JPH09170916A - Apparatus for estimating state of road surface - Google Patents

Apparatus for estimating state of road surface

Info

Publication number
JPH09170916A
JPH09170916A JP33182995A JP33182995A JPH09170916A JP H09170916 A JPH09170916 A JP H09170916A JP 33182995 A JP33182995 A JP 33182995A JP 33182995 A JP33182995 A JP 33182995A JP H09170916 A JPH09170916 A JP H09170916A
Authority
JP
Japan
Prior art keywords
friction coefficient
road surface
value
surface friction
wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33182995A
Other languages
Japanese (ja)
Inventor
Shinsuke Yamamoto
真輔 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP33182995A priority Critical patent/JPH09170916A/en
Publication of JPH09170916A publication Critical patent/JPH09170916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Regulating Braking Force (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

PROBLEM TO BE SOLVED: To estimate a state of a road face highly accurately by estimating a friction coefficient of the road face, comparing the coefficient with a previously estimated value, and controlling not to update the coefficient to a lower value from the previously estimated value based on the comparison result when a driving wheel slips not larger than a predetermined value. SOLUTION: Velocities of driving wheels 14, 16 and driven wheels 10, 12 are measured by driving wheel velocity sensors 48, 50 and driven wheel velocity sensors 52, 54, which are input to an electronic control device 46. The device 46 obtains a friction coefficient of a road face from a previous velocity of the driven wheels and the present velocity of the driven wheels, and compares the coefficient with a previous value. When a present value of the friction coefficient is larger than or equal to the previous value, the friction coefficient is updated to the present value. When the present value is smaller than the previous value, it is detected whether or not a slip of the driving wheels 14, 16 obtained from a difference of velocities of the driving wheels and driven wheels is smaller than a predetermined value. If the difference is not smaller than the predetermined value, the friction coefficient is updated to the present value. If the difference is smaller than the predetermined value, the previous value is maintained. Accordingly, the friction coefficient of the road face can be estimated more highly accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、車両が走行してい
る路面の状態を推定する路面状態推定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a road surface state estimating device for estimating the state of a road surface on which a vehicle is traveling.

【0002】[0002]

【従来の技術】従来、発進時あるいは加速時において、
駆動輪にスリップが発生した場合に、この駆動スリップ
を収束させるために駆動力を制御してスリップの発生し
ている駆動輪のトラクションを減少させ、これにより駆
動スリップを抑制する加速スリップ制御装置が開発され
ている。
2. Description of the Related Art Conventionally, when starting or accelerating,
When a slip occurs on a drive wheel, an acceleration slip control device that controls the drive force in order to converge the drive slip to reduce the traction of the drive wheel in which the slip occurs and thereby suppress the drive slip is provided. Being developed.

【0003】このような制御にあたり、駆動輪を制御す
るための目標回転数を算出するために、車両が走行して
いる路面の状態、特に路面摩擦係数μを推定することが
重要である。例えば、特開平2−3776号公報に開示
されている制御装置においては、単位時間当りの従動輪
速度の増加量に基づいて路面摩擦係数μを推定するよう
にしている。
In such control, in order to calculate the target rotational speed for controlling the drive wheels, it is important to estimate the state of the road surface on which the vehicle is traveling, particularly the road surface friction coefficient μ. For example, in the control device disclosed in Japanese Patent Application Laid-Open No. 2-3776, the road surface friction coefficient μ is estimated based on the amount of increase in the driven wheel speed per unit time.

【0004】[0004]

【解決が解決しようとする課題】しかしながら、上記従
来技術においては、加速状態であっても変速時において
従動輪の加速度が0となるため、これに基づいて路面状
態を推定すると路面摩擦係数μが誤って0と推定されて
しまうという問題がある。
However, in the above-mentioned prior art, since the acceleration of the driven wheels becomes 0 even during the gear shift even in the acceleration state, when the road surface state is estimated based on this, the road surface friction coefficient μ becomes There is a problem that it is erroneously estimated to be 0.

【0005】これを図を用いて説明する。図5は、車輪
速度と路面摩擦係数μの時間変化を定性的に示したもの
である。図5において、横軸は時間であり、上側の実線
のグラフは従動輪速度、一点鎖線のグラフは駆動輪速度
を表わし、下側のグラフは路面摩擦係数μの推定値を表
わしている。
This will be described with reference to the drawings. FIG. 5 qualitatively shows changes over time in the wheel speed and the road surface friction coefficient μ. In FIG. 5, the horizontal axis represents time, the upper solid line graph represents the driven wheel speed, the alternate long and short dash line graph represents the driving wheel speed, and the lower graph represents the estimated value of the road surface friction coefficient μ.

【0006】実線のグラフより一点鎖線のグラフの方が
上にある部分は、従動輪速度より駆動輪速度の方が大き
く、駆動輪の方が速く回転し、加速スリップを生じてい
ることを表わしている。図の符号Aの部分では、従動輪
は一定速度で回転しているのに対し、加速スリップが増
加している。これは路面反力が減少したため、車輪スピ
ンが発生したものであり、路面摩擦係数がほぼ0と考え
られる。
The portion of the dashed-dotted line graph above the solid line graph indicates that the drive wheel speed is higher than the driven wheel speed, and the drive wheel rotates faster, causing an acceleration slip. ing. In the part indicated by reference symbol A in the figure, the driven wheel is rotating at a constant speed, while the acceleration slip is increasing. This is because wheel spin occurred because the road surface reaction force decreased, and the road surface friction coefficient is considered to be almost zero.

【0007】これに対して、図の符号Bの部分では、変
速中のため、駆動輪に動力が伝わらず、いわば4輪とも
従動輪となり、一定速度で定常走行を行う。従って、従
動輪速度の増加量は0となる。
On the other hand, in the portion indicated by reference numeral B in the drawing, since the power is not being transmitted to the drive wheels, so to speak, all four wheels are driven wheels, and steady traveling is performed at a constant speed. Therefore, the amount of increase in the driven wheel speed is zero.

【0008】よって、従動輪速度の増加量に基づいて路
面摩擦係数μを推定しようとすると、図のBの部分にお
いては路面摩擦係数μが0でないにも拘らず、図のAの
部分と同様にBの部分においても、路面摩擦係数μを0
と推定してしまう。
Therefore, if it is attempted to estimate the road surface friction coefficient μ based on the amount of increase in the driven wheel speed, the road surface friction coefficient μ is not 0 in the portion B of the drawing, but is the same as the portion A of the drawing. Also in the part B, the road surface friction coefficient μ is 0
I presume.

【0009】このように従来の推定方法では、たとえ路
面摩擦係数μが高い路面を走行していても、手動変速機
付きの車両での変速時には、クラッチ操作によりエンジ
ン出力トルクが伝達されないため、一時的に定常走行状
態等となって路面摩擦係数μの誤った推定をする恐れが
ある。
As described above, in the conventional estimation method, even when the vehicle is traveling on a road surface having a high road surface friction coefficient μ, the engine output torque is not transmitted by the clutch operation at the time of gear shifting in a vehicle with a manual transmission. There is a possibility that the road surface friction coefficient μ may be erroneously estimated in a steady running state.

【0010】本発明は、このような従来の問題に鑑みて
なされたものであり、路面摩擦係数の推定を精度良く行
うことのできる路面状態推定装置を提供することを課題
とする。
The present invention has been made in view of such conventional problems, and it is an object of the present invention to provide a road surface state estimating device capable of accurately estimating a road surface friction coefficient.

【0011】[0011]

【課題を解決するための手段】本発明は、その要旨を図
1に示すように、車両が走行している路面の状態を推定
する路面状態推定装置において、駆動輪のスリップが所
定値以下か否かを判定する手段と、路面摩擦係数を推定
する手段と、今回推定された路面摩擦係数と前回推定さ
れた路面摩擦係数を比較する手段と、駆動輪のスリップ
が所定値以下のときは、前記比較結果に基づいて、前記
前回推定された路面摩擦係数の、より低い側への更新を
制限する手段とを備えたことにより、前記課題を解決し
たものである。
SUMMARY OF THE INVENTION The present invention, as shown in FIG. 1, is a road surface condition estimating device for estimating the condition of a road surface on which a vehicle is traveling. Means for determining whether or not, a means for estimating the road surface friction coefficient, a means for comparing the road surface friction coefficient estimated this time with the road surface friction coefficient estimated last time, and when the slip of the drive wheels is below a predetermined value, The problem is solved by including means for restricting updating of the previously estimated road surface friction coefficient to a lower side based on the comparison result.

【0012】即ち、本発明によれば、駆動輪のスリップ
が所定値以下と判定された場合、即ち摩擦係数μがある
程度高い路面を走行していると判断されたときは、前回
推定された路面摩擦係数と今回推定された路面摩擦係数
とを比較し、今回推定された路面摩擦係数の方が低い場
合には、前回推定された路面摩擦係数の更新は行わず、
前回値を維持するようにした。その結果変速時等におい
ても、精度の高い路面摩擦係数の推定が可能となった。
That is, according to the present invention, when it is determined that the slip of the drive wheels is equal to or less than a predetermined value, that is, it is determined that the vehicle is traveling on a road surface having a friction coefficient μ that is high to some extent, the previously estimated road surface is used. The friction coefficient and the road surface friction coefficient estimated this time are compared, and when the road surface friction coefficient estimated this time is lower, the road surface friction coefficient estimated last time is not updated,
I kept the value last time. As a result, it is possible to estimate the road friction coefficient with high accuracy even when shifting.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態の例を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings.

【0014】図2は、本発明に係る路面状態推定装置を
含む、加速スリップ制御装置を備えた車両の概略構成図
である。
FIG. 2 is a schematic configuration diagram of a vehicle equipped with an acceleration slip control device including a road surface state estimating device according to the present invention.

【0015】図2において、符号10、12は従動輪と
しての左右の前輪を、14、16は駆動輪としての左右
の後輪を各々示している。左右の後輪14と16にはエ
ンジン18の出力トルクが、変速装置20、プロペラ軸
22、デファレンシャル装置24及び左右の駆動車軸2
6、28を経て伝達される。エンジン18は、吸気通路
30、サージタンク32より吸気を吸入し、燃料噴射弁
34より燃料を噴射供給され、吸気通路30には吸入空
気量の制御を行うメインスロットルバルブ36が設けら
れている。メインスロットルバルブ36は、アクセルペ
ダル38と連結され、アクセルペダル38の踏み込みに
応じて開閉する。
In FIG. 2, reference numerals 10 and 12 denote left and right front wheels as driven wheels, and 14 and 16 denote left and right rear wheels as driving wheels. The output torque of the engine 18 is applied to the left and right rear wheels 14 and 16 by the transmission 20, the propeller shaft 22, the differential device 24, and the left and right drive axles 2.
It is transmitted via 6, 28. The engine 18 sucks intake air from the intake passage 30 and the surge tank 32 and is supplied with fuel from the fuel injection valve 34. The intake passage 30 is provided with a main throttle valve 36 for controlling the intake air amount. The main throttle valve 36 is connected to an accelerator pedal 38 and opens / closes in response to depression of the accelerator pedal 38.

【0016】燃料噴射弁34は、エンジン制御装置40
からの制御信号によって開弁時期及び開弁時間が制御さ
れ、開弁時間に応じた量の燃料をエンジン18に対して
噴射供給する。エンジン制御装置40による燃料噴射量
制御は、基本的には吸入空気量あるいは吸気管圧力とエ
ンジン回転数により決定される1行程当りの吸入空気量
に応じて行われる。
The fuel injection valve 34 has an engine control unit 40.
The valve opening timing and the valve opening time are controlled by the control signal from, and fuel is injected and supplied to the engine 18 in an amount corresponding to the valve opening time. The fuel injection amount control by the engine control device 40 is basically performed according to the intake air amount or the intake air amount per stroke determined by the intake pipe pressure and the engine speed.

【0017】吸気通路30のメインスロットルバルブ3
6より吸気流で見て上流側にはサブスロットルバルブ4
2が設けられている。サブスロットルバルブ42は、ス
テップモータ44により開閉駆動され、ステップモータ
44は加速スリップ制御用の電子制御装置46よりの制
御信号に応じてサブスロットルバルブ42の開度を制御
するようになっている。
Main throttle valve 3 of intake passage 30
Sub-throttle valve 4 on the upstream side of the intake flow from 6
2 are provided. The sub-throttle valve 42 is driven to open and close by a step motor 44, and the step motor 44 controls the opening degree of the sub-throttle valve 42 according to a control signal from an electronic control unit 46 for acceleration slip control.

【0018】電子制御装置46は、一般的なマイクロコ
ンピュータを含むもので、駆動輪速度センサ48、50
の回転数を駆動輪速度VWRとして取込み、左右の従動輪
速度センサ52、54より左右の前輪10、12の回転
数を左右の従動輪速度VWFとして取込み、変速装置20
からギヤシフト位置に関する情報を取込み、スロットル
開度センサ56よりメインスロットルバルブ36の開度
に関する情報を取込み、エンジン制御装置40で算出さ
れたエンジン18の回転数に関する情報を取込み、これ
らの情報に従って加速スリップが発生したか否かを判別
し、加速スリップ発生時にはサブスロットルバルブ42
を加速スリップ制御に適した所定開度に開閉駆動させる
制御信号をステップモータ44へ出力する。
The electronic control unit 46 includes a general microcomputer and has drive wheel speed sensors 48, 50.
Is taken as the driving wheel speed VWR, the left and right driven wheel speed sensors 52, 54 are taken as the left and right driven wheel speeds VWF, and the transmission 20
Information about the gear shift position, information about the opening of the main throttle valve 36 from the throttle opening sensor 56, information about the rotation speed of the engine 18 calculated by the engine control device 40, and acceleration slip according to these information. It is determined whether or not the sub-throttle valve 42
A control signal for driving to open and close to a predetermined opening suitable for acceleration slip control is output to the step motor 44.

【0019】又、電子制御装置46は、駆動輪速度セン
サ48、50及び従動輪速度センサ52、54から取り
込んだ駆動輪速度VWR及び従動輪速度VWFを基に、駆動
輪スリップが所定値以下か否かを判定すると共に、路面
摩擦係数μの推定演算を行う。更に、電子制御装置46
は、路面摩擦係数の前回推定値と今回推定値を比較し、
駆動輪スリップが所定値以下の場合には、路面摩擦係数
の、より低い側への更新を制限する。
Further, the electronic control unit 46 determines whether the drive wheel slip is a predetermined value or less based on the drive wheel speed VWR and the driven wheel speed VWF fetched from the drive wheel speed sensors 48 and 50 and the driven wheel speed sensors 52 and 54. Whether or not the road surface friction coefficient μ is estimated is calculated. Further, the electronic control unit 46
Compares the previous estimated value with the current estimated value of the road surface friction coefficient,
When the drive wheel slip is equal to or less than a predetermined value, updating of the road surface friction coefficient to a lower side is restricted.

【0020】以下、図3のフローチャートを参照して本
実施形態の作用を詳しく説明する。
The operation of this embodiment will be described in detail below with reference to the flow chart of FIG.

【0021】図3のステップ100において、従動輪速
度VWF及び駆動輪速度VWRを駆動輪速度センサ48、5
0及び従動輪速度センサ52、54より電子制御装置4
6へ入力する。
In step 100 of FIG. 3, the driven wheel speed VWF and the driving wheel speed VWR are set to the driving wheel speed sensors 48, 5 and 5.
0 and the driven wheel speed sensors 52, 54 from the electronic control unit 4
Input to 6.

【0022】次のステップ110では、Kを定数、Tを
演算周期とし、前回演算時の従動輪速度VWF(n−1)
と今回の従動輪速度VWF(n)とから、路面摩擦係数μ
(n)が次の(1)式により演算される。
In the next step 110, K is a constant and T is a calculation cycle, and the driven wheel speed VWF (n-1) at the previous calculation is set.
And the driven wheel speed VWF (n) this time, the road surface friction coefficient μ
(N) is calculated by the following equation (1).

【0023】 μ(n)=K×(VWF(n)−VWF(n−1))/T …(1)Μ (n) = K × (VWF (n) −VWF (n−1)) / T (1)

【0024】路面摩擦係数μが(1)式のように演算し
得る理由を簡単に説明する。今、車体重量をm、車体加
速度をa、車体に働く力をFとすると、(2)式で示さ
れるようないわゆるニュートンの運動方程式が成り立
つ。
The reason why the road surface friction coefficient μ can be calculated by the equation (1) will be briefly described. Now, assuming that the vehicle body weight is m, the vehicle body acceleration is a, and the force acting on the vehicle body is F, the so-called Newton's equation of motion as shown in equation (2) is established.

【0025】ma=F …(2)Ma = F (2)

【0026】ここで、従動輪速度VWFを車体速度Vと見
做すと、車体加速度aは、上の記号を用いて、ほぼ
(3)式で示すように見做すことができる。
Here, when the driven wheel speed VWF is regarded as the vehicle body speed V, the vehicle body acceleration a can be regarded as shown by the equation (3) using the above symbol.

【0027】 a=(VWF(n)−VWF(n−1))/T …(3)A = (VWF (n) -VWF (n-1)) / T (3)

【0028】又、車体に働く力Fは車輪にかかる荷重を
Wとすると、路面摩擦係数μを用いて、(4)のように
表わすことができる。
Further, the force F acting on the vehicle body can be expressed as in (4) using the road surface friction coefficient μ, where W is the load applied to the wheels.

【0029】F=μW …(4)F = μW (4)

【0030】よって、上記運動方程式は次の(5)式の
ようになる。
Therefore, the above equation of motion is expressed by the following equation (5).

【0031】 m(VWF(n)−VWF(n−1))/T=μW …(5)M (VWF (n) -VWF (n-1)) / T = μW (5)

【0032】これをμについて解くと、次の(6)式の
ようになる。
When this is solved for μ, the following equation (6) is obtained.

【0033】 μ=(m/W)×(VWF(n)−VWF(n−1))/T …(6)Μ = (m / W) × (VWF (n) −VWF (n−1)) / T (6)

【0034】従って、m/Wを定数Kとすれば、上記
(1)式が得られる。
Therefore, if m / W is a constant K, the above equation (1) can be obtained.

【0035】次のステップ120では、今回演算された
路面摩擦係数μ(n)を前回の演算値μ(n−1)と比
較する。
In the next step 120, the road surface friction coefficient μ (n) calculated this time is compared with the previous calculated value μ (n-1).

【0036】その結果、今回の演算値μ(n)の方が前
回の演算値より大きいか又は等しい場合には、ステップ
150へ進み、今回の演算値μ(n)で路面摩擦係数μ
を更新し、μ=μ(n)とする。
As a result, when the calculated value μ (n) of this time is greater than or equal to the calculated value of the previous time, the routine proceeds to step 150, where the road surface friction coefficient μ is calculated at the calculated value μ (n) of this time.
Is updated, and μ = μ (n).

【0037】又、今回の演算値μ(n)の方が前回の演
算値μ(n−1)より小さい場合には、次のステップ1
30で駆動輪14、16のスリップが所定値Sより小か
否か判定する。これは、駆動輪速度VWRと従動輪速度V
WFの差が所定値S以上か否かで判定される。この差が所
定値S以上の場合には、図5の符号Aの部分のように、
実際に路面摩擦係数μが低くなったことによりスリップ
が増大しているものと考えられ、ステップ150へ進
み、今回の推定値μ(n)で路面摩擦係数μを更新す
る。
If the calculated value μ (n) of this time is smaller than the calculated value μ (n−1) of the previous time, the following step 1
At 30, it is determined whether the slip of the drive wheels 14, 16 is smaller than a predetermined value S. This is the driving wheel speed VWR and the driven wheel speed V
It is determined whether or not the difference in WF is greater than or equal to a predetermined value S. If this difference is greater than or equal to the predetermined value S, as indicated by the portion A in FIG.
It is considered that the slip has increased due to the fact that the road surface friction coefficient μ has actually decreased, and the routine proceeds to step 150, where the road surface friction coefficient μ is updated with the current estimated value μ (n).

【0038】前記差が所定値Sより小のときには、次の
ステップ140で前回推定値μ(n−1)を今回推定値
μ(n)とし、ステップ150においてこれを路面摩擦
係数μとすることで、前回の推定値μ(n−1)を維持
するようにする。
When the difference is smaller than the predetermined value S, the previous estimated value μ (n-1) is set as the present estimated value μ (n) in the next step 140, and this is set as the road surface friction coefficient μ in step 150. Then, the previous estimated value μ (n−1) is maintained.

【0039】以上説明した路面摩擦係数推定値の制御の
効果を図4に示す。
The effect of the control of the road surface friction coefficient estimated value explained above is shown in FIG.

【0040】図4は、前記図5と同様に、上側に実線で
従動輪速度VWF、一点鎖線で駆動輪速度VWR、下側に路
面摩擦係数μの推定値を示すと共に、更に上側に破線で
スリップ判定を示している。
Similar to FIG. 5, FIG. 4 shows the driven wheel speed VWF on the upper side, the driving wheel speed VWR on the dashed-dotted line, the estimated value of the road friction coefficient μ on the lower side, and the broken line on the upper side. The slip determination is shown.

【0041】スリップのほとんど発生していない符号C
の部分では、路面摩擦係数μの前回の推定値が維持され
ており、従来のように誤って0と推定するようなことは
ない。
Code C in which almost no slip occurs
In the part (2), the previous estimated value of the road surface friction coefficient μ is maintained, and it is not erroneously estimated to be 0 as in the conventional case.

【0042】結局、Cの部分のように破線に示すスリッ
プ判定値より駆動輪速度VWRが小さいときは、路面摩擦
係数μが低下している可能性が極めて小さいため、路面
摩擦係数μの(より低い側への)更新は行わない。一
方、Dの部分のようにスリップ判定値より駆動輪速度V
WRが大きく、スリップが出ている場合には路面摩擦係数
μの更新をするものである。
After all, when the driving wheel speed VWR is smaller than the slip judgment value shown by the broken line as in the portion C, the possibility that the road surface friction coefficient μ is lowered is extremely small. Do not update (to the low side). On the other hand, as in the part D, the drive wheel speed V is determined from the slip determination value.
When the WR is large and slippage occurs, the road surface friction coefficient μ is updated.

【0043】従って、本実施形態によれば、例えば手動
変速機付き車両での変速による一時的な定常走行や、限
界加速でない状態での路面摩擦係数の誤った推定を防ぐ
ことができる。
Therefore, according to the present embodiment, it is possible to prevent a temporary steady running due to a gear shift in a vehicle with a manual transmission and an erroneous estimation of the road surface friction coefficient in a state where the acceleration is not the limit.

【0044】なお、本実施形態では、車速センサによっ
て検出された車輪速度に基づいて路面摩擦係数を推定す
るようにしているが、本発明はこれに限定されるもので
はなく、例えば、加速度センサ等を用いるものでもよ
い。
In this embodiment, the road surface friction coefficient is estimated on the basis of the wheel speed detected by the vehicle speed sensor, but the present invention is not limited to this. For example, an acceleration sensor or the like. May be used.

【0045】[0045]

【発明の効果】以上説明したとおり、本発明によれば、
路面摩擦係数推定時に、駆動輪スリップが生じていない
場合には、この状態で推定した値による更新は行わず、
前回値を維持するようにしたため、より精度の高い路面
摩擦係数の推定が可能となった。
As described above, according to the present invention,
If the drive wheel slip does not occur when estimating the road surface friction coefficient, the value estimated in this state is not updated,
Since the previous value was maintained, it became possible to more accurately estimate the road surface friction coefficient.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の要旨を示すブロック図FIG. 1 is a block diagram showing the gist of the present invention.

【図2】本発明に係る路面状態判定装置を含む、加速ス
リップ制御装置を備えた車両の概略構成図
FIG. 2 is a schematic configuration diagram of a vehicle including an acceleration slip control device including a road surface state determination device according to the present invention.

【図3】本実施形態の制御を示すフローチャートFIG. 3 is a flowchart illustrating control according to the embodiment;

【図4】本実施形態の効果を示す車輪速度、路面摩擦係
数の時間変化を表わす線図
FIG. 4 is a diagram showing changes over time in wheel speed and road surface friction coefficient showing the effects of the present embodiment.

【図5】従来の問題を示す車輪速度、路面摩擦係数の時
間変化を表わす線図
FIG. 5 is a diagram showing changes over time in wheel speed and road surface friction coefficient, which indicate conventional problems.

【符号の説明】[Explanation of symbols]

10、12…従動輪 14、16…駆動輪 18…エンジン 46…電子制御装置 48、50…駆動輪速度センサ 52、54…従動輪速度センサ 10, 12 ... Driven wheels 14, 16 ... Driven wheels 18 ... Engine 46 ... Electronic control unit 48, 50 ... Driven wheel speed sensor 52, 54 ... Driven wheel speed sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】車両が走行している路面の状態を推定する
路面状態推定装置において、 駆動輪のスリップが所定値以下か否かを判定する手段
と、 路面摩擦係数を推定する手段と、 今回推定された路面摩擦係数と前回推定された路面摩擦
係数を比較する手段と、 駆動輪のスリップが所定値以下のときは、前記比較結果
に基づいて、前記前回推定された路面摩擦係数の、より
低い側への更新を制限する手段と、 を備えたことを特徴とする路面状態推定装置。
1. A road surface condition estimating device for estimating a condition of a road surface on which a vehicle is traveling, means for judging whether or not a slip of a driving wheel is below a predetermined value, means for estimating a road surface friction coefficient, and this time. A means for comparing the estimated road surface friction coefficient with the previously estimated road surface friction coefficient, and when the slip of the driving wheels is equal to or less than a predetermined value, based on the comparison result, the previously estimated road surface friction coefficient A road surface state estimating device comprising: a means for restricting updating to a lower side;
JP33182995A 1995-12-20 1995-12-20 Apparatus for estimating state of road surface Pending JPH09170916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33182995A JPH09170916A (en) 1995-12-20 1995-12-20 Apparatus for estimating state of road surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33182995A JPH09170916A (en) 1995-12-20 1995-12-20 Apparatus for estimating state of road surface

Publications (1)

Publication Number Publication Date
JPH09170916A true JPH09170916A (en) 1997-06-30

Family

ID=18248118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33182995A Pending JPH09170916A (en) 1995-12-20 1995-12-20 Apparatus for estimating state of road surface

Country Status (1)

Country Link
JP (1) JPH09170916A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003053747A1 (en) * 2001-12-21 2003-07-03 Kabushiki Kaisha Bridgestone Method and apparatus for estimating road surface state and tire running state, abs and vehicle control using the same
JP2009284702A (en) * 2008-05-23 2009-12-03 Toyota Motor Corp Slip suppression controller
CN104364135A (en) * 2012-06-11 2015-02-18 捷豹路虎有限公司 Vehicle control system and method to provide desired wheel slip

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003053747A1 (en) * 2001-12-21 2003-07-03 Kabushiki Kaisha Bridgestone Method and apparatus for estimating road surface state and tire running state, abs and vehicle control using the same
US7203579B2 (en) 2001-12-21 2007-04-10 Kabushiki Kaisha Bridgestone Method and apparatus for estimating road surface state and tire running state, ABS and vehicle control using the same
CN1321838C (en) * 2001-12-21 2007-06-20 株式会社普利司通 Method and apparatus for estimating road surface state and tire running state, abs and vehicle control using the same
JP2009284702A (en) * 2008-05-23 2009-12-03 Toyota Motor Corp Slip suppression controller
CN104364135A (en) * 2012-06-11 2015-02-18 捷豹路虎有限公司 Vehicle control system and method to provide desired wheel slip
JP2015521553A (en) * 2012-06-11 2015-07-30 ジャガー ランド ローバー リミテッドJaguar Land Rover Limited Vehicle control system and vehicle control method
US9475395B2 (en) 2012-06-11 2016-10-25 Jaguar Land Rover Limited Vehicle control system and method to provide desired wheel slip
JP2018058584A (en) * 2012-06-11 2018-04-12 ジャガー ランド ローバー リミテッドJaguar Land Rover Limited Vehicle control system and vehicle control method

Similar Documents

Publication Publication Date Title
JPH05345539A (en) Control device for automatic transmission
JP2502633B2 (en) Vehicle drive force control device
JPH08136572A (en) Accelerometer apparatus in vehicle
JPH10119598A (en) Driving force controller of vehicle
JP4811159B2 (en) Travel path determination device and vehicle drive control device
JPH09170916A (en) Apparatus for estimating state of road surface
JP2669653B2 (en) Automotive slip control device
JPH0615826B2 (en) Vehicle acceleration slip control device
JPS61116033A (en) Acceleration slip control device for vehicle
JPH09170917A (en) Apparatus for estimating state of road surface
JPH05270299A (en) Controller for automatic transmission
JPH0599014A (en) Detection method for frictional factor on road surface
JP2903843B2 (en) Acceleration slip control device
JPH07108631B2 (en) Vehicle drive force control device
JPS61116034A (en) Acceleration slip control device for vehicle
JP2932103B2 (en) Road surface friction coefficient detecting device, engine torque control device using the same, and vehicle shift control device
JP2669654B2 (en) Automotive slip control device
JPH0436031A (en) Driving force controller for vehicle
JP2906604B2 (en) Driving force control device
JPH0645639Y2 (en) Vehicle drive force control device
JP2796878B2 (en) Vehicle driving force control device
JPH08165940A (en) Acceleration slip control device
JP3010956B2 (en) Drive wheel slip control device
JPH05171969A (en) Traction controller of vehicle
JPH01186437A (en) Traction control method and deice for vehicle