JPH09162291A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH09162291A
JPH09162291A JP34498695A JP34498695A JPH09162291A JP H09162291 A JPH09162291 A JP H09162291A JP 34498695 A JP34498695 A JP 34498695A JP 34498695 A JP34498695 A JP 34498695A JP H09162291 A JPH09162291 A JP H09162291A
Authority
JP
Japan
Prior art keywords
insulating film
film
oxide film
nitride
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34498695A
Other languages
Japanese (ja)
Inventor
Ryuta Isobe
竜太 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP34498695A priority Critical patent/JPH09162291A/en
Publication of JPH09162291A publication Critical patent/JPH09162291A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance a device in quality and reliability by a method wherein an interlayer insulating film of high quality is formed. SOLUTION: A silicon substrate 1 is covered with a lower insulating film 2, then a metal wiring 3 is formed on the lower insulating film 2, and a first insulating film 4 is formed through a plasma CVD. NH3 gas is photodissociated by irradiation with ArF excimer laser rays, and the silicon substrate 1 is optically excited, whereby a nitride oxide film 5 is formed as thick as 10nm or so at 400 deg.C or so. SOG solution is spin-applied onto the nitride oxide film 5, and a second insulating film 6 of SOG is formed through a heat treatment and then etched back to be flattened. A third insulating film 7 is formed on the nitride and oxide film 5 and the insulating film 6 through a plasma CVD to flatten the surface between the wirings. A nitride oxide film 8 is formed as thick as 10nm or so at a temperature of 400 deg.C or so the same as the nitride oxide film 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法に関し、特に、多層配線構造における層間絶縁膜
(酸化膜)表面を窒化することにより層間絶縁膜の絶縁
性等を向上させ、もってデバイスの品質・信頼性を高め
ることができる、半導体装置の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, by nitriding the surface of an interlayer insulating film (oxide film) in a multi-layer wiring structure, the insulating property of the interlayer insulating film is improved, and thus a device is provided. The present invention relates to a semiconductor device manufacturing method capable of improving the quality and reliability of the semiconductor device.

【0002】[0002]

【従来の技術】従来、多層配線構造における層間絶縁膜
として、主にプラズマCVDによって形成されるシリコ
ン酸化膜(以下、プラズマ酸化膜と略す)が採用されて
いる。このプラズマ酸化膜は、低温である程度の堆積速
度で形成することができるため広く用いられている。し
かし、上記プラズマ酸化膜は、非熱平衡状態での反応で
生成されるため、膜の組成はSiO2 のような化学的組
成とは必ずしもならない。そのため、絶縁膜としての絶
縁性や耐クラック性が低下するなどの問題が発生してい
た。
2. Description of the Related Art Conventionally, a silicon oxide film (hereinafter abbreviated as plasma oxide film) formed mainly by plasma CVD has been adopted as an interlayer insulating film in a multilayer wiring structure. This plasma oxide film is widely used because it can be formed at a low deposition rate at a low temperature. However, since the plasma oxide film is formed by the reaction in the non-thermal equilibrium state, the composition of the film is not necessarily the chemical composition like SiO 2 . Therefore, there have been problems such as deterioration of the insulation property and the crack resistance of the insulation film.

【0003】これに対する対策として膜の厚膜化が考え
られるが、今後更に進むであろう微細化に伴いアスペク
ト比を小さくすることが必要となるので、厚膜化には限
界がある。また、絶縁膜の品質向上のために、窒化膜を
利用することも考えられるが、窒化膜形成のための従来
の熱窒化法では1000℃以上の高温処理を行うため、
金属配線形成後に窒化膜を形成することはできない。窒
化膜をCVD法により堆積することは可能(特開平4−
56254号公報の技術では、層間絶縁膜上に窒化膜を
CVD法により形成する。)であるが、この方法では高
密度の窒化膜とこれよりも低密度の層間絶縁膜との界面
に特有の欠陥が発生したり、これら窒化膜と層間絶縁膜
との応力の違いによる悪影響が発生したりする問題があ
った。
As a countermeasure against this, it is conceivable to increase the thickness of the film. However, there is a limit to increase the thickness because it is necessary to reduce the aspect ratio in accordance with further miniaturization which will be further advanced in the future. Further, a nitride film may be used to improve the quality of the insulating film, but in the conventional thermal nitriding method for forming a nitride film, a high temperature treatment of 1000 ° C. or higher is performed.
The nitride film cannot be formed after forming the metal wiring. It is possible to deposit a nitride film by a CVD method (Japanese Patent Laid-Open No. 4-204,
In the technique of Japanese Patent No. 56254, a nitride film is formed on the interlayer insulating film by the CVD method. However, in this method, a defect peculiar to the interface between the high-density nitride film and the lower-density interlayer insulating film is generated, and the adverse effect due to the difference in stress between the nitride film and the interlayer insulating film is adversely affected. There was a problem that occurred.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記問題点に
鑑みなされたもので、その目的は絶縁性、および放射線
に対する耐性に優れていて不純物拡散あるいは酸化に対
し強い阻止力を有し、金属との反応が少なく、耐湿性に
も優れた層間絶縁膜を形成することによって、デバイス
の品質を向上させることができる半導体装置の製造方法
を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is to have excellent insulating properties and resistance to radiation, and a strong stopping power against impurity diffusion or oxidation. An object of the present invention is to provide a method for manufacturing a semiconductor device, which can improve the quality of the device by forming an interlayer insulating film which has less reaction with and which has excellent moisture resistance.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の半導体
装置の製造方法は、多層配線構造を有する半導体装置の
製造方法において、半導体素子を形成した後絶縁膜を形
成し、この絶縁膜上に複数の金属配線を形成し、この金
属配線上に物理的または化学的蒸着により第1の絶縁膜
を形成する工程と、第1の絶縁膜表面にArFエキシマ
レーザー照射するとともに、第1の絶縁膜上にアンモニ
アガスを供給してこれを光解離することにより第1の絶
縁膜表面を窒化する工程と、この窒化膜上に塗布・焼成
により第2の絶縁膜を形成する工程と、第2の絶縁膜表
面を平坦化するためのエッチバック工程と、エッチバッ
クした第2の絶縁膜上に物理的または化学的蒸着により
第3の絶縁膜を形成する工程とを含むことを特徴とす
る。
A method of manufacturing a semiconductor device according to claim 1 is a method of manufacturing a semiconductor device having a multilayer wiring structure, in which an insulating film is formed after a semiconductor element is formed, and an insulating film is formed on the insulating film. A step of forming a plurality of metal wirings on the metal wirings and forming a first insulating film on the metal wirings by physical or chemical vapor deposition; and irradiating the surface of the first insulating film with an ArF excimer laser. A step of nitriding the surface of the first insulating film by supplying ammonia gas onto the film to photodissociate it, and a step of forming a second insulating film on the nitride film by coating and baking; And an etching back step for flattening the surface of the insulating film, and a step of forming a third insulating film on the etched back second insulating film by physical or chemical vapor deposition.

【0006】請求項2に記載の半導体装置の製造方法
は、請求項1において、第3の絶縁膜表面にArFエキ
シマレーザー照射するとともに、第3の絶縁膜上にアン
モニアガスを供給してこれを光解離することにより、第
3の絶縁膜表面を窒化する工程を含むことを特徴とす
る。
According to a second aspect of the present invention, in the method of manufacturing a semiconductor device according to the first aspect, the surface of the third insulating film is irradiated with ArF excimer laser, and ammonia gas is supplied onto the third insulating film. The method is characterized by including a step of nitriding the surface of the third insulating film by photodissociation.

【0007】[0007]

【実施例】以下、本発明の実施例を、図面を参照しなが
ら説明する。 実施例1 図1(a)〜(e)は、半導体装置の製造工程を順に示
す断面図である。まず従来技術により、図1(a)に示
すように半導体素子を形成したシリコン基板1を下層絶
縁膜2で被覆した後、この下層絶縁膜2上に金属配線3
を形成する。次に、図1(b)に示すように、プラズマ
CVDにより第1の絶縁膜4を、シリコン基板1の全面
に約600nmの厚さで形成する。その後、図1(c)
に示すようにArFエキシマレーザー照射を行って、N
3 ガスを光解離すると同時にシリコン基板1を光励起
することにより、窒化酸化膜5を温度約400℃で約1
0nmの厚さに形成する。次に、図1(d)に示すよう
に、窒化酸化膜5上にSOG溶液を回転塗布し、引き続
き熱処理を施してSOGによる第2の絶縁膜6を形成し
た後、この絶縁膜6をエッチバックにより平坦化する。
これら窒化酸化膜5および絶縁膜6上に、第3の絶縁膜
7をプラズマCVDにより約600nmに形成して配線
間を平坦化する。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 FIGS. 1A to 1E are cross-sectional views sequentially showing manufacturing steps of a semiconductor device. First, according to a conventional technique, a silicon substrate 1 having semiconductor elements formed thereon is covered with a lower insulating film 2 as shown in FIG. 1A, and then metal wiring 3 is formed on the lower insulating film 2.
To form Next, as shown in FIG. 1B, a first insulating film 4 is formed on the entire surface of the silicon substrate 1 by plasma CVD so as to have a thickness of about 600 nm. After that, FIG. 1 (c)
ArF excimer laser irradiation is performed as shown in
By photoexciting the silicon substrate 1 at the same time as photodissociating the H 3 gas, the oxynitride film 5 is heated to about 1 ° C at a temperature of about 400 ° C.
It is formed to a thickness of 0 nm. Next, as shown in FIG. 1D, an SOG solution is spin-coated on the oxynitride film 5, and then a heat treatment is performed to form a second insulating film 6 made of SOG, and then the insulating film 6 is etched. Flatten by back.
A third insulating film 7 is formed on the oxynitride film 5 and the insulating film 6 by plasma CVD to have a thickness of about 600 nm to flatten the space between the wirings.

【0008】引き続き、上記窒化酸化膜5形成の場合と
同様に図1(e)に示すようにArFエキシマレーザー
照射を行って、NH3 ガスを光解離すると同時にシリコ
ン基板1を光励起することにより、窒化酸化膜8を温度
約400℃で約10nmの厚さに形成する。このように
して形成された窒化酸化膜5,8は、通常の酸化膜に比
べて緻密であり、かつ窒化膜固有の特性を有するため、
層間絶縁膜の品質向上に役立つ。
Subsequently, as in the case of forming the oxynitride film 5, ArF excimer laser irradiation is performed as shown in FIG. 1 (e) to photodissociate the NH 3 gas and at the same time photoexcite the silicon substrate 1, The oxynitride film 8 is formed at a temperature of about 400 ° C. to a thickness of about 10 nm. Since the nitrided oxide films 5 and 8 thus formed are denser than ordinary oxide films and have characteristics peculiar to nitride films,
This helps improve the quality of the interlayer insulating film.

【0009】[0009]

【発明の効果】以上の説明で明らかなように、請求項1
に記載の半導体装置の製造方法では、ArFエキシマレ
ーザー照射を行いNH3 ガスを光解離すると同時にシリ
コン基板を光励起して、絶縁膜上に窒化酸化膜を形成す
ることにより、約400℃という比較的低温で、放射線
に対する耐性および絶縁性に優れていて不純物拡散ある
いは酸化に対し強い阻止力を有し、金属との反応が少な
く、耐湿性にも優れた層間絶縁膜を形成することが可能
となる。このため本発明によれば、デバイスの品質・信
頼性を向上させることができる効果がある。上記窒化酸
化膜の特性は、従来の1000℃以上の高温処理で形成
した窒化膜の特性と同程度に優れたものである。また、
請求項2に記載の半導体装置の製造方法では、第1の絶
縁膜上に窒化酸化膜を形成するとともに、第3の絶縁膜
上に窒化酸化膜を形成するので、請求項1に比べて更に
高品質のデバイスを製造することができる。なお、請求
項1,2の製造方法では、表面の窒化酸化膜とその下層
の酸化膜との2層構造になるが、これらの間に明確な境
界は存在しない。このため、層間絶縁膜上に窒化膜をC
VD法により形成する従来技術に伴う上記問題点は発生
しない。
As is apparent from the above description, claim 1
In the method of manufacturing a semiconductor device described in (1), ArF excimer laser irradiation is performed to photodissociate NH 3 gas and at the same time photoexcite the silicon substrate to form a oxynitride film on the insulating film, thereby relatively reducing the temperature to about 400 ° C. It becomes possible to form an interlayer insulating film that has excellent resistance to radiation and insulation at low temperatures, has a strong stopping power against impurity diffusion or oxidation, has little reaction with metals, and has excellent moisture resistance. . Therefore, according to the present invention, there is an effect that the quality and reliability of the device can be improved. The characteristics of the nitride oxide film are as excellent as those of the conventional nitride film formed by the high temperature treatment of 1000 ° C. or higher. Also,
In the method of manufacturing a semiconductor device according to claim 2, since the oxynitride film is formed on the first insulating film and the oxynitride film is formed on the third insulating film, the method is further improved as compared with the first aspect. High quality devices can be manufactured. In the manufacturing method according to the first and second aspects, a double-layered structure including the surface oxynitride film and the underlying oxide film is formed, but there is no clear boundary between them. For this reason, a nitride film C is formed on the interlayer insulating film.
The above problems associated with the conventional technique of forming by the VD method do not occur.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を工程順に示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention in the order of steps.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 下層絶縁膜 3 金属配線 4 第1の絶縁膜 5 窒化酸化膜 6 第2の絶縁膜 7 第3の絶縁膜 8 窒化酸化膜 1 Silicon Substrate 2 Lower Layer Insulating Film 3 Metal Wiring 4 First Insulating Film 5 Nitride Oxide Film 6 Second Insulating Film 7 Third Insulating Film 8 Nitride Oxide Film

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/90 Q Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location H01L 21/90 Q

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多層配線構造を有する半導体装置の製造
方法において、半導体素子を形成した後絶縁膜を形成
し、この絶縁膜上に複数の金属配線を形成し、この金属
配線上に物理的または化学的蒸着により第1の絶縁膜を
形成する工程と、第1の絶縁膜表面にArFエキシマレ
ーザー照射するとともに、第1の絶縁膜上にアンモニア
ガスを供給してこれを光解離することにより第1の絶縁
膜表面を窒化する工程と、この窒化膜上に塗布・焼成に
より第2の絶縁膜を形成する工程と、第2の絶縁膜表面
を平坦化するためのエッチバック工程と、エッチバック
した第2の絶縁膜上に物理的または化学的蒸着により第
3の絶縁膜を形成する工程とを含むことを特徴とする半
導体装置の製造方法。
1. A method of manufacturing a semiconductor device having a multilayer wiring structure, wherein an insulating film is formed after a semiconductor element is formed, a plurality of metal wirings are formed on the insulating film, and a physical or physical layer is formed on the metal wiring. The step of forming the first insulating film by chemical vapor deposition, and the step of irradiating the surface of the first insulating film with an ArF excimer laser and supplying ammonia gas onto the first insulating film to photodissociate them 1. A step of nitriding the surface of the first insulating film, a step of forming a second insulating film on the nitride film by coating and firing, an etchback step for flattening the surface of the second insulating film, and an etchback And a step of forming a third insulating film on the second insulating film by physical or chemical vapor deposition.
【請求項2】 第3の絶縁膜表面にArFエキシマレー
ザー照射するとともに、第3の絶縁膜上にアンモニアガ
スを供給してこれを光解離することにより、第3の絶縁
膜表面を窒化する工程を含むことを特徴とする請求項1
に記載の半導体装置の製造方法。
2. A step of nitriding the surface of the third insulating film by irradiating the surface of the third insulating film with an ArF excimer laser and supplying ammonia gas onto the third insulating film to photodissociate the same. 1. The method according to claim 1, wherein
A method of manufacturing a semiconductor device according to item 1.
JP34498695A 1995-12-06 1995-12-06 Manufacture of semiconductor device Pending JPH09162291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34498695A JPH09162291A (en) 1995-12-06 1995-12-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34498695A JPH09162291A (en) 1995-12-06 1995-12-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH09162291A true JPH09162291A (en) 1997-06-20

Family

ID=18373508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34498695A Pending JPH09162291A (en) 1995-12-06 1995-12-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH09162291A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434110B1 (en) * 2002-06-04 2004-06-04 삼성전자주식회사 Method of Manufacturing Semiconductor Device
JP2005512322A (en) * 2001-12-05 2005-04-28 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Wiring with improved barrier layer adhesion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512322A (en) * 2001-12-05 2005-04-28 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Wiring with improved barrier layer adhesion
JP4740538B2 (en) * 2001-12-05 2011-08-03 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Manufacturing method of semiconductor device
KR100434110B1 (en) * 2002-06-04 2004-06-04 삼성전자주식회사 Method of Manufacturing Semiconductor Device
US6774048B2 (en) 2002-06-04 2004-08-10 Samsung Electronics Co., Ltd. Method of manufacturing a semiconductor device

Similar Documents

Publication Publication Date Title
JP2792335B2 (en) Method for manufacturing semiconductor device
JPH07312368A (en) Method to form even structure of insulation film
JPH10125782A (en) Manufacturing method of semiconductor device
US6790778B1 (en) Method for capping over a copper layer
JP3528151B2 (en) Method for forming gate oxide film of semiconductor device
JPH09162291A (en) Manufacture of semiconductor device
JP3231645B2 (en) Semiconductor device and method of manufacturing the same
JP2001168098A (en) Semiconductor device and method of forming pattern data
JP3333313B2 (en) Method for manufacturing semiconductor device
US7642655B2 (en) Semiconductor device and method of manufacture thereof
JP3332063B2 (en) Method for forming SiNx / PSG laminated structure
JP2555949B2 (en) Method for manufacturing semiconductor device
US5763322A (en) Method of annealing film stacks and device having stack produced by same
JP3325714B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPH0555199A (en) Semiconductor device
JP2636715B2 (en) Method for manufacturing semiconductor device
JP3390890B2 (en) Method for manufacturing semiconductor device
JP2739593B2 (en) Semiconductor device manufacturing method
JP2001168100A (en) Method of manufacturing semiconductor device
JPH08236534A (en) Formation of passivation film for semiconductor element
JP2003060082A5 (en)
JPH05152280A (en) Manufacture of semiconductor device
JP2002026004A (en) Method of forming insulating film for semiconductor device
KR100192168B1 (en) Multilayered wiring production on semiconductor device
JP2000077415A (en) Semiconductor device and manufacture thereof