JPH09170840A - Absorption heat pump - Google Patents

Absorption heat pump

Info

Publication number
JPH09170840A
JPH09170840A JP33305795A JP33305795A JPH09170840A JP H09170840 A JPH09170840 A JP H09170840A JP 33305795 A JP33305795 A JP 33305795A JP 33305795 A JP33305795 A JP 33305795A JP H09170840 A JPH09170840 A JP H09170840A
Authority
JP
Japan
Prior art keywords
air
heat
absorption
cycle device
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33305795A
Other languages
Japanese (ja)
Inventor
Kensaku Maeda
田 健 作 前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP33305795A priority Critical patent/JPH09170840A/en
Priority to US08/769,253 priority patent/US5761925A/en
Priority to CNB961139048A priority patent/CN1148539C/en
Publication of JPH09170840A publication Critical patent/JPH09170840A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1028Rotary wheel combined with a spraying device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Abstract

PROBLEM TO BE SOLVED: To provide an absorption heat pump which can obtain an air conditioning system with a high energy efficiency. SOLUTION: A first heat exchanger 21 is formed for heat exchange between a first evaporator 3 of a first cycle unit C1 and a second absorber 11 of a second cycle unit C2 and a second heat exchanger 20 is formed for heat exchange between a first condenser 4 of the first cycle unit C1 and a second regenerator 12 of the second cycle unit C2. A different medium is used for an absorption working medium of the first cycle unit C1 and a working medium of the second cycle unit C2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、第1の蒸発器と第
1の吸収器と第1の再生器と第1の凝縮器とを有して吸
収式冷凍サイクルを行う第1のサイクル装置と、第2の
蒸発器と第2の吸収器と第2の再生器と第2の凝縮器と
を有して前記第1のサイクル装置よりも低温で作動する
第2のサイクル装置からなる吸収ヒートポンプに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a first cycle device having a first evaporator, a first absorber, a first regenerator and a first condenser to perform an absorption refrigeration cycle. And an absorption composed of a second cycle device having a second evaporator, a second absorber, a second regenerator and a second condenser and operating at a lower temperature than the first cycle device. Regarding heat pump.

【0002】[0002]

【従来の技術】デシカント式空調システムは米国特許第
2,700,537号明細書に記載された通り公知であ
る。この公知例に示されたデシカント式空調システムで
は、デシカント(吸湿剤)の再生のための熱源として、
100〜150℃程度の温度の熱源を必要とし、もっぱ
ら電気ヒータやボイラが熱源として用いられていた。最
近になってデシカントの改良により、60〜80℃の温
度でもデシカントの再生ができるデシカント空調システ
ムが開発され、温度の低い熱源で運転が可能になった。
Desiccant air conditioning systems are known as described in US Pat. No. 2,700,537. In the desiccant type air conditioning system shown in this known example, as a heat source for regeneration of the desiccant (hygroscopic agent),
A heat source having a temperature of about 100 to 150 ° C. is required, and an electric heater or a boiler is exclusively used as the heat source. Due to the recent improvement of the desiccant, a desiccant air-conditioning system capable of reproducing the desiccant even at a temperature of 60 to 80 ° C. has been developed and can be operated by a heat source having a low temperature.

【0003】図5はこのように改良された公知のデシカ
ント空調機の実施例を示し、図6は図5の実施例の空調
機の運転状態を示したモリエル線図である。図5の符号
101は空調空間、102は送風機、103はデシカン
トロータ、104は顕熱熱交換器、105は加湿器、1
06は加湿器の給水配管、107〜111は空調空気の
空気通路、130は再生空気の送風機、120は温水と
再生空気の熱交換器(温水熱交換器)、121は顕熱熱
交換器、122、123は温水配管、124〜129は
再生空気の空気通路である。また図中、丸で囲ったアル
ファベットK〜Vは、図6と対応する空気の状態を示す
記号であり、SAは給気を、RAは還気を、OAは外気
を、EXは排気を表わす。
FIG. 5 shows an embodiment of a known desiccant air conditioner thus improved, and FIG. 6 is a Mollier diagram showing the operating state of the air conditioner of the embodiment shown in FIG. In FIG. 5, reference numeral 101 is an air-conditioned space, 102 is a blower, 103 is a desiccant rotor, 104 is a sensible heat exchanger, 105 is a humidifier, 1
Reference numeral 06 is a water supply pipe of a humidifier, 107 to 111 are air passages of conditioned air, 130 is a blower of regenerated air, 120 is a heat exchanger for hot water and regenerated air (hot water heat exchanger), 121 is a sensible heat exchanger, 122 and 123 are hot water pipes, and 124 to 129 are air passages for regenerated air. Further, in the figure, alphabets K to V enclosed by circles are symbols showing the state of air corresponding to FIG. 6, SA is supply air, RA is return air, OA is outside air, and EX is exhaust. .

【0004】この従来の装置の作用について説明する
と、図5において、空調される室内101の空気(処理
空気)は経路107を経て送風機102に吸引され昇圧
されて経路108をへてデシカントロータ103に送ら
れデシカントロータの吸湿剤で空気中の水分を吸着され
絶対湿度が低下する。また吸着の際、吸着熱によって空
気は温度上昇する。湿度が下がり温度上昇した空気は経
路109を経て顕熱熱交換器104に送られ外気(再生
空気)と熱交換して冷却される。冷却された空気は経路
110を経て加湿器105に送られ水噴射または気化式
加湿によって等エンタルピ過程で温度低下し経路111
を経て空調空間101に戻される。デシカントはこの過
程で水分を吸着したため、再生が必要で、この従来例で
は外気を用いて次のように行われる。外気(OA)は経
路124を経て送風機130に吸引され昇圧されて顕熱
熱交換器104に送られ、処理空気を冷却して自らは温
度上昇し経路125を経て次の顕熱熱交換器121に流
入し、再生後の高温の空気と熱交換して温度上昇する。
The operation of this conventional device will be described. In FIG. 5, the air (process air) in the room 101 to be conditioned is sucked by the blower 102 via the path 107 and the pressure thereof is increased to the desiccant rotor 103 via the path 108. Moisture in the air is adsorbed by the desiccant rotor hygroscopic agent and the absolute humidity decreases. During adsorption, the temperature of the air rises due to the heat of adsorption. The air whose humidity has decreased and its temperature has increased is sent to the sensible heat exchanger 104 via the path 109 and cooled by exchanging heat with outside air (regenerated air). The cooled air is sent to the humidifier 105 via the route 110, and the temperature is lowered in the isenthalpic process by water injection or vaporization-type humidification, and the route 111 is used.
And is returned to the air-conditioned space 101. Since the desiccant absorbed water in this process, it needs to be regenerated, and in this conventional example, it is performed as follows using outside air. The outside air (OA) is sucked by the blower 130 via the path 124, is pressurized, and is sent to the sensible heat exchanger 104. The processed air is cooled, and the temperature of the outside air itself rises. Flows in and heat-exchanges with the hot air after regeneration to raise the temperature.

【0005】さらに顕熱熱交換器121を出た再生空気
は経路126を経て温水熱交換器120に流入し温水に
よって加熱され60〜80℃まで温度上昇し、相対湿度
が低下する。相対湿度が低下した再生空気はデシカント
ロータ103を通過してデシカントロータの水分を除去
する。デシカントロータ103を通過した再生空気は経
路128を経て顕熱熱交換器121に流入し、再生前の
再生空気の余熱を行ったのち経路129を経て排気とし
て外部に捨てられる。
Further, the regenerated air exiting the sensible heat exchanger 121 flows into the hot water heat exchanger 120 via the path 126, is heated by the hot water, and is heated to 60 to 80 ° C., and the relative humidity is lowered. The regenerated air with reduced relative humidity passes through the desiccant rotor 103 to remove moisture from the desiccant rotor. The regenerated air that has passed through the desiccant rotor 103 flows into the sensible heat exchanger 121 via the path 128, performs residual heat of the regenerated air before regeneration, and then is discharged to the outside as exhaust gas via the path 129.

【0006】これまでの過程をモリエル線図を用いて説
明すると、図6において、空調される室内101の空気
(処理空気:状態K)は経路107を経て送風機102
に吸引され昇圧されて経路108をへてデシカントロー
タ103に送られデシカントロータの吸湿剤で空気中の
水分を吸着され絶対湿度が低下するとともに吸着熱によ
って空気は温度上昇する(状態L)。湿度が下がり温度
上昇した空気は経路109を経て顕熱熱交換器104に
送られ外気(再生空気)と熱交換して冷却される(状態
M)。冷却された空気は経路110を経て加湿器105
に送られ水噴射または気化式加湿によって等エンタルピ
過程で温度低下し(状態P)、経路111を経て空調空
間101に戻される。
The process up to this point will be described with reference to the Mollier diagram. In FIG. 6, the air in the room 101 to be conditioned (processed air: state K) passes through the path 107 and the blower 102.
Is sucked in and pressure-increased to be sent to the desiccant rotor 103 via the path 108, the moisture in the air is adsorbed by the desiccant rotor hygroscopic agent, the absolute humidity is lowered, and the temperature of the air is raised by the adsorption heat (state L). The air whose humidity has dropped and whose temperature has risen is sent to the sensible heat exchanger 104 via the path 109 and is cooled by exchanging heat with the outside air (regenerated air) (state M). The cooled air passes through the path 110 and the humidifier 105.
The temperature is lowered in the isenthalpic process by water injection or vaporization-type humidification (state P) and returned to the air-conditioned space 101 via the path 111.

【0007】このようにして室内の還気(K)と給気
(P)との間にはエンタルピ差ΔQが生じ、これによっ
て空調空間101の冷房が行われる。デシカントの再生
は次のように行われる。外気(OA:状態Q)は経路1
24を経て送風機130に吸引され昇圧されて顕熱熱交
換器104に送られ、処理空気を冷却して自らは温度上
昇し(状態R)経路125を経て次の顕熱熱交換器12
1に流入し、再生後の高温の空気と熱交換して温度上昇
する(状態S)。さらに顕熱熱交換器121を出た再生
空気は経路126を経て温水熱交換器120に流入し温
水によって加熱され60〜80℃まで温度上昇し、相対
湿度が低下する(状態T)。相対湿度が低下した再生空
気はデシカントロータ103を通過してデシカントロー
タの水分を除去する(状態U)。デシカントロータ10
3を通過した再生空気は経路128を経て顕熱熱交換器
121に流入し、再生前の再生空気の余熱を行って自ら
は温度低下した(状態V)のち経路129を経て排気と
して外部に捨てられる。このようにしてデシカントの再
生と処理空気の除湿、冷却をくりかえし行うことによっ
て、デシカントによる空調が行われていた。
In this way, the enthalpy difference ΔQ is generated between the return air (K) and the supply air (P) in the room, whereby the air-conditioned space 101 is cooled. The desiccant reproduction is performed as follows. Outside air (OA: State Q) is route 1
After passing through 24, the air is sucked by the blower 130, the pressure is increased and sent to the sensible heat exchanger 104, the process air is cooled, and the temperature of the device itself rises (state R).
1, and heat-exchanges with the hot air after regeneration to raise the temperature (state S). Further, the regenerated air exiting the sensible heat exchanger 121 flows into the hot water heat exchanger 120 via the path 126, is heated by the hot water, and is heated to 60 to 80 ° C., and the relative humidity is lowered (state T). The regenerated air having a reduced relative humidity passes through the desiccant rotor 103 to remove moisture from the desiccant rotor (state U). Desiccant rotor 10
The regenerated air that has passed through No. 3 flows into the sensible heat exchanger 121 via the path 128, performs the residual heat of the regenerated air before the regeneration to lower the temperature itself (state V), and is then discharged to the outside as exhaust gas via the path 129. To be In this way, the desiccant air conditioning has been performed by repeatedly performing the desiccant regeneration, the dehumidification and the cooling of the treated air.

【0008】このように構成されたデシカント空調のエ
ネルギ効率を示す動作係数(COP)は図6における冷
房効果ΔQを再生加熱量ΔHで除した値(ΔQ/ΔH)
で示されるが、従来のデシカント空調では、初期のもの
と比べて再生用空気加熱のための温水の作用温度は低下
したものの、デシカントの再生熱源にはボイラを使用
し、依然として燃料の持つ1の熱量の質の高いエネルギ
(エクセルギ)を100℃未満の低い温度で1未満の熱
量としてしか利用していなかったため、他の熱駆動の冷
凍機(例えば2重効用吸収冷凍機)を用いて空気を冷却
除湿する空調システムに比べて、動作係数(COP)が
低い欠点があった。
The coefficient of operation (COP) showing the energy efficiency of the desiccant air-conditioning thus constructed is a value (ΔQ / ΔH) obtained by dividing the cooling effect ΔQ in FIG. 6 by the regeneration heating amount ΔH.
In the conventional desiccant air conditioning, the operating temperature of the hot water for heating the regeneration air was lower than in the initial desiccant air conditioning, but the boiler used as the desiccant regeneration heat source, and Since high-quality energy (exergy) of heat quantity was used as heat quantity of less than 1 at a low temperature of less than 100 ° C., other heat-driven refrigerators (for example, double-effect absorption refrigerator) were used to remove air. There is a drawback that the coefficient of operation (COP) is lower than that of an air conditioning system that cools and dehumidifies.

【0009】[0009]

【発明が解決しようとする課題】本発明は前述した点に
鑑みてなされたもので、ボイラの代りとなる熱源機とし
て、再生空気加熱用に外部から加えられる駆動入力熱量
と低温から汲み上げた蒸発熱とを加えた熱量が取り出せ
る60〜80℃程度の中間温度の温水と、デシカント空
調サイクル中に行われる処理空気を冷却する過程で更に
空気を冷却しうる冷却用の15℃程度の冷水を併せて供
給できる吸収ヒートポンプまたは冷凍機を提供すること
によって、デシカント空調のエネルギ効率を高め、従来
からの冷凍機を用いて空気を冷却除湿する空調システム
のエネルギ効率を上回る空調システムを得ることができ
る吸収ヒートポンプを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and as a heat source machine instead of a boiler, a drive input heat quantity added from the outside for heating regenerated air and an evaporation pumped from a low temperature. Combined with warm water at an intermediate temperature of about 60 to 80 ° C that can take out the amount of heat added with heat, and cold water at about 15 ° C for cooling that can further cool the air in the process of cooling the treated air performed during the desiccant air conditioning cycle. By providing an absorption heat pump or refrigerator that can be supplied as an air conditioner, it is possible to improve the energy efficiency of desiccant air conditioning and obtain an air conditioning system that exceeds the energy efficiency of air conditioning systems that cool and dehumidify air using conventional refrigerators. The purpose is to provide a heat pump.

【0010】[0010]

【課題を解決するための手段】本発明によれば、第1の
蒸発器と第1の吸収器と第1の再生器と第1の凝縮器と
を有して吸収式冷凍サイクルを行う第1のサイクル装置
と、第2の蒸発器と第2の吸収器と第2の再生器と第2
の凝縮器とを有して前記第1のサイクル装置よりも低温
で作動する第2のサイクル装置からなる吸収ヒートポン
プにおいて、前記第1のサイクル装置の第1の蒸発器と
第2のサイクル装置の第2の吸収器との間で熱交換を行
う第1の熱交換装置を形成し、かつ該第1のサイクル装
置の第1の凝縮器と第2のサイクル装置の第2の再生器
との間に熱交換を行う第2の熱交換装置を形成し、かつ
第1のサイクル装置の吸収作動媒体と第2のサイクル装
置の吸収作動媒体に異なる媒体を使用している。
According to the present invention, there is provided a first evaporator, a first absorber, a first regenerator and a first condenser for performing an absorption refrigeration cycle. 1 cycle device, 2nd evaporator, 2nd absorber, 2nd regenerator, 2nd
An absorption heat pump comprising a second cycle device having a condenser of 1) and operating at a lower temperature than the first cycle device, the first evaporator of the first cycle device and the second cycle device of the second cycle device. Forming a first heat exchange device for exchanging heat with a second absorber, and of the first condenser of the first cycle device and the second regenerator of the second cycle device; A second heat exchange device for performing heat exchange is formed between them, and different media are used for the absorption working medium of the first cycle device and the absorption working medium of the second cycle device.

【0011】また本発明によれば、第2のサイクル装置
の吸収作動媒体が結晶を発生する温度、蒸気圧力におい
ても、第1のサイクル装置の吸収作動媒体が結晶を発生
しないものである。
According to the present invention, the absorption working medium of the first cycle device does not generate crystals even at the temperature and vapor pressure at which the absorption working medium of the second cycle device generates crystals.

【0012】更に本発明によれば、第1のサイクル装置
の作動媒体が臭化リチウムと塩化亜鉛の混合物を吸収溶
液として水を冷媒とする吸収作動媒体であり、第2のサ
イクル装置の作動媒体が臭化リチウムを吸収溶液として
水を冷媒とする吸収作動媒体である。
Further according to the present invention, the working medium of the first cycle device is an absorption working medium using a mixture of lithium bromide and zinc chloride as an absorbing solution and water as a refrigerant, and the working medium of the second cycle device. Is an absorption working medium using lithium bromide as an absorbing solution and water as a refrigerant.

【0013】なお、本明細書の吸収ヒートポンプは冷凍
機を含むものである。このようにデシカント空調用のボ
イラの代りとなる熱源機として、前述のように構成した
本発明の吸収ヒートポンプを用いれば、第1のサイクル
装置の第1の再生器及び第2のサイクル装置の第2の吸
収器出口から第2の再生器出口までの間の吸収溶液に加
えられる駆動入力熱量に第2のサイクル装置の蒸発熱を
加えた熱量に相当する熱量の熱が、第1のサイクル装置
の凝縮熱および第2のサイクル装置の吸収熱として利用
熱媒体即ちデシカント再生用の60〜80℃程度の中間
温度の温水の形で取り出すことができ、さらに第2のサ
イクル装置の蒸発器の蒸発熱がデシカント空調サイクル
中に行われる空気を冷却する過程に利用可能な冷却用の
15℃程度の冷水の形で取り出せるため、デシカント再
生のために必要な1次エネルギが節約できるとともに、
冷房効果が増し、従って動作係数が高いデシカント空調
システムに利用できる吸収ヒートポンプを提供すること
ができる。
The absorption heat pump in this specification includes a refrigerator. Thus, if the absorption heat pump of the present invention configured as described above is used as the heat source device instead of the boiler for desiccant air conditioning, the first regenerator of the first cycle device and the second recycle device of the second cycle device are used. The amount of heat corresponding to the amount of heat obtained by adding the heat of vaporization of the second cycle device to the amount of drive input heat added to the absorption solution between the outlet of the second absorber and the outlet of the second regenerator is the first cycle device. Used as the heat of condensation of the second cycle device and the heat of absorption of the second cycle device. The heat can be extracted in the form of cold water of about 15 ° C for cooling that can be used in the process of cooling the air performed during the desiccant air conditioning cycle, thus saving the primary energy required for desiccant regeneration. Rutotomoni,
It is possible to provide an absorption heat pump that can be used in a desiccant air conditioning system having an increased cooling effect and thus a high coefficient of operation.

【0014】[0014]

【発明の実施の形態】以下、本発明に係る吸収ヒートポ
ンプの一実施例を図1乃至図4を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of an absorption heat pump according to the present invention will be described below with reference to FIGS. 1 to 4.

【0015】図1は本発明を実施した吸収ヒートポンプ
の基本構成を示す図であり、第1の蒸発器3と第1の吸
収器1と第1の再生器2と第1の凝縮器4と吸収溶液の
第1の熱交換器5を備え吸収式冷凍サイクルを行う第1
のサイクル装置C1と、第2の蒸発器13と第2の吸収
器11と第2の再生器12と第2の凝縮器14と吸収溶
液の第2の熱交換器15を有し、前記第1のサイクル装
置C1よりも低温で作動する第2のサイクル装置C2か
らなっている。前記第1のサイクル装置C1の第1の蒸
発器3と第2のサイクル装置C2の第2の吸収器11と
の間に熱交換装置21を形成し、かつ該第1のサイクル
装置C1の第1の凝縮器4と第2のサイクル装置C2の
第2の再生器12との間に熱交換装置20を形成してあ
る。そして第1のサイクル装置C1の吸収作動媒体と第
2のサイクル装置C2の吸収作動媒に異なる媒体、すな
わち第2のサイクル装置C2の吸収作動媒体が結晶を発
生する温度、蒸気圧力においても、第1のサイクル装置
C1の吸収作動媒体が結晶を発生しない媒体とする。例
えば第1のサイクル装置C1の作動媒体は臭化リチウム
と塩化亜鉛の混合物を吸収溶液とし、水を冷媒とする吸
収作動媒体が好ましく、第2のサイクル装置C2の作動
媒体は臭化リチウムを吸収溶液とし、水を冷媒とする吸
収作動媒体が好ましい。
FIG. 1 is a diagram showing the basic structure of an absorption heat pump embodying the present invention, which comprises a first evaporator 3, a first absorber 1, a first regenerator 2 and a first condenser 4. A first heat exchanger 5 for absorbing solution is provided, and a first refrigerating cycle for absorption is performed.
Of the cycle device C1, the second evaporator 13, the second absorber 11, the second regenerator 12, the second condenser 14, and the second heat exchanger 15 for the absorbing solution. The second cycle device C2 operates at a temperature lower than that of the first cycle device C1. A heat exchange device 21 is formed between the first evaporator 3 of the first cycle device C1 and the second absorber 11 of the second cycle device C2, and the heat exchange device 21 is formed between the first evaporator 3 of the first cycle device C1 and the second absorber 11 of the first cycle device C1. A heat exchange device 20 is formed between the first condenser 4 and the second regenerator 12 of the second cycle device C2. Also, even when the absorption working medium of the first cycle device C1 and the absorption working medium of the second cycle device C2 are different media, that is, the temperature and vapor pressure at which the absorption working medium of the second cycle device C2 generates crystals, The absorption working medium of the first cycle device C1 is a medium that does not generate crystals. For example, the working medium of the first cycle device C1 is preferably an absorbing working medium which uses a mixture of lithium bromide and zinc chloride as an absorption solution and water as a refrigerant, and the working medium of the second cycle device C2 absorbs lithium bromide. An absorption working medium having a solution and water as a refrigerant is preferable.

【0016】上述のように構成された吸収ヒートポンプ
の吸収サイクルを次に説明する。第1のサイクル装置C
1の吸収溶液は第1の再生器2で外部の熱源(図示せ
ず)から伝熱管34を介して加熱媒体によって加熱さ
れ、冷媒蒸気を発生し、濃縮されたのち第1の熱交換器
5を経て第1の吸収器1に至る。第1の吸収器1では吸
収溶液は第1の蒸発器3で蒸発した冷媒を吸収し、希釈
された後ポンプ6の作用によって再び第1の熱交換器5
を経て第1の再生器2に戻る。第1の吸収器1では吸収
の際発生する吸収熱を利用するため、温水などの熱媒体
と伝熱管30によって熱交換される。第1の再生器2で
発生した冷媒蒸気は、第1の凝縮器4に流入し凝縮す
る。第1の凝縮器4では凝縮の際発生する凝縮熱が熱交
換関係をなす伝熱管20すなわち第1の熱交換装置によ
って第2のサイクル装置C2の第2の再生器12に伝達
される。凝縮した冷媒は第1の蒸発器3に送られ蒸発す
る。第1の蒸発器3では蒸発の際吸熱する蒸発熱が熱交
換関係をなす伝熱管21すなわち第2の熱交換装置によ
って第2のサイクル装置C2の第2の吸収器11から伝
達される。なお通常の2重効用吸収冷凍機で行われてい
るように第1の凝縮器4の伝熱管は直接第2のサイクル
装置C2の第2の再生器12内に設置しても差し支えな
く、同様の作用を行うことができる。
The absorption cycle of the absorption heat pump configured as described above will be described below. First cycle device C
The absorbing solution 1 is heated in the first regenerator 2 from an external heat source (not shown) by the heating medium via the heat transfer tube 34 to generate a refrigerant vapor and is concentrated, and then the first heat exchanger 5 To reach the first absorber 1. In the first absorber 1, the absorbing solution absorbs the refrigerant evaporated in the first evaporator 3, and after being diluted, the action of the pump 6 again causes the first heat exchanger 5 to reheat.
And returns to the first regenerator 2. Since the first absorber 1 uses the absorbed heat generated during absorption, heat is exchanged with a heat medium such as hot water by the heat transfer tube 30. The refrigerant vapor generated in the first regenerator 2 flows into the first condenser 4 and is condensed. In the first condenser 4, the heat of condensation generated at the time of condensation is transferred to the second regenerator 12 of the second cycle device C2 by the heat transfer tube 20 having a heat exchange relationship, that is, the first heat exchange device. The condensed refrigerant is sent to the first evaporator 3 and evaporated. In the first evaporator 3, the evaporation heat absorbed during evaporation is transferred from the second absorber 11 of the second cycle device C2 by the heat transfer tube 21 having a heat exchange relationship, that is, the second heat exchange device. The heat transfer tube of the first condenser 4 may be directly installed in the second regenerator 12 of the second cycle device C2 as is done in a normal double-effect absorption refrigerator. The action of can be performed.

【0017】第2のサイクル装置C2の吸収溶液は第2
の再生器12で第1のサイクル装置C1の凝縮熱で伝熱
管20を介して加熱され、冷媒蒸気を発生し、濃縮され
たのち第2の熱交換器15を経て第2の吸収器11に至
る。第2の吸収器11では吸収溶液は第2の蒸発器13
で蒸発した冷媒を吸収し、希釈された後ポンプ16の作
用によって再び第2の熱交換器15を経て第2の再生器
12に戻る。第2の吸収器11では吸収の際発生する吸
収熱は熱交換関係をなす伝熱管21すなわち第2の熱交
換装置によって第1のサイクル装置C1の第1の蒸発器
3に伝達される。第2の再生器12で発生した冷媒蒸気
は、第2の凝縮器14に流入し凝縮する。第2の凝縮器
14では凝縮の際発生する凝縮熱を利用するため、熱媒
体と伝熱管31によって熱交換される。また前記熱媒体
は第2のサイクル装置C2の凝縮器伝熱管31から第1
のサイクル装置C1の吸収器伝熱管30の順序で流すこ
とによって第1のサイクル装置C1の吸収溶液温度が第
2のサイクル装置C2の冷媒凝縮温度よりも高くなる。
凝縮した冷媒は第2の蒸発器13に送られ蒸発する。第
2の蒸発器13では蒸発の際吸熱する蒸発熱を利用する
ため、冷水等の熱媒体と伝熱管33によって熱交換され
る。なお第2の吸収器11の伝熱管は直接第1のサイク
ル装置C1の第1の蒸発器3内に設置しても差し支えな
く、同様の作用を行うことができる。
The absorption solution of the second cycle device C2 is the second
Is heated in the regenerator 12 by the heat of condensation of the first cycle device C1 via the heat transfer tube 20, generates refrigerant vapor, and is concentrated and then passed through the second heat exchanger 15 to the second absorber 11. Reach In the second absorber 11, the absorbing solution is transferred to the second evaporator 13
After being absorbed and diluted by the refrigerant, the pump 16 returns to the second regenerator 12 via the second heat exchanger 15 by the action of the pump 16. In the second absorber 11, the absorption heat generated at the time of absorption is transferred to the first evaporator 3 of the first cycle device C1 by the heat transfer tube 21 having a heat exchange relationship, that is, the second heat exchange device. The refrigerant vapor generated in the second regenerator 12 flows into the second condenser 14 and is condensed. Since the second condenser 14 uses the heat of condensation generated during condensation, heat is exchanged between the heat medium and the heat transfer tube 31. Further, the heat medium is transferred from the condenser heat transfer pipe 31 of the second cycle device C2 to the first heat transfer pipe 31.
By flowing the absorber heat transfer tubes 30 of the second cycle device C1 in this order, the temperature of the absorbing solution of the first cycle device C1 becomes higher than the refrigerant condensation temperature of the second cycle device C2.
The condensed refrigerant is sent to the second evaporator 13 and evaporated. Since the second evaporator 13 uses the heat of evaporation that absorbs heat during evaporation, heat is exchanged with a heat medium such as cold water by the heat transfer tube 33. The heat transfer tube of the second absorber 11 may be directly installed in the first evaporator 3 of the first cycle device C1, and the same operation can be performed.

【0018】次に前述のように構成された吸収ヒートポ
ンプの動作を図2を参照して説明する。図2は図1の吸
収ヒートポンプのサイクルを示すデューリング線図であ
る。図中に示すアルファベット記号は、吸収溶液や冷媒
の状態を示すもので、同じ記号を丸で囲んだものを図1
にも記載した。第1のサイクル装置C1の吸収溶液は第
1の再生器2で外部の熱源から加熱され、冷媒蒸気を発
生し濃縮された(状態c:図中では175℃)のち第1
の熱交換器5を経て(状態d)第1の吸収器1に至る。
第1の吸収器1では吸収溶液は第1の蒸発器3で蒸発し
た冷媒を吸収し、希釈された後(状態a)再び第1の熱
交換器5を経て加熱され(状態b)第1の再生器2に戻
る。第1の再生器2で発生した冷媒蒸気は、第1の凝縮
器4に流入し凝縮する(状態f)。第1の凝縮器4では
凝縮の際発生する凝縮熱が熱交換関係をなす伝熱管20
すなわち第1の熱交換装置によって第2のサイクル装置
C2の第2の再生器12に伝達される。凝縮した冷媒は
第1の蒸発器3に送られ蒸発する(状態e)。第1の蒸
発器3では蒸発の際吸熱する蒸発熱が熱交換関係をなす
伝熱管21すなわち第2の熱交換装置によって第2のサ
イクル装置C2の第2の吸収器11(状態A)から伝達
される。
Next, the operation of the absorption heat pump configured as described above will be described with reference to FIG. FIG. 2 is a Duhring diagram showing the cycle of the absorption heat pump of FIG. The alphabetical symbols shown in the figure indicate the states of the absorbing solution and the refrigerant, and the same symbols are circled in FIG.
Also described in. The absorbing solution of the first cycle device C1 is heated by an external heat source in the first regenerator 2 to generate a refrigerant vapor and be concentrated (state c: 175 ° C. in the figure) and then the first regenerator 2.
Through the heat exchanger 5 (state d) to the first absorber 1.
In the first absorber 1, the absorbing solution absorbs the refrigerant evaporated in the first evaporator 3, is diluted (state a), and is heated again through the first heat exchanger 5 (state b). Return to regenerator 2. The refrigerant vapor generated in the first regenerator 2 flows into the first condenser 4 and is condensed (state f). In the first condenser 4, the heat transfer tube 20 in which the heat of condensation generated during condensation has a heat exchange relationship
That is, it is transferred to the second regenerator 12 of the second cycle device C2 by the first heat exchange device. The condensed refrigerant is sent to the first evaporator 3 and evaporated (state e). In the first evaporator 3, the heat of evaporation absorbed during evaporation is transferred from the second absorber 11 (state A) of the second cycle device C2 by the heat transfer tube 21 that has a heat exchange relationship, that is, the second heat exchange device. To be done.

【0019】このようなサイクルでは、高温で作動する
第1のサイクル装置C1の作動範囲の吸収溶液は濃度が
濃いため、何らかの理由で急激な温度低下や、濃度上昇
が発生する事態、たとえば運転中に突然停電が発生して
ヒートポンプの運転が停止してしまうような事態がある
と溶液が濃度の濃いまま温度が下がり、結晶を生じ易い
ため、本発明では、第1のサイクル装置C1の作動媒体
には第2のサイクル装置C2の作動媒体よりも結晶を生
じにくい作動媒体すなわち第2のサイクル装置C2の吸
収作動媒体が結晶を発生する温度、蒸気圧力において
も、第1のサイクル装置C1の吸収作動媒体が結晶を発
生しない作動媒体を使用する。具体的な例としては、第
1のサイクル装置C1の作動媒体は臭化リチウムと塩化
亜鉛の混合物を吸収溶液とし、水を冷媒とする吸収作動
媒体が好ましく、第2のサイクル装置C2の作動媒体は
臭化リチウムを吸収溶液とし、水を冷媒とする吸収作動
媒体を使用するものが好ましい。
In such a cycle, the concentration of the absorbing solution in the operating range of the first cycle device C1 operating at a high temperature is high, so that the temperature suddenly drops or the concentration rises for some reason, for example, during operation. If there is a situation where a power failure suddenly occurs in the heat pump and the operation of the heat pump is stopped, the temperature of the solution is lowered while the solution is still concentrated, and crystals are easily generated. Therefore, in the present invention, the working medium of the first cycle device C1 is used. At the temperature and vapor pressure at which the working medium that is less likely to produce crystals than the working medium of the second cycle device C2, that is, the absorption working medium of the second cycle device C2 generates crystals, is the absorption of the first cycle device C1. A working medium that does not generate crystals is used. As a specific example, the working medium of the first cycle device C1 is preferably an absorption working medium containing a mixture of lithium bromide and zinc chloride as an absorption solution and water as a refrigerant, and the working medium of the second cycle device C2 is preferable. Is preferably an absorption working medium containing lithium bromide as an absorbing solution and water as a refrigerant.

【0020】第1のサイクル装置C1の作動媒体である
臭化リチウムと塩化亜鉛の混合物は、図2で示す運転状
態の濃度では、常温の範囲では結晶を生じないことが、
公知の文献(たとえば日本冷凍協会発行の「冷凍」第6
8巻789号722頁)に記載されている。従って運転
中に何らかの理由で急激な温度低下や、濃度上昇が発生
する事態が発生しても吸収作動媒体が結晶を生じて運転
継続が不可能になることが回避され、信頼性の高い運転
サイクルを形成している。本発明では第1のサイクル装
置C1と第2のサイクル装置C2の作動媒体が混ざりあ
うことがないため、このように異なった作動媒体を選択
できる。作動媒体としては本実施例の他に結晶を生じに
くい作動媒体として、たとえばアンモニア・水系やNメ
チル2ピロリドン(NMP)・2.2.2トリフルオロ
エタン(TFE)系などを使用しても差し支えない。
The mixture of lithium bromide and zinc chloride, which is the working medium of the first cycle device C1, does not form crystals in the normal temperature range at the concentration in the operating state shown in FIG.
Known literature (for example, "Frozen" No. 6 issued by the Japan Refrigeration Association)
8 No. 789, p. 722). Therefore, even if a sudden temperature drop or concentration increase occurs for some reason during operation, it is avoided that the working fluid becomes crystallized and the operation cannot be continued. Is formed. In the present invention, since the working media of the first cycle device C1 and the working media of the second cycle device C2 do not mix, different working media can be selected in this way. In addition to the present embodiment, as the working medium, it is also possible to use, as a working medium which hardly causes crystallization, for example, an ammonia / water system or N-methyl-2-pyrrolidone (NMP) /2.2.2 trifluoroethane (TFE) system. Absent.

【0021】第2の再生器12で冷媒蒸気を発生し濃縮
された(状態C)溶液は、第2の熱交換器15を経て
(状態D)第2の吸収器11に至る。第2の吸収器11
では吸収溶液は第2の蒸発器13で蒸発した冷媒(状態
E)を吸収し、希釈された(状態A)後再び第2の熱交
換器15を経て加熱され(状態B)第2の再生器12に
戻る。第2の吸収器11では吸収の際発生する吸収熱は
熱交換関係をなす伝熱管21すなわち第2の熱交換装置
によって第1のサイクル装置C1の第1の蒸発器3(状
態e)に伝達される。第2の再生器12で発生した冷媒
蒸気は、第2の凝縮器14に流入し凝縮する(状態
F)。熱媒体を第2のサイクル装置C2の凝縮器伝熱管
31から第1のサイクル装置C1の吸収器伝熱管30の
順序で流すことによって第1のサイクル装置C1の吸収
溶液温度(状態a:図中では75℃)が第2のサイクル
装置C2の冷媒凝縮温度(状態F:図中では65℃)よ
りも高くなる。凝縮した冷媒(状態F)は第2の蒸発器
13に送られ蒸発する(状態E)。
The concentrated (state C) solution which has generated the refrigerant vapor in the second regenerator 12 reaches the second absorber 11 via the second heat exchanger 15 (state D). Second absorber 11
Then, the absorbing solution absorbs the refrigerant (state E) evaporated in the second evaporator 13, is diluted (state A), and is then heated again via the second heat exchanger 15 (state B) and second regeneration. Return to vessel 12. In the second absorber 11, the absorption heat generated during absorption is transferred to the first evaporator 3 (state e) of the first cycle device C1 by the heat transfer tube 21 having a heat exchange relationship, that is, the second heat exchange device. To be done. The refrigerant vapor generated in the second regenerator 12 flows into the second condenser 14 and is condensed (state F). By flowing the heat medium in the order from the condenser heat transfer tube 31 of the second cycle device C2 to the absorber heat transfer tube 30 of the first cycle device C1, the absorption solution temperature of the first cycle device C1 (state a: in the figure 75 ° C.) is higher than the refrigerant condensation temperature (state F: 65 ° C. in the figure) of the second cycle device C2. The condensed refrigerant (state F) is sent to the second evaporator 13 and evaporated (state E).

【0022】このように構成された吸収ヒートポンプで
は、第1のサイクル装置C1の第1の再生器2に外部か
ら加えられた高温の熱は第1のサイクル装置C1の溶液
濃縮に利用するとともに、その際発生した冷媒蒸気の保
有熱が第2のサイクル装置C2の溶液濃縮に再び利用で
きるため、1つの入熱で2つの冷凍サイクルの冷凍効果
の駆動力となる溶液濃縮を効率良く行うことができる。
また第2のサイクル装置C2の吸収熱を第1のサイクル
装置C1の蒸発熱として全サイクル系内で使用する。そ
のため第1のサイクル装置C1では吸収熱が、第2のサ
イクル装置C2では凝縮熱と蒸発熱が利用可能となり、
図2に示すように吸収、凝縮の過程で発生する熱は60
℃〜80℃の温水として外部に取り出すことができ、ま
た第2のサイクル装置C2の蒸発熱は15℃程度の冷水
として外部に取り出すことができる。全サイクル系の熱
バランスを見ると、全サイクル系への入熱は第1のサイ
クル装置C1の再生器2に外部から加えられた高温の熱
と第2のサイクル装置C2の蒸発器13で冷水から奪っ
た熱であり、全サイクル系からの出熱は温水に加えられ
た第1のサイクル装置C1の吸収熱と第2のサイクル装
置C2の凝縮熱である。したがって温水には、第1のサ
イクル装置C1の再生器に外部から加えられた高温の熱
の他に第2のサイクル装置C2の蒸発器で冷水から奪っ
た熱が加えられるため、温水によって利用可能な熱量は
第1のサイクル装置C1の再生器に外部から加えられた
熱量よりも増加する。このように本発明はヒートポンプ
作用がある。
In the absorption heat pump thus constructed, the high temperature heat applied from the outside to the first regenerator 2 of the first cycle device C1 is utilized for the solution concentration of the first cycle device C1. Since the heat of the refrigerant vapor generated at that time can be reused for the solution concentration of the second cycle device C2, one heat input can efficiently perform the solution concentration that becomes the driving force of the refrigeration effect of the two refrigeration cycles. it can.
Further, the heat absorbed by the second cycle device C2 is used in the entire cycle system as the heat of vaporization of the first cycle device C1. Therefore, absorption heat can be used in the first cycle device C1, and condensation heat and evaporation heat can be used in the second cycle device C2.
As shown in Fig. 2, the heat generated in the process of absorption and condensation is 60
It can be taken out to the outside as warm water of 80 ° C to 80 ° C, and the heat of evaporation of the second cycle device C2 can be taken out to the outside as cold water of about 15 ° C. Looking at the heat balance of the entire cycle system, the heat input into the entire cycle system is the high temperature heat applied from the outside to the regenerator 2 of the first cycle device C1 and the cold water in the evaporator 13 of the second cycle device C2. The heat extracted from the entire cycle system is the heat absorbed by the first cycle device C1 and the heat of condensation of the second cycle device C2 added to the hot water. Therefore, in addition to the high-temperature heat applied from the outside to the regenerator of the first cycle device C1 to the hot water, the heat taken from the cold water by the evaporator of the second cycle device C2 is added, so that it can be used by the hot water. The amount of heat is greater than the amount of heat applied to the regenerator of the first cycle device C1 from the outside. Thus, the present invention has a heat pump function.

【0023】次に前述のように構成された吸収ヒートポ
ンプをデシカント空調に組合せた際の動作を図3乃至図
4を参照して説明する。図4は図3の実施例の空気調和
の部分の作動状態を示すモリエル線図である。図3の実
施例では、図1の実施例の吸収ヒートポンプの温水配管
と冷水配管を以下に示すデシカント空調機とそれぞれ冷
水ポンプ160、温水ポンプ150を介して接続したも
のである。
Next, the operation when the absorption heat pump configured as described above is combined with desiccant air conditioning will be described with reference to FIGS. FIG. 4 is a Mollier diagram showing the operating state of the air conditioning portion of the embodiment of FIG. In the embodiment of FIG. 3, the hot water pipe and the cold water pipe of the absorption heat pump of the embodiment of FIG. 1 are connected to a desiccant air conditioner shown below via a cold water pump 160 and a hot water pump 150, respectively.

【0024】図3のデシカント空調機は以下に示すよう
構成されている。空調空間101は処理空気の送風機1
02の吸い込み口と経路107を介して接続し、送風機
102の吐出口はデシカントロータ103と経路108
を介して接続し、デシカントロータ103の処理空気の
出口は再生空気と熱交換関係にある顕熱熱交換器104
と経路109を介して接続し、顕熱熱交換器104の処
理空気の出口は冷水熱交換器115と経路110を介し
て接続し、冷水熱交換器115の処理空気の出口は加湿
器105と経路119を介して接続し、加湿器105の
処理空気の出口は空調空間101と経路111を介して
接続して処理空気のサイクルを形成する。
The desiccant air conditioner shown in FIG. 3 is constructed as follows. The air-conditioned space 101 is a blower 1 for processing air
02 is connected to the suction port of the blower 102 via the path 107, and the discharge port of the blower 102 is connected to the desiccant rotor 103 and the path 108.
And the outlet of the process air of the desiccant rotor 103 has a sensible heat exchanger 104 in a heat exchange relationship with the regenerated air.
And the outlet of the treated air of the sensible heat exchanger 104 is connected to the cold water heat exchanger 115 via the passage 110, and the outlet of the treated air of the cold water heat exchanger 115 is connected to the humidifier 105. It connects through the path 119, and the outlet of the processing air of the humidifier 105 connects with the conditioned space 101 through the path 111 to form a cycle of the processing air.

【0025】一方、再生用の空気経路は、外気を再生空
気用の送風機130の吸い込み口と経路124を介して
接続し、送風機130の吐出口は処理空気と熱交換関係
にある顕熱熱交換器104と接続し、顕熱熱交換器10
4の再生空気の出口は別の顕熱熱交換器121の低温側
入口と経路125を介して接続し、顕熱熱交換器121
の低温側出口は温水熱交換器120と経路126を介し
て接続し、温水熱交換器120の再生空気の出口はデシ
カントロータ103の再生空気入口と経路127を介し
て接続し、デシカントロータ103の再生空気の出口は
顕熱熱交換器121の高温側入口と経路128を介して
接続し、顕熱熱交換器121の高温側出口は外部空間と
経路129を介して接続して再生空気を外部から取り入
れて、外部に排気するサイクルを形成する。
On the other hand, the air path for regeneration connects the outside air to the suction port of the blower 130 for regeneration air via the path 124, and the outlet of the blower 130 has a sensible heat exchange in a heat exchange relationship with the process air. The sensible heat exchanger 10 is connected to the vessel 104.
The outlet of the regenerated air of No. 4 is connected to the low temperature side inlet of another sensible heat exchanger 121 via the path 125, and the sensible heat exchanger 121
Of the desiccant rotor 103 is connected to the regeneration air inlet of the desiccant rotor 103 via a path 127, and the regeneration air outlet of the hot water heat exchanger 120 is coupled to the desiccant rotor 103 via a path 126. The outlet of the regenerated air is connected to the high temperature side inlet of the sensible heat exchanger 121 via the path 128, and the high temperature side outlet of the sensible heat exchanger 121 is connected to the external space via the path 129 to regenerate the regenerated air to the outside. Form a cycle of intake from the outside and exhaust to the outside.

【0026】前記温水熱交換器120の温水入口は経路
122を介して吸収ヒートポンプの温水経路の第1のサ
イクル装置C1の第1の吸収器1の出口に接続し、温水
熱交換器120の温水出口は経路123および温水ポン
プ150を介して吸収ヒートポンプの温水経路の第2の
サイクル装置C2の第2の凝縮器14の入口に接続す
る。また前記冷水熱交換器115の冷水入口は経路11
7を介して吸収ヒートポンプの冷水経路の第2のサイク
ル装置C2の第2の蒸発器13の出口に接続し、冷水熱
交換器115の冷水出口は経路118およびポンプ16
0を介して吸収ヒートポンプの冷水経路の第2のサイク
ル装置C2の第2の蒸発器13の入口に接続する。なお
図中、丸で囲ったアルファベットK〜Vは、図4と対応
する空気の状態を示す記号であり、SAは給気を、RA
は還気を、OAは外気を、EXは排気を表わす。
The hot water inlet of the hot water heat exchanger 120 is connected via a path 122 to the outlet of the first absorber 1 of the first cycle device C1 of the hot water path of the absorption heat pump, and the hot water of the hot water heat exchanger 120 is connected. The outlet is connected to the inlet of the second condenser 14 of the second cycle device C2 of the hot water path of the absorption heat pump via the path 123 and the hot water pump 150. Further, the cold water inlet of the cold water heat exchanger 115 is the path 11
7 is connected to the outlet of the second evaporator 13 of the second cycle device C2 of the cold water path of the absorption heat pump, and the cold water outlet of the cold water heat exchanger 115 is the path 118 and the pump 16
0 to the inlet of the second evaporator 13 of the second cycle device C2 in the cold water path of the absorption heat pump. In the figure, the alphabets K to V surrounded by circles are symbols showing the state of the air corresponding to FIG. 4, and SA is the air supply and RA
Represents return air, OA represents outside air, and EX represents exhaust air.

【0027】本実施例の作用について説明すると、図3
において、空調される室内101の空気(処理空気)は
経路107を経て送風機102に吸引され昇圧されて経
路108をへてデシカントロータ103に送られデシカ
ントロータの吸湿剤で空気中の水分を吸着され絶対湿度
が低下する。また吸着の際、吸着熱によって空気は温度
上昇する。湿度が下がり温度上昇した空気は経路109
を経て顕熱熱交換器104に送られ外気(再生空気)と
熱交換して冷却される。冷却された空気は経路110を
経て冷水熱交換器115に送られさらに冷却される。冷
却された処理空気は加湿器105に送られ水噴射または
気化式加湿によって等エンタルピ過程で温度低下し経路
111を経て空調空間101に戻される。
The operation of this embodiment will be described with reference to FIG.
In the air-conditioned room 101, the air in the room 101 (process air) is sucked by the blower 102 via the path 107, is pressurized, and is sent to the desiccant rotor 103 via the path 108 to adsorb moisture in the air with the desiccant rotor hygroscopic agent. Absolute humidity drops. During adsorption, the temperature of the air rises due to the heat of adsorption. The air whose humidity has dropped and whose temperature has risen is route 109
After passing through the sensible heat exchanger 104, the sensible heat exchanger 104 is cooled by exchanging heat with the outside air (regenerated air). The cooled air is sent to the cold water heat exchanger 115 via the path 110 and further cooled. The cooled treated air is sent to the humidifier 105, and its temperature is lowered in the isenthalpic process by water injection or vaporization humidification, and is returned to the air-conditioned space 101 via the path 111.

【0028】デシカントロータはこの過程で水分を吸着
したため、再生が必要で、この実施例では外気を再生用
空気として用いて次のように行われる。外気(OA)は
経路124を経て送風機130に吸引され昇圧されて顕
熱熱交換器104に送られ、処理空気を冷却して自らは
温度上昇し経路125を経て次の顕熱熱交換器121に
流入し、再生後の高温の空気と熱交換して温度上昇す
る。さらに顕熱熱交換器121を出た再生空気は経路1
26を経て温水熱交換器120に流入し温水によって加
熱され60〜80℃まで温度上昇し、相対湿度が低下す
る。
Since the desiccant rotor has adsorbed water in this process, it needs to be regenerated. In this embodiment, the outside air is used as the regenerating air to perform the following procedure. The outside air (OA) is sucked by the blower 130 via the path 124, is pressurized, and is sent to the sensible heat exchanger 104. The processed air is cooled, and the temperature of the outside air itself rises. Flows in and heat-exchanges with the hot air after regeneration to raise the temperature. Further, the regenerated air exiting from the sensible heat exchanger 121 passes through path 1
After passing through 26, it flows into the hot water heat exchanger 120 and is heated by the hot water, and the temperature rises to 60 to 80 ° C., and the relative humidity decreases.

【0029】この過程は再生空気の顕熱変化であり、空
気の比熱は温水に比べて著しく低く温度変化が大きいた
め、温水の流量を減少させて温度変化を大きくしても熱
交換は効率良く行われる。従って温水を作る吸収ヒート
ポンプの温水の流入側にあたる第2のサイクル装置C2
の凝縮温度は、出口側にあたる第1のサイクル装置C1
の吸収温度よりも低く設定することができ、そのように
することによって第1のサイクル装置C1の第1の再生
器2の圧力と温度を低くすることができるため、第1の
サイクル装置C1の第1の再生器2への加熱量が軽減さ
れる。また温水の利用温度差を大きくとるによって流量
が少なくなるため、搬送動力が低減される。温水熱交換
器120を出て相対湿度が低下した再生空気はデシカン
トロータ103を通過してデシカントロータの水分を除
去し再生作用をする。デシカントロータ103を通過し
た再生空気は経路128を経て顕熱熱交換器121に流
入し、再生前の再生空気の余熱を行ったのち経路129
を経て排気として外部に捨てられる。
This process is a sensible heat change of the regenerated air, and the specific heat of the air is significantly lower than that of the hot water and the temperature change is large. Therefore, even if the flow rate of the hot water is decreased to increase the temperature change, the heat exchange is efficiently performed. Done. Therefore, the second cycle device C2 corresponding to the hot water inflow side of the absorption heat pump for producing hot water
The condensation temperature of the first cycle device C1 corresponding to the outlet side is
Can be set lower than the absorption temperature of, and by doing so, the pressure and temperature of the first regenerator 2 of the first cycle device C1 can be lowered, so that The amount of heat applied to the first regenerator 2 is reduced. Further, since the flow rate is reduced by increasing the temperature difference of the hot water used, the transport power is reduced. The regeneration air that has exited the hot water heat exchanger 120 and has reduced relative humidity passes through the desiccant rotor 103 to remove moisture from the desiccant rotor and perform regeneration. The regenerated air that has passed through the dessicant rotor 103 flows into the sensible heat exchanger 121 via the path 128, and performs residual heat of the regenerated air before regeneration, and then the path 129.
And is discarded outside as exhaust gas.

【0030】これまでの過程をモリエル線図を用いて説
明すると、図4において、空調される室内101の空気
(処理空気:状態K)は経路107を経て送風機102
に吸引され昇圧されて経路108をへてデシカントロー
タ103に送られデシカントロータの吸湿剤で空気中の
水分を吸着され絶対湿度が低下するとともに吸着熱によ
って空気は温度上昇する(状態L)。湿度が下がり温度
上昇した空気は経路109を経て顕熱熱交換器104に
送られ外気(再生空気)と熱交換して冷却される(状態
M)。冷却された空気は経路110を経て冷水熱交換器
115に送られさらに冷却される(状態N)。冷却され
た空気は経路119を経て加湿器105に送られ水噴射
または気化式加湿によって等エンタルピ過程で温度低下
し(状態P)、経路111を経て空調空間101に戻さ
れる。このようにして室内の還気(状態K)と給気(状
態P)との間にはエンタルピ差ΔQが生じ、これによっ
て空調空間101の冷房が行われる。
The process up to this point will be described with reference to the Mollier diagram. In FIG. 4, the air in the room 101 to be conditioned (process air: state K) passes through the path 107 and the blower 102.
Is sucked in and pressure-increased to be sent to the desiccant rotor 103 via the path 108, the moisture in the air is adsorbed by the desiccant rotor hygroscopic agent, the absolute humidity is lowered, and the temperature of the air is raised by the adsorption heat (state L). The air whose humidity has dropped and whose temperature has risen is sent to the sensible heat exchanger 104 via the path 109 and is cooled by exchanging heat with the outside air (regenerated air) (state M). The cooled air is sent to the cold water heat exchanger 115 via the path 110 and further cooled (state N). The cooled air is sent to the humidifier 105 via the path 119, the temperature is lowered in the isenthalpic process by water injection or vaporization-type humidification (state P), and is returned to the air-conditioned space 101 via the path 111. In this way, an enthalpy difference ΔQ is generated between the return air (state K) and the supply air (state P) in the room, whereby the air-conditioned space 101 is cooled.

【0031】デシカントの再生は次のように行われる。
再生用の外気(OA:状態Q)は経路124を経て送風
機130に吸引され昇圧されて顕熱熱交換器104に送
られ、処理空気を冷却して自らは温度上昇し(状態R)
経路125を経て次の顕熱熱交換器121に流入し、再
生後の高温の空気と熱交換して温度上昇する(状態
S)。さらに顕熱熱交換器121を出た再生空気は経路
126を経て温水熱交換器120に流入し温水によって
加熱され60〜80℃まで温度上昇し、相対湿度が低下
する(状態T)。相対湿度が低下した再生空気はデシカ
ントロータ103を通過してデシカントロータの水分を
除去する(状態U)。デシカントロータ103を通過し
た再生空気は経路128を経て顕熱熱交換器121に流
入し、顕熱熱交換器104を出た再生前の再生空気の余
熱を行って自らは温度低下した(状態V)のち経路12
9を経て排気として外部に捨てられる。
The desiccant reproduction is performed as follows.
The outside air for regeneration (OA: state Q) is sucked by the blower 130 via the path 124, is pressurized and is sent to the sensible heat exchanger 104, cools the process air and raises itself in temperature (state R).
It flows into the next sensible heat exchanger 121 via the path 125 and exchanges heat with the regenerated high temperature air to rise in temperature (state S). Further, the regenerated air exiting the sensible heat exchanger 121 flows into the hot water heat exchanger 120 via the path 126, is heated by the hot water, and is heated to 60 to 80 ° C., and the relative humidity is lowered (state T). The regenerated air having a reduced relative humidity passes through the desiccant rotor 103 to remove moisture from the desiccant rotor (state U). The regenerated air that has passed through the dessicant rotor 103 flows into the sensible heat exchanger 121 via the path 128, and performs residual heat of the regenerated air that has left the sensible heat exchanger 104 before regeneration, and the temperature of the regenerated air decreases (state V). ) Route 12
After passing through 9, it is discarded outside as exhaust gas.

【0032】このようにしてデシカントの再生と処理空
気の除湿、冷却をくりかえし行うことによって、デシカ
ントによる空調を行う。なお再生用空気として室内換気
にともなう排気を用いる方法も従来からデシカント空調
では広く行われているが、本発明においても室内からの
排気を再生用空気として使用してもさしつかえなく、本
実施例と同様の効果が得られる。
In this way, the desiccant is air-conditioned by repeating the desiccant regeneration and the dehumidification and cooling of the treated air. In addition, the method of using the exhaust accompanying the indoor ventilation as the regeneration air has been widely used in the desiccant air conditioning, but in the present invention, the exhaust from the room may be used as the regeneration air in the present invention. Similar effects can be obtained.

【0033】このように構成されたデシカント空調のエ
ネルギ効率を示す動作係数(COP)は図4における冷
房効果ΔQを再生加熱量で除した値で示されるが、再生
空気に温水熱交換器で加えられた熱量ΔHのうち冷水熱
交換器で冷却した熱量Δq分の熱量は前記の吸収ヒート
ポンプのヒートポンプ作用により処理空気から冷水熱交
換器115、第2のサイクル装置C2の第2の蒸発器1
3を介してくみ上げたものであるから、実際にこのシス
テムに加えられる熱量はΔHからΔqを引いたΔhとな
り、図中で状態Xから状態Tまでの顕熱変化に相当す
る。
The coefficient of operation (COP) indicating the energy efficiency of the desiccant air-conditioning constructed as described above is shown by the value obtained by dividing the cooling effect ΔQ in FIG. 4 by the amount of regenerated heat, and is added to the regenerated air by the hot water heat exchanger. The amount of heat corresponding to the amount of heat Δq cooled in the cold water heat exchanger out of the obtained amount of heat ΔH is from the treated air to the cold water heat exchanger 115 and the second evaporator 1 of the second cycle device C2 by the heat pump action of the absorption heat pump.
Since it is pumped through 3, the amount of heat actually applied to this system is Δh, which is ΔH minus Δq, which corresponds to a sensible heat change from state X to state T in the figure.

【0034】従って動作係数は、ΔQ/(ΔHーΔq)
=ΔQ/Δhとなる。図4の動作係数と図6の従来例の
動作係数を比較すると、本発明の実施例では分子の冷凍
効果ΔQは従来例に比べてΔqだけ増加し、また分母の
加熱量は従来例に比べてΔqだけ減少し、従って分母が
減少し分子が増加するため、動作係数は著しく向上す
る。
Therefore, the operation coefficient is ΔQ / (ΔH-Δq)
= ΔQ / Δh. Comparing the coefficient of operation of FIG. 4 with the coefficient of operation of the conventional example of FIG. 6, in the embodiment of the present invention, the refrigerating effect ΔQ of the numerator is increased by Δq compared to the conventional example, and the heating amount of the denominator is compared to the conventional example. By .DELTA.q, and thus the denominator is decreased and the numerator is increased, so that the coefficient of performance is significantly improved.

【0035】本発明の吸収ヒートポンプによるデシカン
ト空調システムの動作係数を以下に概略計算する。吸収
ヒートポンプの冷凍効果に対する動作係数を、従来の単
効用吸収冷凍機の動作係数と同等として大略0.6と
し、従来のデシカント空調の動作係数を1.0とする
と、本発明の実施例では、吸収ヒートポンプへ外部から
加熱される熱量を1に採ると、ヒートポンプ作用によ
り、温水には1.6の熱量が加えられ、この熱でデシカ
ント空調を作動させると、冷房効果は1.0(動作係
数)×1.6(加熱量)+0.6(冷凍効果:Δq)=
2.2の熱量となる。従って、本発明の動作係数は、
2.2(冷房効果)/1.0(吸収ヒートポンプへの入
熱)=2.2となる。この値は従来の2重効用吸収冷凍
機の持つ1.2程度の動作係数を大幅に上回るものであ
り、極めて高い省エネルギ効果がある。
The coefficient of operation of the desiccant air conditioning system using the absorption heat pump of the present invention will be roughly calculated below. Assuming that the coefficient of operation for the refrigerating effect of the absorption heat pump is approximately 0.6, which is equivalent to the coefficient of operation of the conventional single-effect absorption refrigerator, and the coefficient of operation of the conventional desiccant air conditioning is 1.0, in the embodiment of the present invention, When the amount of heat that is externally heated to the absorption heat pump is set to 1, a heat pump action adds a heat amount of 1.6 to the hot water, and when this heat is used to operate the desiccant air conditioning, the cooling effect is 1.0 (coefficient of operation ) × 1.6 (heating amount) +0.6 (freezing effect: Δq) =
The amount of heat is 2.2. Therefore, the coefficient of operation of the present invention is
2.2 (cooling effect) /1.0 (heat input to absorption heat pump) = 2.2. This value greatly exceeds the coefficient of operation of about 1.2 that the conventional double-effect absorption refrigerator has, and has an extremely high energy saving effect.

【0036】[0036]

【発明の効果】以上説明したように本発明によれば、デ
シカント空調の処理空気の熱を吸収ヒートポンプのヒー
トポンプ作用により汲み上げて、再生空気の加熱に用い
ることができるため、デシカント空調におけるデシカン
トの再生のため外部から加える必要がある熱量が大幅に
軽減され、動作係数を著しく向上することができるとと
もに、熱源機として、第1のサイクル装置の作動媒体に
は第2のサイクル装置よりも結晶を生じにくい作動媒体
すなわち第2のサイクル装置の吸収作動媒体が結晶を発
生する温度、蒸気圧力においても、第1のサイクル装置
の吸収作動媒体が結晶を発生しない作動媒体を使用して
いるため、運転中に何らかの理由で急激な温度低下や、
濃度上昇が発生する事態が発生しても吸収作動媒体が結
晶を生じて運転継続が不可能になることが回避され、信
頼性の高い運転サイクルを持った吸収ヒートポンプを提
供することができる。
As described above, according to the present invention, the heat of the treated air in the desiccant air conditioning can be pumped up by the heat pump action of the absorption heat pump and used for heating the regenerated air. Therefore, the desiccant regeneration in the desiccant air conditioning is possible. Therefore, the amount of heat that needs to be applied from the outside is significantly reduced, and the coefficient of operation can be significantly improved, and as a heat source machine, crystals are generated in the working medium of the first cycle device more than in the second cycle device. Even if the working medium that is difficult to use, that is, the temperature and the vapor pressure at which the absorption working medium of the second cycle device generates crystals, the absorption working medium of the first cycle device uses the working medium that does not generate crystals, the operation is in progress. For some reason, sudden temperature drop,
It is possible to provide an absorption heat pump having a highly reliable operation cycle, which prevents the absorption working medium from being crystallized and making it impossible to continue the operation even if a situation in which the concentration increases occurs.

【0037】したがって本発明によれば、冷房のための
熱源エネルギの消費量が軽減され、経済性にすぐれたデ
シカント空調を提供することができ、従来からの2重効
用吸収冷凍機を用いて空気を冷却除湿する空調システム
の動作係数すなわちエネルギ効率を上回る空調システム
を提供可能で、しかも信頼性が高い吸収ヒートポンプを
提供することができる。
Therefore, according to the present invention, it is possible to provide a desiccant air-conditioning system that consumes less heat source energy for cooling and is excellent in economic efficiency. It is possible to provide an air-conditioning system that exceeds the coefficient of operation of the air-conditioning system that cools and dehumidifies the air-conditioning system, that is, energy efficiency, and to provide a highly reliable absorption heat pump.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る吸収ヒートポンプの一実施例の基
本構成を示す説明図。
FIG. 1 is an explanatory diagram showing the basic configuration of an embodiment of an absorption heat pump according to the present invention.

【図2】本発明に係る吸収ヒートポンプの一実施例の吸
収溶液サイクル装置をデューリング線図で示す説明図。
FIG. 2 is an explanatory view showing an absorption solution cycle device of an embodiment of an absorption heat pump according to the present invention in a Duhring diagram.

【図3】本発明に係る吸収ヒートポンプをデシカント空
調の熱源機として使用した一実施例の基本構成を示す説
明図。
FIG. 3 is an explanatory diagram showing a basic configuration of an embodiment in which the absorption heat pump according to the present invention is used as a heat source device for desiccant air conditioning.

【図4】本発明に係る吸収ヒートポンプをデシカント空
調の熱源機として使用した一実施例の空気のデシカント
空調サイクル装置をモリエル線図で示す説明図。
FIG. 4 is an explanatory diagram showing a Mollier diagram of an air desiccant air conditioning cycle device according to an embodiment in which the absorption heat pump according to the present invention is used as a heat source device for desiccant air conditioning.

【図5】従来のデシカント空調の基本構成を示す説明
図。
FIG. 5 is an explanatory diagram showing a basic configuration of a conventional desiccant air conditioning.

【図6】従来のデシカント空調の空気のデシカント空調
サイクル装置をモリエル線図で示す説明図。
FIG. 6 is an explanatory diagram showing, with a Mollier diagram, a conventional desiccant air-conditioning cycle device for air for desiccant air conditioning.

【符号の説明】[Explanation of symbols]

1・・・第1の吸収器 2・・・第1の再生器 3・・・第1の蒸発器 4・・・第1の凝縮器 5・・・第1の熱交換器 6・・・溶液ポンプ 7・・・絞り機構 11・・・第2の吸収器 12・・・第2の再生器 13・・・第2の蒸発器 14・・・第2の凝縮器 15・・・第2の熱交換器 16・・・溶液ポンプ 17・・・絞り機構 20・・・伝熱管(第1の熱交換装置) 21・・・伝熱管(第2の熱交換装置) 30・・・伝熱管 31・・・伝熱管 32・・・熱媒体(温水)経路 33・・・伝熱管 34・・・伝熱管 101・・・空調空間 102・・・送風機 103・・・デシカントロータ 104・・・顕熱熱交換器 105・・・加湿器 106・・・給水管 107・・・空気経路 108・・・空気経路 109・・・空気経路 110・・・空気経路 111・・・空気経路 115・・・冷水熱交換器 117・・・冷水経路 118・・・冷水経路 119・・・空気経路 120・・・温水熱交換器 121・・・顕熱熱交換器 122・・・温水経路 123・・・温水経路 124・・・空気経路 125・・・空気経路 126・・・空気経路 127・・・空気経路 128・・・空気経路 129・・・空気経路 130・・・送風機 150・・・温水ポンプ 160・・・冷水ポンプ a・・・吸収冷凍サイクルの状態点 b・・・吸収冷凍サイクルの状態点 c・・・吸収冷凍サイクルの状態点 d・・・吸収冷凍サイクルの状態点 e・・・吸収冷凍サイクルの状態点 f・・・吸収冷凍サイクルの状態点 A・・・吸収冷凍サイクルの状態点 B・・・吸収冷凍サイクルの状態点 C・・・吸収冷凍サイクルの状態点 D・・・吸収冷凍サイクルの状態点 E・・・吸収冷凍サイクルの状態点 F・・・吸収冷凍サイクルの状態点 K・・・デシカント空調の空気の状態点 L・・・デシカント空調の空気の状態点 M・・・デシカント空調の空気の状態点 N・・・デシカント空調の空気の状態点 P・・・デシカント空調の空気の状態点 Q・・・デシカント空調の空気の状態点 R・・・デシカント空調の空気の状態点 S・・・デシカント空調の空気の状態点 T・・・デシカント空調の空気の状態点 U・・・デシカント空調の空気の状態点 V・・・デシカント空調の空気の状態点 X・・・デシカント空調の空気の状態点 SA・・・給気 RA・・・還気 EX・・・排気 OA・・・外気 ΔQ・・・冷房効果 Δq・・・吸収ヒートポンプの冷凍効果 ΔH・・・温水による加熱量 Δh・・・ΔHーΔq 1 ... 1st absorber 2 ... 1st regenerator 3 ... 1st evaporator 4 ... 1st condenser 5 ... 1st heat exchanger 6 ... Solution pump 7 ... Throttling mechanism 11 ... Second absorber 12 ... Second regenerator 13 ... Second evaporator 14 ... Second condenser 15 ... Second Heat exchanger 16 ... Solution pump 17 ... Throttling mechanism 20 ... Heat transfer tube (first heat exchange device) 21 ... Heat transfer tube (second heat exchange device) 30 ... Heat transfer tube 31 ... Heat transfer tube 32 ... Heat medium (hot water) path 33 ... Heat transfer tube 34 ... Heat transfer tube 101 ... Air-conditioned space 102 ... Blower 103 ... Desiccant rotor 104 ... Microscope Heat-heat exchanger 105 ... Humidifier 106 ... Water supply pipe 107 ... Air path 108 ... Air path 109 ... Air path 110 ... Air path 111 ... Air path 115 ... Cold water heat exchanger 117 ... Cold water path 118 ... Cold water path 119 ... Air path 120 ... Hot water heat exchanger 121 ... Sensible heat exchange Container 122 ... Warm water path 123 ... Warm water path 124 ... Air path 125 ... Air path 126 ... Air path 127 ... Air path 128 ... Air path 129 ... Air path 130・ ・ ・ Blower 150 ・ ・ ・ Hot water pump 160 ・ ・ ・ Cold water pump a ・ ・ ・ State point of absorption refrigeration cycle b ・ ・ ・ State point of absorption refrigeration cycle c ・ ・ ・ State point of absorption refrigeration cycle d ・ ・ ・State point of absorption refrigeration cycle e ... State point of absorption refrigeration cycle f ... State point of absorption refrigeration cycle A ... State point of absorption refrigeration cycle B ... State point of absorption refrigeration cycle C ... State point of absorption refrigeration cycle D ... State point of absorption refrigeration cycle E ... State point of absorption refrigeration cycle F ... State point of absorption refrigeration cycle K ... State point of desiccant air conditioning L ...・ Air state point of desiccant air conditioning M ・ ・ ・ Air state point of desiccant air conditioning N ・ ・ ・ Air state point of desiccant air conditioning P ・ ・ ・ Air state point of desiccant air conditioning Q ・ ・ ・ Desicant air conditioning air State point R ... Desiccant air conditioning air state point S ... Desiccant air conditioning air state point T ... Desiccant air conditioning air state point U ... Desiccant air conditioning air state point V ... Air state point of desiccant air conditioning X ... Air state point of desiccant air conditioning SA ... Air supply RA ... Return air EX ... Exhaust air OA ... Outside air .DELTA.Q ... Cooling effect .DELTA.q ... Absorption heat pump Heating amount of anti-freeze effect ΔH ··· hot water Δh ··· ΔH over Δq

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1の蒸発器と第1の吸収器と第1の再
生器と第1の凝縮器とを有して吸収式冷凍サイクルを行
う第1のサイクル装置と、第2の蒸発器と第2の吸収器
と第2の再生器と第2の凝縮器とを有して前記第1のサ
イクル装置よりも低温で作動する第2のサイクル装置か
らなる吸収ヒートポンプにおいて、前記第1のサイクル
装置の第1の蒸発器と第2のサイクル装置の第2の吸収
器との間で熱交換を行う第1の熱交換装置を形成し、か
つ該第1のサイクル装置の第1の凝縮器と第2のサイク
ル装置の第2の再生器との間に熱交換を行う第2の熱交
換装置を形成し、かつ第1のサイクル装置の吸収作動媒
体と第2のサイクル装置の吸収作動媒体に異なる媒体を
使用したことを特徴とする吸収ヒートポンプ。
1. A first cycle device having a first evaporator, a first absorber, a first regenerator and a first condenser for performing an absorption refrigeration cycle, and a second evaporation device. In an absorption heat pump comprising a second cycle device having a cooler, a second absorber, a second regenerator and a second condenser and operating at a temperature lower than that of the first cycle device, Forming a first heat exchanging device for exchanging heat between the first evaporator of the cycle device and the second absorber of the second cycle device, and Forming a second heat exchange device for exchanging heat between the condenser and the second regenerator of the second cycle device, and absorbing the working medium of the first cycle device and the absorption of the second cycle device; An absorption heat pump characterized in that different working media are used.
【請求項2】 第2のサイクル装置の吸収作動媒体が結
晶を発生する温度、蒸気圧力においても、第1のサイク
ル装置の吸収作動媒体が結晶を発生しないものであるこ
とを特徴とする請求項1項記載の吸収ヒートポンプ。
2. The absorption working medium of the first cycle device does not generate crystals even at a temperature and a vapor pressure at which the absorption working medium of the second cycle device generates crystals. The absorption heat pump according to item 1.
【請求項3】 第1のサイクル装置の作動媒体が臭化リ
チウムと塩化亜鉛の混合物を吸収溶液として水を冷媒と
する吸収作動媒体であり、第2のサイクル装置の作動媒
体が臭化リチウムを吸収溶液として水を冷媒とする吸収
作動媒体であることを特徴とする請求項第1記載の吸収
ヒートポンプ。
3. The working medium of the first cycle device is an absorption working medium using a mixture of lithium bromide and zinc chloride as an absorption solution and water as a refrigerant, and the working medium of the second cycle device is lithium bromide. The absorption heat pump according to claim 1, which is an absorption working medium that uses water as a refrigerant as the absorption solution.
JP33305795A 1995-12-21 1995-12-21 Absorption heat pump Pending JPH09170840A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP33305795A JPH09170840A (en) 1995-12-21 1995-12-21 Absorption heat pump
US08/769,253 US5761925A (en) 1995-12-21 1996-12-18 Absorption heat pump and desiccant assisted air conditioner
CNB961139048A CN1148539C (en) 1995-12-21 1996-12-23 Absorption heat pump and desiccant assisted air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33305795A JPH09170840A (en) 1995-12-21 1995-12-21 Absorption heat pump

Publications (1)

Publication Number Publication Date
JPH09170840A true JPH09170840A (en) 1997-06-30

Family

ID=18261791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33305795A Pending JPH09170840A (en) 1995-12-21 1995-12-21 Absorption heat pump

Country Status (1)

Country Link
JP (1) JPH09170840A (en)

Similar Documents

Publication Publication Date Title
US5943874A (en) Desiccant assisted air conditioning apparatus
US5761925A (en) Absorption heat pump and desiccant assisted air conditioner
US5791157A (en) Heat pump device and desiccant assisted air conditioning system
US7428821B2 (en) Dehumidifying system
US6324860B1 (en) Dehumidifying air-conditioning system
US5761923A (en) Air conditioning system
US5758509A (en) Absorption heat pump and desiccant assisted air conditioning apparatus
US6314744B1 (en) Air-conditioning system and operation control method thereof
JP3585308B2 (en) Desiccant air conditioner
JP2001241693A (en) Air conditioner
JP3037649B2 (en) Dehumidification air conditioning system
JP3434109B2 (en) Desiccant air conditioner
JP3037648B2 (en) Dehumidification air conditioning system
JP3434110B2 (en) Desiccant air conditioner
JP3480772B2 (en) Absorption heat pump
JP3743581B2 (en) Heat pump and operation method thereof
JPH09170840A (en) Absorption heat pump
JP2972834B2 (en) Desiccant air conditioner
JPH10122689A (en) Absorption heat pump and air conditioning system using the same
JP2971841B2 (en) Air conditioning system
JPH09178287A (en) Absorption heat pump
JP2000329375A (en) Air conditioner, air conditioning/refrigerating system and operating method for air conditioner
JP2971842B2 (en) Absorption heat pump and air conditioning system using the same as heat source
JP3743580B2 (en) heat pump
JPH09178286A (en) Absorption heat pump