12-04 本田技研工业株式会社 Nonaqueous electrolyte secondary battery
CN112042038B (en) * 2018-05-07 2024-03-08 本田技研工业株式会社 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
EP0528557B1 (en) Carbon/polymer composite electrode for use in a lithium battery
US6680147B2 (en) Lithium battery
US6939644B2 (en) Lithium secondary cell
KR100772565B1 (en) Lithium secondary battery
JP4513175B2 (en) Gel electrolyte and non-aqueous electrolyte battery
JP2000285929A (en) Solid electrolyte battery
US7241534B2 (en) Lithium polymer secondary cell
KR20040020631A (en) Polymer electrolyte and lithium battery employing the same
JP2003007345A (en) Lithium secondary battery
US6670075B2 (en) Lithium polymer secondary cell
JP3976529B2 (en) Lithium polymer secondary battery and manufacturing method thereof
JP2003173782A (en) Lithium secondary battery and positive electrode
JP2009070606A (en) Lithium polymer battery
JP2001319692A (en) Solid lithium-polymer battery
KR100766886B1 (en) Lithium secondary cell
JP4266290B2 (en) Solid electrolyte battery
JPH09180757A (en) High-molecular solid electrolyte battery
JPH117981A (en) Secondary battery
JP3316111B2 (en) Manufacturing method of lithium secondary battery
JP3407507B2 (en) Polymer electrolyte and lithium battery
JP3013815B2 (en) Polymer electrolyte and secondary battery using the electrolyte
JP5135649B2 (en) Solid polymer electrolyte battery and method for producing solid polymer electrolyte
JP4556050B2 (en) Secondary battery using polymer electrolyte
JP3460941B2 (en) Polymer gel electrolyte and secondary battery
JP2002343433A (en) Manganese based composite positive electrode for solid- type lithium polymer battery, and lithium polymer battery using the same