JPH09171075A - Distance-measuring apparatus for vehicle - Google Patents

Distance-measuring apparatus for vehicle

Info

Publication number
JPH09171075A
JPH09171075A JP7332966A JP33296695A JPH09171075A JP H09171075 A JPH09171075 A JP H09171075A JP 7332966 A JP7332966 A JP 7332966A JP 33296695 A JP33296695 A JP 33296695A JP H09171075 A JPH09171075 A JP H09171075A
Authority
JP
Japan
Prior art keywords
distance
measuring device
output
distance measuring
triangulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7332966A
Other languages
Japanese (ja)
Other versions
JP3502713B2 (en
Inventor
Masayuki Habaguchi
正幸 幅口
Masakazu Saka
雅和 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP33296695A priority Critical patent/JP3502713B2/en
Publication of JPH09171075A publication Critical patent/JPH09171075A/en
Application granted granted Critical
Publication of JP3502713B2 publication Critical patent/JP3502713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a distance up to an object with higher reliability, simply and stably in a distance-measuring apparatus, for a vehicle, which is provided with a radar distance-measuring device and with a triangulation distance- measuring device. SOLUTION: A changeover signal is output from a filter 12 when the change rate of the output of a radar distance-measuring device 1 exceeds a set value on the increase side of a distance. Then, in a state that the measuring reliability, of a triangulation distance-measuring device 2, computed by a reliability computing device 5 is higher than a prescribed level, the output of the triangulation distance-measuring device 2 is selected by a selector 13 when the output of the triangulation distance-measuring device 2 is less than a set distance. In a normal state other than it, the output of the radar distance-measuring device 1 is selected by the selector 13, and an alarm 9 is alarmed and operated when a changeover signal is output from the filter 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、車両前方の対照物
に向けての信号の送信ならびに該対照物からの反射信号
の受信間の時間に基づいて対照物までの距離を演算する
レーダー距離測定器と、間隔をあけて配置された一対の
イメージセンサの出力の相関計算から得られる視差に基
づいて対照物までの距離を演算する三角測量距離測定器
とを備える車両用距離測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radar range finder which calculates a distance to a reference object in front of a vehicle based on a time between transmission of a signal to the reference object and reception of a reflected signal from the reference object. And a triangulation distance measuring device for calculating a distance to a reference object based on a parallax obtained from a correlation calculation of outputs of a pair of image sensors arranged at intervals.

【0002】[0002]

【従来の技術】従来、かかる装置は、たとえば特開平6
−230115号公報で既に知られており、このもので
は、レーダー距離測定器で得られる距離情報の信頼度
と、三角測量距離測定器で得られる距離情報の信頼度と
をそれぞれ演算し、より高い信頼度を有する距離情報を
選択するようにしている。
2. Description of the Related Art Conventionally, such an apparatus is disclosed in, for example,
It is already known from Japanese Patent Publication No. -230115, and in this one, the reliability of the distance information obtained by the radar range finder and the reliability of the distance information obtained by the triangulation range finder are respectively calculated to obtain a higher value. The distance information having reliability is selected.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記従来の
ものでは、毎測定時に両距離測定器の測定信頼度を演算
する必要があるために演算時間が比較的長くなり、より
高価なマイクロプロセッサが必要となる。また些細な環
境条件の変化により、選択される距離情報が変化する可
能性があり、距離情報に基づく車両の制御を行なう際に
制御装置に入力される距離情報がばらついて制御が不安
定になることがある。
However, in the above-mentioned conventional one, since it is necessary to calculate the measurement reliability of both distance measuring devices at each measurement, the calculation time becomes relatively long, and a more expensive microprocessor is required. Will be needed. In addition, the selected distance information may change due to a slight change in environmental conditions, and when the vehicle is controlled based on the distance information, the distance information input to the control device varies and the control becomes unstable. Sometimes.

【0004】本発明は、かかる事情に鑑みてなされたも
のであり、対照物までの距離をより高い信頼度でしかも
簡潔かつ安定的に得るようにした車両用距離測定装置を
提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vehicle distance measuring device capable of obtaining a distance to a reference object with higher reliability, in a simple and stable manner. And

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、車両前方の対照物に向けて
の信号の送信ならびに該対照物からの反射信号の受信間
の時間に基づいて対照物までの距離を演算するレーダー
距離測定器と、間隔をあけて配置された一対のイメージ
センサの出力の相関計算から得られる視差に基づいて対
照物までの距離を演算する三角測量距離測定器とを備え
る車両用距離測定装置において、レーダー距離測定器の
出力の変化率が距離増大側で設定値を超えるのに応じて
切換信号を出力するフィルタと、三角測量距離測定器の
測定信頼度を演算する信頼度演算器と、フィルタからの
切換信号出力に応じて報知作動する報知器と、フィルタ
から切換信号が出力されるとともに信頼度演算器で演算
された測定信頼度が規定のレベルよりも高い状態で三角
測量距離測定器の出力が設定距離未満のときには三角測
量距離測定器の出力を対照物までの距離として選択する
がそれ以外の平時にはレーダー距離測定器の出力を対照
物までの距離として選択するセレクタとを含むことを特
徴とする。
In order to achieve the above object, the invention according to claim 1 provides a time between transmission of a signal toward a reference object in front of a vehicle and reception of a reflected signal from the reference object. Radar distance finder that calculates the distance to the reference object based on the above, and triangulation that calculates the distance to the reference object based on the parallax obtained from the correlation calculation of the output of the pair of image sensors that are spaced apart. In a vehicle distance measuring device equipped with a distance measuring device, a filter that outputs a switching signal when the rate of change of the output of the radar distance measuring device exceeds a set value on the distance increasing side, and the measurement of the triangulation distance measuring device A reliability calculator that calculates the reliability, an alarm that operates in response to the switching signal output from the filter, and a measurement reliability calculated by the reliability calculator while the switching signal is output from the filter When the output of the triangulation distance measuring device is lower than the set distance when the level is higher than the specified level, the output of the triangulation distance measuring device is selected as the distance to the reference object, but in other normal times, the output of the radar distance measuring device is selected. And a selector for selecting the distance to the reference object.

【0006】また請求項2記載の発明は、上記請求項1
記載の発明の構成に加えて、信頼度演算器では、三角測
量距離測定器における両イメージセンサの出力の相関最
大時の相関値、ならびにその前後の相関値変化に基づき
測定信頼度が演算されることを特徴とする。
[0006] The second aspect of the present invention is the first aspect of the present invention.
In addition to the configuration of the invention described, in the reliability calculator, the measurement reliability is calculated based on the correlation value at the maximum correlation of the outputs of both image sensors in the triangulation distance measuring device and the correlation value change before and after the correlation value. It is characterized by

【0007】さらに請求項3記載の発明は、上記請求項
1記載の発明の構成に加えて、前記設定距離が、車速の
増大に応じて大となるように設定されることを特徴とす
る。
Further, the invention according to claim 3 is characterized in that, in addition to the constitution of the invention according to claim 1, the set distance is set so as to become large as the vehicle speed increases.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を、添
付図面に示した本発明の一実施例に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below based on one embodiment of the present invention shown in the accompanying drawings.

【0009】図1ないし図5は本発明の一実施例を示す
ものであり、図1は車両用距離測定装置の構成を示すブ
ロック図、図2は三角測量距離測定器におけるヘッドの
構成を示す図、図3は三角測量距離測定器における両イ
メージセンサの撮像面を示す図、図4はセレクタコント
ローラでの切換制御手順を示すフローチャート、図5は
車速に応じた設定距離の変化を示す図である。
1 to 5 show an embodiment of the present invention. FIG. 1 is a block diagram showing the structure of a vehicle distance measuring device, and FIG. 2 shows the structure of a head in a triangulation distance measuring device. FIG. 3, FIG. 3 is a view showing the image pickup surfaces of both image sensors in the triangulation distance measuring device, FIG. 4 is a flowchart showing a switching control procedure in the selector controller, and FIG. 5 is a view showing a change in set distance according to the vehicle speed. is there.

【0010】先ず図1において、この車両用距離測定装
置は、レーダー距離測定器1と、三角測量距離測定器2
と、レーダー距離測定器1で測定された距離Drcを格
納する第1メモリ3と、三角測量距離測定器2で測定さ
れる距離Dtcを格納する第2メモリ4と、三角測量距
離測定器2での測定信頼度を演算する信頼度演算器5
と、車速を検出する車速センサ6と、それら1〜6の信
号が入力される電子制御ユニット8と、電子制御ユニッ
ト8により報知作動を制御される報知器としてのスピー
カ9とを備える。
First, referring to FIG. 1, this vehicle distance measuring device comprises a radar distance measuring device 1 and a triangulation distance measuring device 2.
A first memory 3 for storing the distance Drc measured by the radar distance measuring device 1, a second memory 4 for storing the distance Dtc measured by the triangulation distance measuring device 2, and a triangulation distance measuring device 2. Reliability calculator 5 for calculating measurement reliability
A vehicle speed sensor 6 for detecting a vehicle speed, an electronic control unit 8 to which the signals 1 to 6 are input, and a speaker 9 as an annunciator whose notification operation is controlled by the electronic control unit 8.

【0011】しかも電子制御ユニット8は、車両の走行
状態を制御する機能をも有するものであり、車両の走行
状態を制御するために、より好ましくは舵角センサ7や
他のセンサが前記車速センサ6に加えて電子制御ユニッ
ト8に接続されており、加速装置10および減速装置1
1に走行状態を変化させるための制御信号が電子制御ユ
ニット8から与えられる。
Moreover, the electronic control unit 8 also has a function of controlling the traveling state of the vehicle, and more preferably the steering angle sensor 7 or another sensor is used as the vehicle speed sensor in order to control the traveling state of the vehicle. In addition to 6, the electronic control unit 8 is connected, and the acceleration device 10 and the deceleration device 1 are connected.
A control signal for changing the running state to 1 is given from the electronic control unit 8.

【0012】レーダー距離測定器1は、従来周知(たと
えば特開平6−160516号公報や特開平6−230
115号公報等)のものであり、詳細な説明を省略する
が、ミリ波や赤外光等の電磁波の車両前方の対照物への
送信および該対照物からの反射信号の受信が可能なヘッ
ド1aと、送・受信間の時間に基づいて対照物までの距
離Drcを演算する処理部1bとを備える。
The radar range finder 1 is well known in the prior art (for example, Japanese Patent Laid-Open Nos. 6-160516 and 6-230).
No. 115), the detailed description of which is omitted, but a head capable of transmitting an electromagnetic wave such as a millimeter wave or infrared light to a reference object in front of the vehicle and receiving a reflected signal from the reference object. 1a and a processing unit 1b that calculates the distance Drc to the reference object based on the time between transmission and reception.

【0013】図2を併せて参照して、三角測量距離測定
器2は、従来周知(たとえば特開平6−174845号
公報や特開平4−238212号公報等)のものであ
り、詳細な説明を省略するが、同一焦点距離を有すると
ともに相互に間隔をあけて配置される一対のレンズ16
1 ,162 と、それらのレンズ161 ,162 の結像位
置に配置される一対のイメージセンサ171 ,172
を備えるヘッド2aと、該ヘッド2aにおける両イメー
ジセンサ171 ,172 の出力に基づいて車両前方に在
る先行車両等の対照物Vまでの距離Dtcを演算する処
理部2bとを備える。
Referring also to FIG. 2, the triangulation distance measuring device 2 is well known in the art (for example, JP-A-6-174845 and JP-A-4-238212), and a detailed description thereof will be given. Although omitted, a pair of lenses 16 having the same focal length and spaced from each other
1 and 16 2 and a head 2a including a pair of image sensors 17 1 and 17 2 arranged at the imaging positions of the lenses 16 1 and 16 2 , and both image sensors 17 1 and 17 2 in the head 2a. And a processing unit 2b that calculates a distance Dtc to a reference object V such as a preceding vehicle in front of the vehicle based on the output of.

【0014】両イメージセンサ171 ,172 は、図3
で示すように上下方向にn個,横方向にm個の画素をそ
れぞれ有するものであり、各画素の番地は(i,j)で
表わされる。而してイメージセンサ171 での番地
(i,j)の画素の輝度をILi, j とし、イメージセン
サ172 での番地(i,j)の画素の輝度をIRi,j
したときに、処理部2bでは、相互に間隔をあけて配置
される両イメージセンサ171 ,172 に撮像された対
照物像の相対位置を横方向にk画素だけずらしながら、
対応する画素毎に輝度の差Ck を求める演算が次の演算
式に基づいて実行される。
Both image sensors 17 1 and 17 2 are shown in FIG.
As shown by, each pixel has n pixels in the vertical direction and m pixels in the horizontal direction, and the address of each pixel is represented by (i, j). When the brightness of the pixel at the address (i, j) in the image sensor 17 1 is IL i, j and the brightness of the pixel at the address (i, j) in the image sensor 17 2 is IR i, j. In the processing section 2b, while shifting the relative position of the reference object images picked up by the two image sensors 17 1 and 17 2 arranged at a distance from each other in the lateral direction by k pixels,
The calculation for obtaining the luminance difference C k for each corresponding pixel is executed based on the following calculation formula.

【0015】Ck =Σ(IRi,j −ILi,(j-k) ) 而して上記演算によると、両イメージセンサ171 ,1
2 の撮像面での対照物像の相関が最大となったとき
に、前記差Ck は最小値C0 となり、そのときの横方向
の相対位置ずれk0 すなわち視差に基づいて三角測量の
原理により対照物Vまでの距離DTCが得られることにな
る。
[0015] C k = Σ (IR i, j -IL i, (jk)) When Thus to by the calculation, both the image sensor 17 1, 1
When the correlation of the reference object image on the image pickup surface of 7 2 becomes maximum, the difference C k becomes the minimum value C 0 , and the triangulation based on the relative positional deviation k 0 in the lateral direction at that time, that is, the parallax. According to the principle, the distance D TC to the control object V is obtained.

【0016】信頼度演算器5では、三角測量距離測定器
2における両イメージセンサ171,172 の出力の相
関最大時の相関値すなわち最大相関時の輝度の差C0
基づき、測定信頼度Rが次のようにして演算される。
In the reliability calculator 5, the measurement reliability is calculated based on the correlation value at the maximum correlation between the outputs of the image sensors 17 1 and 17 2 in the triangulation distance measuring device 2, that is, the difference C 0 in luminance at the maximum correlation. R is calculated as follows.

【0017】R=const−C0 上記式において、constは最大相関時の前後の相関
値変化に基づいて定まる定数である。すなわち両イメー
ジセンサ171 ,172 の出力の相関最大時の輝度の差
0 と、最大相関時から横方向にmだけぞれぞれずれた
位置での輝度の差C0+m ,C0-m との差の絶対値が、 dm =|C0+m −C0 | d-m=|C0-m −C0 | として演算され、dm ,d-mの平均値が大きい程大きく
なるようにconstが定められる。
R = const-C 0 In the above equation, const is a constant determined based on the change in the correlation value before and after the maximum correlation. That is, the difference in brightness C 0 between the outputs of both image sensors 17 1 and 17 2 at the maximum correlation and the difference in brightness C 0 + m , C at the positions shifted laterally by m from the maximum correlation. the absolute value of the difference between the 0-m is, d m = | C 0 + m -C 0 | d -m = | C 0-m -C 0 | is calculated as, d m, the average value of d -m is Const is set so that it becomes larger as it becomes larger.

【0018】すなわち信頼度演算器5では、両イメージ
センサ171 ,172 の出力の相関最大時の相関値が小
さいほど大きく、しかも最大相関前後の相関値変化が急
激であるほど大きくなるようにして測定信頼度Rが演算
されることになる。
That is, in the reliability calculator 5, the smaller the correlation value at the maximum correlation of the outputs of the image sensors 17 1 and 17 2 is , the larger the correlation value is. Then, the measurement reliability R is calculated.

【0019】再び図1において、電子制御ユニット8
は、フィルタ12、セレクタ13、セレクタコントロー
ラ14および車両制御部15を備える。
Referring again to FIG. 1, the electronic control unit 8
Includes a filter 12, a selector 13, a selector controller 14, and a vehicle control unit 15.

【0020】フィルタ12には、レーダー距離測定器1
で測定された距離Drcと、第1メモリ3に格納されて
いる距離とが入力される。而して、1回前の演算時にレ
ーダー距離測定器1で測定された距離として第1メモリ
3から読み込まれた値Drc′あるいはレーダー距離測
定器1で測定された距離の数回前迄の加重平均値Dr
c′を、レーダー距離測定器1で測定された距離Drc
から減算した値(Drc−Drc′)が設定値th1を
超えたとき、すなわちレーダー距離測定器1の出力の変
化率が距離増大側で設定値th1を超えたときに、フィ
ルタ12から切換信号が出力される。
The filter 12 includes a radar distance measuring device 1
The distance Drc measured in 1 and the distance stored in the first memory 3 are input. Thus, the value Drc ′ read from the first memory 3 as the distance measured by the radar distance measuring device 1 at the time of the previous calculation or the weight up to several times before the distance measured by the radar distance measuring device 1. Average value Dr
c ′ is the distance Drc measured by the radar distance measuring device 1.
When the value (Drc-Drc ') subtracted from exceeds the set value th1, that is, when the change rate of the output of the radar distance measuring device 1 exceeds the set value th1 on the distance increasing side, the switching signal from the filter 12 is output. Is output.

【0021】セレクタ13には、レーダー距離測定器1
で測定された距離Drcと、三角測量距離測定器2で測
定された距離Dtcとが入力されており、それらの距離
Drc,Dtcのいずれかがセレクタコントローラ14
による切換制御によりセレクタ13で択一的に選択さ
れ、車両制御部15に入力される。
The selector 13 includes a radar distance measuring device 1
The distance Drc measured in 3 and the distance Dtc measured in the triangulation distance measuring device 2 are input, and one of the distances Drc and Dtc is input to the selector controller 14
It is selectively selected by the selector 13 by the switching control by and is input to the vehicle control unit 15.

【0022】セレクタコントローラ14には、フィルタ
12の出力、三角測量距離測定器2で測定されて第2メ
モリ4に格納されている距離Dtc、ならびに信頼度演
算器5で演算された三角測量距離測定器2の測定信頼度
Rが入力されており、それらの入力信号に基づいて、図
4で示す手順に従ってセレクタ13の切換制御がセレク
タコントローラ14で実行される。
In the selector controller 14, the output of the filter 12, the distance Dtc measured by the triangulation distance measuring device 2 and stored in the second memory 4, and the triangulation distance measuring calculated by the reliability calculator 5 are measured. The measurement reliability R of the instrument 2 is input, and the selector controller 14 executes the switching control of the selector 13 according to the procedure shown in FIG. 4 based on those input signals.

【0023】図4における第1ステップS1では、フィ
ルタ12から切換信号が出力されているか否か、すなわ
ちレーダー距離測定器1の出力の変化率が距離増大側で
設定値th1を超えたか否かが判定され、レーダー距離
測定器1の出力の変化率が距離増大側で設定値th1を
超えていないことによりフィルタ12から切換信号が出
力されていないときには、第2ステップS2で、レーダ
ー距離測定器1の測定距離Drcを選択するようにセレ
クタ13を制御するための信号がセレクタコントローラ
14から出力される。
In the first step S1 in FIG. 4, it is determined whether or not the switching signal is output from the filter 12, that is, whether the rate of change of the output of the radar distance measuring device 1 exceeds the set value th1 on the distance increasing side. When it is determined that the switching signal is not output from the filter 12 because the rate of change of the output of the radar distance measuring device 1 does not exceed the set value th1 on the distance increasing side, in the second step S2, the radar distance measuring device 1 A signal for controlling the selector 13 so as to select the measurement distance Drc is output from the selector controller 14.

【0024】また第1ステップS1において、レーダー
距離測定器1の出力の変化率が距離増大側で設定値th
1を超えていることによりフィルタ12から切換信号が
出力されていると判定されたときには、第3ステップS
3で、測定信頼度Rが規定のレベルth2よりも高いか
どうかが判定され、R>th2であるときには第4ステ
ップS4において三角測量距離測定器2の測定距離Dt
cが設定距離th3未満であるか否かが判定される。而
してR>th2であってDtc<th3であったとき
に、第5ステップS5で、三角測量距離測定器2の測定
距離Dtcを選択するようにセレクタ13を制御するた
めの信号がセレクタコントローラ14から出力され、さ
らに次の第6ステップS6で、第1音声警報を出力する
ための信号がセレクタコントローラ14から出力され
る。
In the first step S1, the change rate of the output of the radar range finder 1 is set to the set value th on the side of increasing distance.
If it is determined that the switching signal is being output from the filter 12 because the value exceeds 1, the third step S
At 3, it is determined whether or not the measurement reliability R is higher than the specified level th2. If R> th2, then at the fourth step S4, the measurement distance Dt of the triangulation distance measuring device 2 is determined.
It is determined whether or not c is less than the set distance th3. Thus, when R> th2 and Dtc <th3, the signal for controlling the selector 13 so as to select the measurement distance Dtc of the triangulation distance measuring instrument 2 is the selector controller in the fifth step S5. 14 is output, and in the next sixth step S6, a signal for outputting the first voice alarm is output from the selector controller 14.

【0025】また第3ステップS3においてR≦th2
であると判定されたとき、ならびに第4ステップS4に
おいてDtc≧th3であると判定されたときには、第
7ステップS7で、第2音声警報を出力するための信号
がセレクタコントローラ14から出力される。
In the third step S3, R≤th2
If it is determined that Dtc ≧ th3 in the fourth step S4, the selector controller 14 outputs a signal for outputting the second voice alarm in the seventh step S7.

【0026】ところで、上記設定距離th3は、図5で
示すように、車速に応じて定められるものであり、車速
の増大に応じて段階的に大きくなるように設定距離th
3が定められる。
By the way, the set distance th3 is determined according to the vehicle speed as shown in FIG. 5, and the set distance th is set so as to gradually increase as the vehicle speed increases.
3 is set.

【0027】車両制御部15には、フィルタ12の出力
が入力されており、フィルタ12からの切換信号出力に
応じてスピーカ9が車両制御部15により報知作動せし
められる。この際、セレクタコントローラ14から第1
音声警報を出力するための信号が出力されているときに
は、レーダー距離測定器1に代えて三角測量距離測定器
2によって対照物までの距離を測定している旨の音声警
報がスピーカ9から出力され、セレクタコントローラ1
4から第2音声警報を出力するための信号が出力されて
いるときには、レーダー距離測定器1および三角測量距
離測定器2による距離測定が不調であることに基づき加
速装置10および減速装置11の作動による車両の走行
状態制御を停止する旨の音声警報がスピーカ9から出力
される。
The output of the filter 12 is input to the vehicle controller 15, and the speaker 9 is activated by the vehicle controller 15 according to the output of the switching signal from the filter 12. At this time, the selector controller 14
When the signal for outputting the voice alarm is output, a voice alarm indicating that the distance to the reference object is being measured by the triangulation distance measuring device 2 instead of the radar distance measuring device 1 is output from the speaker 9. , Selector controller 1
When the signal for outputting the second voice alarm is output from No. 4, the operation of the acceleration device 10 and the deceleration device 11 is based on the fact that the distance measurement by the radar distance measuring device 1 and the triangulation distance measuring device 2 is improper. The speaker 9 outputs a voice warning to the effect that the control of the running state of the vehicle will be stopped.

【0028】さらに車両制御部15は、車両の走行状態
を変化させるべく加速装置10および減速装置11の作
動を制御するものであり、セレクタ13で選択された測
定距離Drc,Dtcの一方、ならびに車速センサ6お
よび舵角センサ7等のセンサからの信号が該車両制御部
15に入力される。
Further, the vehicle control unit 15 controls the operation of the acceleration device 10 and the deceleration device 11 so as to change the running state of the vehicle, and one of the measurement distances Drc, Dtc selected by the selector 13 and the vehicle speed. Signals from sensors such as the sensor 6 and the steering angle sensor 7 are input to the vehicle control unit 15.

【0029】ところで、図1において電子制御ユニット
8の構成要素としてブロックで示したフィルタ12、セ
レクタ13、セレクタコントローラ14および車両制御
部15は電子制御ユニット8の機能を示すものであり、
それらの機能は適当な電子デバイスにより担われる。こ
の際、各ブロックが電子デバイスに1対1に対応するこ
とは必要ではなく、各ブロックがCPU、メモリおよび
その他の電子デバイスに重複または分割して割り当てら
れればよい。
By the way, the filter 12, the selector 13, the selector controller 14 and the vehicle control section 15 shown as blocks as the constituent elements of the electronic control unit 8 in FIG. 1 indicate the functions of the electronic control unit 8.
Their functions are carried by suitable electronic devices. At this time, it is not necessary for each block to correspond to the electronic device on a one-to-one basis, and each block may be allocated to the CPU, the memory, and other electronic devices in an overlapping or divided manner.

【0030】次にこの実施例の作用について説明する
と、レーダー距離測定器1の出力の変化率が距離増大側
で設定値を超えるのに応じてフィルタ12から切換信号
が出力された状態において三角測量距離測定器2の測定
信頼度Rが規定のレベルth2よりも高く、しかも三角
測量距離測定器2の測定Dtcが設定距離th3未満の
ときには三角測量距離測定器2で測定された距離Dtc
が用いられ、それ以外の平時にはレーダー距離測定器2
で測定された距離Drcが選択される。したがって通常
の状態では、レーダー距離測定器1の出力の変化率が距
離増大側で設定値を超えるかどうかだけを監視していれ
ばよく、マイクロプロセッサの演算負荷を軽減し、より
安価なマイクロプロセッサを用いることができる。しか
もフィルタ12はレーダー距離測定器1の出力が遠距離
側に飛ぶのを検出するものであり、反射信号が微弱であ
る車両が前方に割り込んだときにレーダー距離測定器1
の出力が遠距離側に飛ぶ事象に対して、三角測量距離測
定器2の出力を用いるように切換えることにより効果的
に対処することができる。
Explaining the operation of this embodiment, triangulation is performed in the state where the switching signal is output from the filter 12 in response to the change rate of the output of the radar range finder 1 exceeding the set value on the distance increasing side. When the measurement reliability R of the distance measuring device 2 is higher than the specified level th2 and the measurement Dtc of the triangulation distance measuring device 2 is less than the set distance th3, the distance Dtc measured by the triangulation distance measuring device 2 is measured.
Is used, and in other normal times the radar range finder 2
The distance Drc measured at is selected. Therefore, in a normal state, it suffices to monitor only whether the rate of change of the output of the radar distance measuring device 1 exceeds the set value on the distance increasing side, which reduces the calculation load of the microprocessor and reduces the cost of the microprocessor. Can be used. Moreover, the filter 12 detects that the output of the radar range finder 1 flies to the far side, and the radar range finder 1 is used when a vehicle with a weak reflected signal interrupts forward.
Can be effectively dealt with by switching to use the output of the triangulation distance measuring device 2 for the event in which the output of F.

【0031】また三角測量距離測定器2の出力を用いる
ときには、その測定信頼度Rが規定のレベルth2を超
えるとともに、その測定距離Dtcが設定距離th3未
満であることが切換の条件となるので、測定信頼度Rの
低い測定値を用いて車両の走行制御を行なうことを防止
できるとともに、車間距離が比較的短くて制御の緊急性
が高いときに三角測量距離測定器2による測定値を用い
て有効な制御が可能となり、車間距離が比較的長くて緊
急性が低いときには走行フィーリングの悪化を伴いやす
い測定距離の選択切換を行なわないことが可能となる。
When using the output of the triangulation distance measuring device 2, the switching condition is that the measurement reliability R exceeds the specified level th2 and the measurement distance Dtc is less than the set distance th3. It is possible to prevent the traveling control of the vehicle from being performed by using the measured value with the low measurement reliability R, and use the measured value by the triangulation distance measuring device 2 when the inter-vehicle distance is relatively short and the urgency of the control is high. Effective control becomes possible, and when the inter-vehicle distance is relatively long and the urgency is low, it is possible to avoid selective switching of the measurement distance, which is likely to cause deterioration of traveling feeling.

【0032】しかも上記設定距離th3は、車速の増大
に応じて大となるように設定されるので、車両の走行速
度に応じたきめ細かな制御が可能となる。
Moreover, since the set distance th3 is set so as to increase as the vehicle speed increases, fine control according to the traveling speed of the vehicle becomes possible.

【0033】ところで、信頼度演算器5では、三角測量
距離測定器2での両イメージセンサ171 ,172 の出
力の相関が最大となったときの相関値、ならびにその前
後の相関値変化に基づき測定信頼度Rが演算されるもの
であり、三角測量距離測定器2での距離演算処理に用い
られる前記相関値に基づいて測定信頼度Rが容易にかつ
確度よく演算される。
By the way, in the reliability calculator 5, the correlation value when the correlation of the outputs of both image sensors 17 1 and 17 2 in the triangulation distance measuring device 2 becomes maximum and the correlation value change before and after the correlation value The measurement reliability R is calculated based on this, and the measurement reliability R is easily and accurately calculated based on the correlation value used in the distance calculation processing in the triangulation distance measuring device 2.

【0034】さらにフィルタ12が切換信号を出力した
ときには、スピーカ9が報知作動せしめられるものであ
り、反射信号が微弱である車両が前方に割り込んだこと
等による前方状況の変化が生じたときに、前方状況の変
化をドライバに報知し、より一層の前方注意を促して車
両の安全性を向上させることができ、その際、前記報知
作動がスピーカ9による音声報知であることによりドラ
イバの視覚による前方監視を妨げることがない。
Further, when the filter 12 outputs a switching signal, the speaker 9 is activated to inform, and when a change in the front situation occurs due to a vehicle having a weak reflected signal cutting forward or the like, It is possible to notify the driver of a change in the front situation to further warn the front and improve the safety of the vehicle. At that time, since the notification operation is a voice notification by the speaker 9, the driver can visually recognize the front. It does not interfere with surveillance.

【0035】以上、本発明の実施例を詳述したが、本発
明は上記実施例に限定されるものではなく、特許請求の
範囲に記載された本発明を逸脱することなく種々の設計
変更を行なうことが可能である。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various design changes can be made without departing from the present invention described in the claims. It is possible to do.

【0036】たとえば、三角測量距離測定器2の測定信
頼度を両イメージセンサ171 ,172 の出力の相関値
で代表させさるようにしてもよく、また設定距離th3
を(車速×定数)として定めるようにしてもよい。
For example, the measurement reliability of the triangulation distance measuring device 2 may be represented by the correlation value of the outputs of both the image sensors 17 1 and 17 2 , and the set distance th3.
May be defined as (vehicle speed × constant).

【0037】[0037]

【発明の効果】以上のように請求項1記載の発明は、レ
ーダー距離測定器の出力の変化率が距離増大側で設定値
を超えるのに応じて切換信号を出力するフィルタと、三
角測量距離測定器の測定信頼度を演算する信頼度演算器
と、フィルタからの切換信号出力に応じて報知作動する
報知器と、フィルタから切換信号が出力されるとともに
信頼度演算器で演算された測定信頼度が規定のレベルよ
りも高い状態で三角測量距離測定器の出力が設定距離未
満のときには三角測量距離測定器の出力を対照物までの
距離として選択するがそれ以外の平時にはレーダー距離
測定器の出力を対照物までの距離として選択するセレク
タとを含むので、マイクロプロセッサの演算負荷を軽減
してより安価なマイクロプロセッサを用いることを可能
とし、反射信号が微弱である車両が前方に割り込んだと
きに効果的に対処することができ、三角測量距離測定器
の測定値を用いるときにも測定信頼度の高い測定値を用
いて制御制度を向上することができ、車間距離が比較的
短くて制御の緊急性が高いときに三角測量距離測定器に
よる測定値を用いて有効な制御が可能となり、車間距離
が比較的長くて緊急性が低いときに走行フィーリングの
悪化を伴いやすい測定距離の選択切換を行なわないこと
が可能となり、しかも前方状況の変化を報知器で報知し
て前方注意をドライバに促すことができる。
As described above, the invention according to claim 1 has a filter which outputs a switching signal when the rate of change of the output of the radar distance measuring device exceeds a set value on the distance increasing side, and a triangulation distance. A reliability calculator that calculates the measurement reliability of the measuring instrument, an alarm that operates in response to the switching signal output from the filter, and a measurement reliability that the switching signal is output from the filter and that is calculated by the reliability calculator. When the output of the triangulation distance measuring device is less than the set distance when the degree is higher than the specified level, the output of the triangulation distance measuring device is selected as the distance to the reference object, but in other normal times the radar distance measuring device Since it includes a selector that selects the output as the distance to the reference object, it reduces the computational load on the microprocessor and enables the use of a cheaper microprocessor, and the reflected signal It is possible to effectively cope with a weak vehicle when it breaks in the front, and it is possible to improve the control system by using a highly reliable measurement value even when using the measurement value of the triangulation distance measuring device. When the distance between vehicles is relatively short and the urgency of control is high, effective control is possible by using the measurement value of the triangulation distance measuring instrument. It is possible to avoid selection and switching of the measurement distance, which is likely to cause deterioration of the ring, and it is possible to notify the driver of frontal attention by notifying the change of the front situation by the alarm.

【0038】また請求項2記載の発明によれば、上記請
求項1記載の発明の構成に加えて、信頼度演算器では、
三角測量距離測定器における両イメージセンサの出力の
相関最大時の相関値、ならびにその前後の相関値変化に
基づき測定信頼度が演算されるので、三角測量距離測定
器での距離演算処理に用いられる相関値に基づいて測定
信頼度を容易にかつ確度よく演算することが可能とな
る。
According to the invention described in claim 2, in addition to the configuration of the invention described in claim 1, in the reliability calculator,
It is used for the distance calculation processing in the triangulation distance measuring device because the measurement reliability is calculated based on the correlation value at the time of maximum correlation of the outputs of both image sensors in the triangulation distance measuring device and the correlation value change before and after that. It is possible to easily and accurately calculate the measurement reliability based on the correlation value.

【0039】さらに請求項3記載の発明によれば、上記
請求項1記載の発明の構成に加えて、前記設定距離が、
車速の増大に応じて大となるように設定されるので、車
両の走行速度に応じたきめ細かな制御が可能となる。
Further, according to the invention of claim 3, in addition to the configuration of the invention of claim 1, the set distance is
Since it is set so as to increase as the vehicle speed increases, fine control according to the traveling speed of the vehicle becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】車両用距離測定装置の構成を示すブロック図で
ある。
FIG. 1 is a block diagram showing a configuration of a vehicle distance measuring device.

【図2】三角測量距離測定器におけるヘッドの構成を示
す図である。
FIG. 2 is a diagram showing a configuration of a head in a triangulation distance measuring device.

【図3】三角測量距離測定器における両イメージセンサ
の撮像面を示す図である。
FIG. 3 is a diagram showing image pickup surfaces of both image sensors in the triangulation distance measuring device.

【図4】セレクタコントローラでの切換制御手順を示す
フローチャートである。
FIG. 4 is a flowchart showing a switching control procedure in a selector controller.

【図5】車速に応じた設定距離の変化を示す図である。FIG. 5 is a diagram showing a change in a set distance according to a vehicle speed.

【符号の説明】[Explanation of symbols]

1・・・レーダー距離測定器 2・・・三角測量距離測定器 5・・・信頼度演算器 9・・・報知器としてのスピーカ 12・・・フィルタ 13・・・セレクタ 171 ,172 ・・・イメージセンサ1 ... Radar distance measuring device 2 ... Triangulation distance measuring device 5 ... Reliability calculator 9 ... Speaker as an indicator 12 ... Filter 13 ... Selector 17 1 , 17 2 ..Image sensors

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01S 11/12 G08G 1/04 C 13/93 G01S 11/00 B G08G 1/04 13/93 Z Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location G01S 11/12 G08G 1/04 C 13/93 G01S 11/00 B G08G 1/04 13/93 Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 車両前方の対照物に向けての信号の送信
ならびに該対照物からの反射信号の受信間の時間に基づ
いて対照物までの距離を演算するレーダー距離測定器
(1)と、間隔をあけて配置された一対のイメージセン
サ(171 ,172 )の出力の相関計算から得られる視
差に基づいて対照物までの距離を演算する三角測量距離
測定器(2)とを備える車両用距離測定装置において、
レーダー距離測定器(1)の出力の変化率が距離増大側
で設定値を超えるのに応じて切換信号を出力するフィル
タ(12)と、三角測量距離測定器(2)の測定信頼度
を演算する信頼度演算器(5)と、フィルタ(12)か
らの切換信号出力に応じて報知作動する報知器(9)
と、フィルタ(12)から切換信号が出力されるととも
に信頼度演算器(5)で演算された測定信頼度が規定の
レベルよりも高い状態で三角測量距離測定器(2)の出
力が設定距離未満のときには三角測量距離測定器(2)
の出力を対照物までの距離として選択するがそれ以外の
平時にはレーダー距離測定器(1)の出力を対照物まで
の距離として選択するセレクタ(13)とを含むことを
特徴とする車両用距離測定装置。
1. A radar range finder (1) for calculating the distance to a reference object in front of a vehicle based on the time between the transmission of a signal toward the reference object and the reception of a reflected signal from the reference object, A vehicle provided with a triangulation distance measuring device (2) for calculating a distance to a reference object based on a parallax obtained from a correlation calculation of outputs of a pair of image sensors (17 1 , 17 2 ) arranged at intervals. In the distance measuring device for
Calculate the measurement reliability of the filter (12) that outputs a switching signal when the rate of change of the output of the radar range finder (1) exceeds the set value on the side of increasing distance and the triangulation range finder (2) Reliability calculator (5) and an alarm device (9) for alarming in response to the switching signal output from the filter (12)
When the switching signal is output from the filter (12) and the measurement reliability calculated by the reliability calculator (5) is higher than the specified level, the output of the triangulation distance measuring device (2) is set to the set distance. Triangulation distance measuring device (2)
And a selector (13) for selecting the output of the radar distance measuring device (1) as the distance to the reference object during normal times other than that. measuring device.
【請求項2】 信頼度演算器(5)では、三角測量距離
測定器(2)における両イメージセンサ(171 ,17
2 )の出力の相関最大時の相関値、ならびにその前後の
相関値変化に基づき測定信頼度が演算されることを特徴
とする請求項1記載の車両用距離測定装置。
2. The reliability computing unit (5) comprises both image sensors (17 1 , 17) in the triangulation distance measuring unit (2).
2. The vehicle distance measuring device according to claim 1, wherein the measurement reliability is calculated based on the correlation value at the maximum correlation of the output of 2 ) and the correlation value change before and after the correlation value.
【請求項3】 前記設定距離が、車速の増大に応じて大
となるように設定されることを特徴とする請求項1記載
の車両用距離測定装置。
3. The vehicle distance measuring device according to claim 1, wherein the set distance is set so as to increase as the vehicle speed increases.
JP33296695A 1995-12-21 1995-12-21 Vehicle distance measuring device Expired - Fee Related JP3502713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33296695A JP3502713B2 (en) 1995-12-21 1995-12-21 Vehicle distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33296695A JP3502713B2 (en) 1995-12-21 1995-12-21 Vehicle distance measuring device

Publications (2)

Publication Number Publication Date
JPH09171075A true JPH09171075A (en) 1997-06-30
JP3502713B2 JP3502713B2 (en) 2004-03-02

Family

ID=18260814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33296695A Expired - Fee Related JP3502713B2 (en) 1995-12-21 1995-12-21 Vehicle distance measuring device

Country Status (1)

Country Link
JP (1) JP3502713B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327635A (en) * 2001-04-27 2002-11-15 Nissan Motor Co Ltd Vehicular running control device
JP2004028727A (en) * 2002-06-25 2004-01-29 Fuji Heavy Ind Ltd Monitoring system, monitoring method, distance correction device for the monitoring system, and distance correction method
JP2008185447A (en) * 2007-01-30 2008-08-14 Mitsubishi Electric Corp Multi-sensor control system
DE102008012840A1 (en) 2007-03-07 2008-11-06 Fuji Jukogyo Kabushiki Kaisha Object detection system
WO2012137434A1 (en) * 2011-04-07 2012-10-11 パナソニック株式会社 Stereoscopic imaging device
JP2016524125A (en) * 2013-03-15 2016-08-12 ペリカン イメージング コーポレイション System and method for stereoscopic imaging using a camera array
US10027901B2 (en) 2008-05-20 2018-07-17 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
US10311649B2 (en) 2012-02-21 2019-06-04 Fotonation Limited Systems and method for performing depth based image editing
US10334241B2 (en) 2012-06-28 2019-06-25 Fotonation Limited Systems and methods for detecting defective camera arrays and optic arrays
US10366472B2 (en) 2010-12-14 2019-07-30 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US10430682B2 (en) 2011-09-28 2019-10-01 Fotonation Limited Systems and methods for decoding image files containing depth maps stored as metadata
US10462362B2 (en) 2012-08-23 2019-10-29 Fotonation Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US10540806B2 (en) 2013-09-27 2020-01-21 Fotonation Limited Systems and methods for depth-assisted perspective distortion correction
US10547772B2 (en) 2013-03-14 2020-01-28 Fotonation Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10560684B2 (en) 2013-03-10 2020-02-11 Fotonation Limited System and methods for calibration of an array camera
US10574905B2 (en) 2014-03-07 2020-02-25 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10708492B2 (en) 2013-11-26 2020-07-07 Fotonation Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US10767981B2 (en) 2013-11-18 2020-09-08 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10909707B2 (en) 2012-08-21 2021-02-02 Fotonation Limited System and methods for measuring depth using an array of independently controllable cameras
US10944961B2 (en) 2014-09-29 2021-03-09 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US11022725B2 (en) 2012-06-30 2021-06-01 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11412158B2 (en) 2008-05-20 2022-08-09 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11953700B2 (en) 2021-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327635A (en) * 2001-04-27 2002-11-15 Nissan Motor Co Ltd Vehicular running control device
JP2004028727A (en) * 2002-06-25 2004-01-29 Fuji Heavy Ind Ltd Monitoring system, monitoring method, distance correction device for the monitoring system, and distance correction method
JP2008185447A (en) * 2007-01-30 2008-08-14 Mitsubishi Electric Corp Multi-sensor control system
DE102008012840A1 (en) 2007-03-07 2008-11-06 Fuji Jukogyo Kabushiki Kaisha Object detection system
US8094934B2 (en) 2007-03-07 2012-01-10 Fuji Jukogyo Kabushiki Kaisha Object detection system
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US11412158B2 (en) 2008-05-20 2022-08-09 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US10027901B2 (en) 2008-05-20 2018-07-17 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
US11875475B2 (en) 2010-12-14 2024-01-16 Adeia Imaging Llc Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US11423513B2 (en) 2010-12-14 2022-08-23 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US10366472B2 (en) 2010-12-14 2019-07-30 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
CN103477186A (en) * 2011-04-07 2013-12-25 松下电器产业株式会社 Stereoscopic imaging device
US9807369B2 (en) 2011-04-07 2017-10-31 Panasonic Intellectual Property Management Co., Ltd. 3D imaging apparatus
JP5979500B2 (en) * 2011-04-07 2016-08-24 パナソニックIpマネジメント株式会社 Stereo imaging device
JPWO2012137434A1 (en) * 2011-04-07 2014-07-28 パナソニック株式会社 Stereo imaging device
WO2012137434A1 (en) * 2011-04-07 2012-10-11 パナソニック株式会社 Stereoscopic imaging device
US10984276B2 (en) 2011-09-28 2021-04-20 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US10430682B2 (en) 2011-09-28 2019-10-01 Fotonation Limited Systems and methods for decoding image files containing depth maps stored as metadata
US11729365B2 (en) 2011-09-28 2023-08-15 Adela Imaging LLC Systems and methods for encoding image files containing depth maps stored as metadata
US10311649B2 (en) 2012-02-21 2019-06-04 Fotonation Limited Systems and method for performing depth based image editing
US10334241B2 (en) 2012-06-28 2019-06-25 Fotonation Limited Systems and methods for detecting defective camera arrays and optic arrays
US11022725B2 (en) 2012-06-30 2021-06-01 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US10909707B2 (en) 2012-08-21 2021-02-02 Fotonation Limited System and methods for measuring depth using an array of independently controllable cameras
US10462362B2 (en) 2012-08-23 2019-10-29 Fotonation Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US10560684B2 (en) 2013-03-10 2020-02-11 Fotonation Limited System and methods for calibration of an array camera
US10958892B2 (en) 2013-03-10 2021-03-23 Fotonation Limited System and methods for calibration of an array camera
US11272161B2 (en) 2013-03-10 2022-03-08 Fotonation Limited System and methods for calibration of an array camera
US11570423B2 (en) 2013-03-10 2023-01-31 Adeia Imaging Llc System and methods for calibration of an array camera
US10547772B2 (en) 2013-03-14 2020-01-28 Fotonation Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10638099B2 (en) 2013-03-15 2020-04-28 Fotonation Limited Extended color processing on pelican array cameras
US10674138B2 (en) 2013-03-15 2020-06-02 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10455218B2 (en) 2013-03-15 2019-10-22 Fotonation Limited Systems and methods for estimating depth using stereo array cameras
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
JP2016524125A (en) * 2013-03-15 2016-08-12 ペリカン イメージング コーポレイション System and method for stereoscopic imaging using a camera array
US10540806B2 (en) 2013-09-27 2020-01-21 Fotonation Limited Systems and methods for depth-assisted perspective distortion correction
US10767981B2 (en) 2013-11-18 2020-09-08 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US11486698B2 (en) 2013-11-18 2022-11-01 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10708492B2 (en) 2013-11-26 2020-07-07 Fotonation Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US10574905B2 (en) 2014-03-07 2020-02-25 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US11546576B2 (en) 2014-09-29 2023-01-03 Adeia Imaging Llc Systems and methods for dynamic calibration of array cameras
US10944961B2 (en) 2014-09-29 2021-03-09 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11699273B2 (en) 2019-09-17 2023-07-11 Intrinsic Innovation Llc Systems and methods for surface modeling using polarization cues
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11842495B2 (en) 2019-11-30 2023-12-12 Intrinsic Innovation Llc Systems and methods for transparent object segmentation using polarization cues
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11683594B2 (en) 2021-04-15 2023-06-20 Intrinsic Innovation Llc Systems and methods for camera exposure control
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11953700B2 (en) 2021-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers

Also Published As

Publication number Publication date
JP3502713B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
JP3502713B2 (en) Vehicle distance measuring device
JP5769163B2 (en) Alarm device
US7619668B2 (en) Abnormality detecting apparatus for imaging apparatus
JP3766909B2 (en) Driving environment recognition method and apparatus
JP2019087143A (en) Driver state detection apparatus
JP5179686B2 (en) Driving behavior risk calculation device
US20110128136A1 (en) On-vehicle device and recognition support system
JP4114485B2 (en) Vehicle traveling state detection device and vehicle traveling control device
JP2003123196A (en) Device and program for monitoring circumference of vehicle
JPH08178712A (en) Rambling-drive detection apparatus
JP4725254B2 (en) Armpit judging device
JP6693427B2 (en) Driver status detector
KR101938314B1 (en) Apparatus and Method for Warning Rear Side of Vehicle with Learning of Driving Pattern
JPH04290200A (en) Collision alarming device for vehicle
JPH07117593A (en) Alarm device for vehicle
JP3184656B2 (en) In-vehicle surveillance camera device
US20230154322A1 (en) Driving assistance apparatus
CN110626259A (en) Triangular warning frame and collision early warning method thereof
JP2021128432A (en) Operation support system
KR20150093135A (en) Situational adaptive highway alarm system
US11608070B2 (en) System and method for monitoring driver
JP3731303B2 (en) Vehicle periphery monitoring device
JP7282069B2 (en) vehicle alarm device
CN113173160B (en) Anti-collision device for vehicle and anti-collision method for vehicle
JP4513398B2 (en) Intersection situation detection device and intersection situation detection method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees