JPH09158495A - Earthquake resisting reinforcing engineering method for existing structure and fiber sheet used for the engineering method - Google Patents

Earthquake resisting reinforcing engineering method for existing structure and fiber sheet used for the engineering method

Info

Publication number
JPH09158495A
JPH09158495A JP32450395A JP32450395A JPH09158495A JP H09158495 A JPH09158495 A JP H09158495A JP 32450395 A JP32450395 A JP 32450395A JP 32450395 A JP32450395 A JP 32450395A JP H09158495 A JPH09158495 A JP H09158495A
Authority
JP
Japan
Prior art keywords
fiber
epoxy resin
fiber sheet
existing structure
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32450395A
Other languages
Japanese (ja)
Other versions
JP3527341B2 (en
Inventor
Takeshi Kawachi
武 川地
Yoshimasa Hayashi
好正 林
Haruka Ogawa
晴果 小川
Kazufusa Mitani
一房 三谷
Masao Kawahara
正雄 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Schokbeton Japan Co Ltd
Original Assignee
Obayashi Corp
Schokbeton Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Schokbeton Japan Co Ltd filed Critical Obayashi Corp
Priority to JP32450395A priority Critical patent/JP3527341B2/en
Publication of JPH09158495A publication Critical patent/JPH09158495A/en
Application granted granted Critical
Publication of JP3527341B2 publication Critical patent/JP3527341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To minimize a damage to a structure and to improve construction performance in earthquake resisting reinforcement of an existing structure. SOLUTION: At the time of applying earthquake resisting reinforcement to a reinforced concrete pillar 10, a high tensile fiber material consisting of a fiber sheet 12 is adhered on an outer surface of the pillar 10. The fiber sheet 12 is constituted of a fiber supporting body formed in mesh, carbon fiber stuck on one face side of the supporting body and epoxy resin impregnated in the fiber sheet 12. The epoxy resin is of a potential hardening type and mixed with an epoxy resin main agent and a hardening agent surrounded by a microcapsule film, hardenability of the epoxy resin is disclosed by heating and melting the microcapsule film, and this melting temperature is set 60 deg.C or more. When adhesion of the fiber sheet is completed, the carbon fiber is electrified, and heating temperature is set at 60 deg.C or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、既存構造物の耐震補
強工法および同工法に用いる繊維シートに関し、特に、
補強を施す既存構造物への損傷を低減することができる
既存構造物の耐震補強工法および同工法に用いる繊維シ
ートに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic strengthening method for existing structures and a fiber sheet used in the method, and in particular,
The present invention relates to a seismic retrofitting method for existing structures that can reduce damage to existing structures to be reinforced, and a fiber sheet used in the method.

【0002】[0002]

【従来の技術】近年、既存コンクリート構造物の耐震補
強工法として、構造物の外表面に炭素繊維やアラミド繊
維などの高張力繊維材を貼付したり、あるいは、捲回し
て補強する技術が注目されている。このような耐震補強
工法では、高張力繊維材同士および当該高張力繊維材と
既存コンクリート構造物との間の一体化を図り、高張力
繊維材の補強効果を有効に発揮させるために、高張力繊
維材にエポキシ樹脂などの熱硬化性樹脂を含浸させてい
る。
2. Description of the Related Art In recent years, as a seismic retrofitting method for existing concrete structures, a technique has been attracting attention in which high-strength fiber materials such as carbon fiber or aramid fiber are attached to the outer surface of the structure or wound to reinforce. ing. In such an earthquake-proof reinforcement method, high tension fiber materials are integrated with each other and between the high tension fiber material and the existing concrete structure, and in order to effectively exert the reinforcing effect of the high tension fiber material, The fiber material is impregnated with thermosetting resin such as epoxy resin.

【0003】このような用途に用いられる熱硬化性樹脂
は、100℃程度の温度で硬化する高温硬化型のもの
と、10〜30℃程度の温度で硬化する常温硬化型のも
のが提供されている。しかしながら、このような熱硬化
性樹脂には、いずれも以下に説明する技術的な課題が指
摘されていた。
Thermosetting resins used for such purposes are provided as a high temperature curable type which is cured at a temperature of about 100 ° C. and a room temperature curable type which is cured at a temperature of about 10 to 30 ° C. There is. However, the technical problems described below have been pointed out for all of these thermosetting resins.

【0004】[0004]

【発明が解決しようとする課題】すなわち、高温硬化型
の熱硬化樹脂を使用すると、硬化反応が加熱により促進
され、施工能率が向上するものの、既存コンクリート構
造物が高温化に伴って劣化するなどの問題があった。一
方、常温硬化型の熱硬化性樹脂を使用すると、既存コン
クリート構造物に損傷を与えることは少ないが、硬化に
時間がかかり、施工期間が長くなる。
That is, when a high temperature curing type thermosetting resin is used, the curing reaction is accelerated by heating and the construction efficiency is improved, but the existing concrete structure is deteriorated as the temperature rises. There was a problem. On the other hand, when the room temperature curable thermosetting resin is used, the existing concrete structure is rarely damaged, but it takes a long time to cure and the construction period becomes long.

【0005】本発明は、このような問題点に鑑みてなさ
れたものであって、その目的とするところは、既存構造
物に損傷を与えることが少なく、しかも、施工能率も向
上させることができる既存構造物の耐震補強工法および
同工法に用いる繊維シートを提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to cause less damage to existing structures and to improve the working efficiency. It is to provide a seismic strengthening method for existing structures and a fiber sheet used for the method.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、既存構造物の外表面に炭素繊維などの高
張力繊維材にエポキシ樹脂などの熱硬化性樹脂を含浸さ
せて貼付または捲回し、その後に前記熱硬化性樹脂を硬
化させる既存構造物の耐震補強工法において、前記熱硬
化性樹脂を、60℃以上の温度で加熱すると硬化を開始
する潜在硬化型のもので構成した。このように構成され
た既存構造物の耐震補強工法によれば、高張力繊維材に
含浸された熱硬化樹脂が、60℃以上の温度で加熱する
と硬化を開始する潜在硬化型なので、既存構造物に与え
る損傷が少なくなるとともに、常温硬化型のものよりも
硬化反応が速くなる。前記熱硬化性樹脂は、エポキシ樹
脂主剤と、マイクロカプセル膜に包囲された硬化剤とか
ら構成することができる。また、前記既存構造物の耐震
補強工法に用いる繊維シートとして、既存構造物の外表
面にエポキシ樹脂などの熱硬化性樹脂を含浸させて貼付
される繊維シートであって、前記繊維シートは、メッシ
ュ状の繊維担持体と、前記繊維担持体の一面に止着さ
れ、一方向に引き揃えられた炭素繊維などの高張力長繊
維とを備え、前記熱硬化性樹脂は、60℃以上の温度で
加熱すると硬化を開始する潜在硬化型とで構成した。こ
のように構成された繊維シートを用いると、高張力繊維
材に含浸された熱硬化樹脂が、60℃以上の温度で加熱
すると硬化を開始する潜在硬化型なので、既存構造物に
与える損傷が少なくなるとともに、常温硬化型のものよ
りも硬化反応が速くなる。
In order to achieve the above object, the present invention is applied to the outer surface of an existing structure by impregnating a high tension fiber material such as carbon fiber with a thermosetting resin such as epoxy resin. Alternatively, in a seismic retrofitting method for an existing structure in which the thermosetting resin is wound and then cured, the thermosetting resin is a latent curing type that starts to cure when heated at a temperature of 60 ° C. or higher. . According to the seismic retrofitting method of the existing structure configured as described above, the thermosetting resin impregnated in the high-strength fiber material is a latent curing type that starts to cure when heated at a temperature of 60 ° C. or higher. In addition to less damage, the curing reaction becomes faster than that of the room temperature curing type. The thermosetting resin may be composed of an epoxy resin base material and a curing agent surrounded by a microcapsule film. Further, as a fiber sheet used for the seismic reinforcement method of the existing structure, a fiber sheet impregnated with a thermosetting resin such as an epoxy resin is attached to the outer surface of the existing structure, and the fiber sheet is a mesh. -Shaped fiber carrier and high tension long fibers such as carbon fibers fixed to one surface of the fiber carrier and aligned in one direction, the thermosetting resin at a temperature of 60 ° C. or higher. It was composed of a latent curing type which starts to cure when heated. When the fiber sheet configured in this way is used, the thermosetting resin impregnated in the high-strength fiber material is a latent curing type that starts to cure when heated at a temperature of 60 ° C. or higher, so that damage to existing structures is reduced. In addition, the curing reaction becomes faster than that of the room temperature curing type.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態につい
て、添付図面に基づいて詳細に説明する。図1は、本発
明にかかる既存構造物の耐震補強工法の一実施例を示し
ている。同図に示す耐震補強工法は、本発明を角形断面
の既存鉄筋コンクリート柱10に適用した場合を例示し
ている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 shows an embodiment of a seismic retrofitting method for existing structures according to the present invention. The seismic strengthening method shown in the figure illustrates a case where the present invention is applied to an existing reinforced concrete column 10 having a rectangular cross section.

【0008】鉄筋コンクリート柱10に耐震補強を施す
際には、まず、柱10の外表面に繊維シート12からな
る高張力繊維材が貼付される。繊維シート12は、図2
にその詳細を示すように、所定の幅を有する帯状のもの
であって、メッシュ状に形成された繊維担持体12a
と、この繊維担持体12aの一面側に止着された炭素繊
維(高張力繊維)12bと、炭素繊維12bに含浸され
たエポキシ樹脂12cとから構成されている。
When the reinforced concrete column 10 is to be subjected to seismic reinforcement, first, a high-strength fiber material made of a fiber sheet 12 is attached to the outer surface of the column 10. The fiber sheet 12 is shown in FIG.
As shown in detail below, the fiber carrier 12a is a strip having a predetermined width and formed in a mesh shape.
And a carbon fiber (high tension fiber) 12b fixed to one surface side of the fiber carrier 12a and an epoxy resin 12c impregnated in the carbon fiber 12b.

【0009】繊維担持体12aは、例えば、ガラス繊維
などで形成されている。炭素繊維12bは、繊維シート
12の幅方向に引き揃えた状態で配置されている。な
お、炭素繊維12bの配置方向は、この方向に限定され
ることはなく、例えば、繊維シート12の幅方向に斜交
するように引き揃えていよいし、繊維シート12の長手
方向に引き揃えてもよい。
The fiber carrier 12a is made of, for example, glass fiber. The carbon fibers 12b are arranged in a state of being aligned in the width direction of the fiber sheet 12. The arrangement direction of the carbon fibers 12b is not limited to this direction. For example, the carbon fibers 12b may be aligned so as to be oblique to the width direction of the fiber sheet 12, or may be aligned in the longitudinal direction of the fiber sheet 12. Good.

【0010】エポキシ樹脂12cは、潜在硬化型のもの
であって、エポキシ樹脂主剤とマイクロカプセル膜に包
囲された硬化剤とを混合したものである。このエポキシ
樹脂12cは、マイクロカプセル膜を加熱して溶融させ
ることにより、エポキシ樹脂12cの硬化性が顕在化さ
れるものであって、この溶融温度は、60℃以上に設定
されている。なお、このカプセル膜の溶融温度は、その
膜厚を異ならせることでコントロールすることができ
る。
The epoxy resin 12c is a latent curing type and is a mixture of an epoxy resin base and a curing agent surrounded by a microcapsule film. The epoxy resin 12c is one in which the curability of the epoxy resin 12c is revealed by heating and melting the microcapsule film, and the melting temperature is set to 60 ° C. or higher. The melting temperature of the capsule film can be controlled by changing the film thickness.

【0011】つまり、カプセル膜を採用した潜在硬化型
エポキシ樹脂12cの硬化性の顕在化は、膜厚みを一定
にした場合に、温度により制御できるとともに、温度を
一定にした場合に、膜厚みを変えることにより制御でき
る。このような構成の潜在硬化型のエポキシ樹脂12c
としては、例えば、旭化成株式会社製、商品名:ノバキ
ュア HX−3722、主剤:ビスフェノールA型エポ
キシ樹脂、硬化材:イミダゾール変性品、カプセル膜の
厚み2μ,溶融温度60〜70℃が挙げられる。
That is, the manifestation of the curability of the latent curable epoxy resin 12c using the capsule film can be controlled by the temperature when the film thickness is constant, and the film thickness can be controlled when the temperature is constant. It can be controlled by changing it. Latent curing type epoxy resin 12c having such a configuration
Examples thereof include: Asahi Kasei Corporation, trade name: Novacure HX-3722, main agent: bisphenol A type epoxy resin, curing material: imidazole modified product, capsule membrane thickness 2 μ, melting temperature 60 to 70 ° C.

【0012】潜在硬化型のエポキシ樹脂12cは、液状
のエポキシ樹脂主剤と、マイクロカプセル膜で被覆され
た硬化剤とから構成されているので、これらを混合して
も主剤と硬化剤とが直接接触せず、混合しただけではエ
ポキシ樹脂主剤の硬化が開始されない。このため、これ
らを混合した場合に、エポキシ樹脂主剤の粘度が上昇し
ないので、混合攪拌が容易かつ、十分に行なえ、硬化剤
を主剤中に均一に分散させることができるとともに、繊
維シート12の炭素繊維12b間に十分に含浸させるこ
とができる。
Since the latent curing type epoxy resin 12c is composed of a liquid epoxy resin main agent and a curing agent coated with a microcapsule film, even if these are mixed, the main agent and the curing agent are in direct contact with each other. If not mixed, the curing of the epoxy resin base material will not start. For this reason, when these are mixed, the viscosity of the epoxy resin main component does not increase, so that mixing and stirring can be performed easily and sufficiently, and the curing agent can be uniformly dispersed in the main component, and the carbon of the fiber sheet 12 can be dispersed. The fibers 12b can be sufficiently impregnated.

【0013】また、潜在硬化型のエポキシ樹脂12c
は、主剤と硬化剤とを混合しても、主剤の硬化が開始さ
れないので、予め大量に混合して一液化した状態で長期
間貯蔵することもできる。このように構成された繊維シ
ート12を既存鉄筋コンクリート柱10の外表面に貼付
する際には、繊維シート12が鉄筋コンクリート柱10
の外周を周回するようにして行われる。
The latent curing type epoxy resin 12c
Since the curing of the main agent does not start even when the main agent and the curing agent are mixed, it can be stored in a one-liquid state for a long period of time by mixing a large amount in advance. When the fiber sheet 12 configured as described above is attached to the outer surface of the existing reinforced concrete column 10, the fiber sheet 12 is used.
It goes around the outer circumference of the.

【0014】このとき、繊維シート12の炭素繊維12
bが前面側になるようにし、かつ、上下方向の繊維シー
ト12間で端部同士が相互にオーバラップするようにし
て行われる。なお、繊維シート12の貼付状態は、図示
のように1層に限ることはなく、2層以上の複数層に設
けてもよい。この場合、層間で炭素繊維12bの引き揃
え方向を異ならせてもよい。
At this time, the carbon fiber 12 of the fiber sheet 12
b is on the front side, and the ends of the fiber sheets 12 in the vertical direction overlap each other. In addition, the attachment state of the fiber sheet 12 is not limited to one layer as shown in the figure, and may be provided in two or more layers. In this case, the alignment directions of the carbon fibers 12b may be different between the layers.

【0015】繊維シート12の貼付が完了すると、図1
(B)に示すように、上下端の繊維シート12の炭素繊
維12bにリード線14を接続して、リード線14間に
直流電源(図示省略)を接続して、炭素繊維12bに通
電する。炭素繊維12bに通電すると、炭素繊維12b
自身の電気抵抗により、繊維12b自体が発熱する。そ
して、発熱温度が60℃以上になると、エポキシ樹脂1
2cのマイクロカプセル膜が溶融して、硬化剤が放出さ
れ、硬化剤とエポキシ樹脂主剤とが反応して、硬化が開
始される。
When the application of the fiber sheet 12 is completed, FIG.
As shown in (B), the lead wires 14 are connected to the carbon fibers 12b of the fiber sheets 12 at the upper and lower ends, and a DC power source (not shown) is connected between the lead wires 14 to energize the carbon fibers 12b. When the carbon fiber 12b is energized, the carbon fiber 12b
The electric resistance of the fiber itself causes the fiber 12b to generate heat. When the heat generation temperature reaches 60 ° C or higher, the epoxy resin 1
The microcapsule film of 2c is melted, the curing agent is released, the curing agent reacts with the epoxy resin base material, and curing is started.

【0016】この場合、エポキシ樹脂主剤に付加重合型
のものを採用すると、発熱に伴って温度が上昇すると、
連鎖的に反応が開始されるので、より一層好ましい状態
になる。そして、エポキシ樹脂12cの硬化が終了する
と、炭素繊維12b同士がエポキシ樹脂12cにより一
体的に結着された状態で、既存鉄筋コンクリート柱10
の表面に接着され、既存鉄筋コンクリート柱10の耐震
補強が完了する。
In this case, if an addition polymerization type epoxy resin is used as the base resin, the temperature rises due to heat generation,
Since the reactions are started in a chain, it becomes a more preferable state. Then, when the curing of the epoxy resin 12c is completed, the carbon fiber 12b is integrally bound by the epoxy resin 12c, and the existing reinforced concrete column 10
Is adhered to the surface of the existing reinforced concrete column 10 and the seismic reinforcement of the existing reinforced concrete column 10 is completed.

【0017】さて、以上のようにして既存鉄筋コンクリ
ート柱10の耐震補強を行うと、炭素繊維12bに含浸
されたエポキシ樹脂12cが、60℃以上の温度で加熱
すると硬化を開始する潜在硬化型なので、既存コンクリ
ート柱10に与える損傷が少なくなるとともに、常温硬
化型のものよりも硬化反応が速くなり、施工能率も向上
する。
When the existing reinforced concrete column 10 is subjected to seismic reinforcement as described above, the epoxy resin 12c impregnated in the carbon fiber 12b is a latent curing type which starts to cure when heated at a temperature of 60 ° C. or higher, The damage to the existing concrete columns 10 is reduced, the curing reaction is faster than that of the room temperature curing type, and the construction efficiency is also improved.

【0018】図3は、本発明にかかる既存構造物の耐震
補強工法の別の実施例を示している。同図に示す実施例
では、耐震補強対象は、上記実施例と同様に角形断面の
鉄筋コンクリート柱10である。この鉄筋コンクリート
柱10の耐震補強は、単繊維を寄り合わせて束にしたス
トランド状の炭素繊維16を使用している。このストラ
ンド状の炭素繊維16には、上記実施例と同様に潜在硬
化型のエポキシ樹脂が予め含浸させられている。ストラ
ンド状の炭素繊維16は、鉄筋コンクリート柱10の外
表面に端部同士が相互に接触するようにして、密に捲回
される。
FIG. 3 shows another embodiment of the seismic retrofitting method for existing structures according to the present invention. In the embodiment shown in the figure, the seismic retrofit target is a reinforced concrete column 10 having a rectangular cross section as in the above embodiment. Seismic reinforcement of the reinforced concrete columns 10 uses strand-shaped carbon fibers 16 in which single fibers are bundled together. The strand-shaped carbon fiber 16 is previously impregnated with a latent curing type epoxy resin as in the above-mentioned embodiment. The strand-shaped carbon fibers 16 are densely wound on the outer surface of the reinforced concrete column 10 such that their ends are in contact with each other.

【0019】炭素繊維16の捲回が終了すると、上記実
施例と同様に通電して発熱させる。この発熱温度が60
℃以上になると、エポキシ樹脂の潜在硬化性が顕在化さ
れて、樹脂の硬化が開始され、エポキシ樹脂の硬化が終
了すると、コンクリート柱10の耐震補強が完了する。
このように構成した鉄筋コンクリート柱10の耐震補強
工法においても上記実施例と同様な作用効果が得られ
る。
When the winding of the carbon fiber 16 is completed, electricity is supplied to generate heat as in the above embodiment. This exothermic temperature is 60
When the temperature is higher than or equal to ℃, the latent curing property of the epoxy resin is revealed, and the curing of the resin is started. When the curing of the epoxy resin is completed, the seismic reinforcement of the concrete column 10 is completed.
Even in the seismic retrofitting method of the reinforced concrete column 10 configured as described above, the same operational effect as that of the above-described embodiment can be obtained.

【0020】なお、上記実施例では、既存構造物として
鉄筋コンクリート柱10に耐震補強を施す場合を例示し
たが、本発明の実施は、これに限定されることはなく、
例えば、鉄筋コンクリート製の梁,スラブ、煙突などの
塔状構造物の耐震補強に適用することもできる。また、
高張力繊維材は、炭素繊維12b,16に限られること
はなく、例えば、アラミド繊維なども使用することがで
き、繊維材の加熱手段も、通電だけでなく、例えば、赤
外線や遠赤外線の照射や、ヒータによる加熱などで行う
こともできる。
In the above embodiment, the case where the reinforced concrete column 10 as the existing structure is subjected to the seismic reinforcement is illustrated, but the practice of the present invention is not limited to this.
For example, it can be applied to seismic reinforcement of tower-like structures such as reinforced concrete beams, slabs, and chimneys. Also,
The high-strength fiber material is not limited to the carbon fibers 12b and 16, and, for example, aramid fiber or the like can be used, and the heating means of the fiber material is not limited to energization, but is irradiated with infrared rays or far infrared rays, for example. Alternatively, it can be performed by heating with a heater.

【0021】さらに、熱硬化性樹脂もエポキシ樹脂に限
ることはなく、例えば、硬化剤と接触することにより硬
化反応が開始されるウレタン樹脂,MMA(メチルメタ
クレート樹脂),ポリエステル樹脂,フェノール樹脂な
ども使用することができる。
Further, the thermosetting resin is not limited to the epoxy resin, and for example, a urethane resin, MMA (methylmethacrylate resin), a polyester resin, a phenol resin, etc., in which a curing reaction is initiated by contact with a curing agent. Can also be used.

【0022】[0022]

【発明の効果】以上、実施例で詳細に説明したように、
本発明にかかる既存構造物の耐震補強工法および同工法
に用いる繊維シートによれば、既存構造物に損傷を与え
ることが少なく、しかも、施工能率も向上させることが
できる。
As described above in detail in the embodiments,
According to the seismic strengthening method for existing structures and the fiber sheet used for the same according to the present invention, the existing structures are less likely to be damaged, and the construction efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる既存構造物の耐震補強工法の一
実施例を示す工程説明図である。
FIG. 1 is a process explanatory view showing an example of an earthquake-proof reinforcing method for an existing structure according to the present invention.

【図2】同工法に使用する繊維シートの背面図である。FIG. 2 is a rear view of the fiber sheet used in the method.

【図3】本発明にかかる既存構造物の耐震補強工法の他
の実施例を示す施工状態の説明図である。
FIG. 3 is an explanatory view of a construction state showing another embodiment of the seismic strengthening method for existing structures according to the present invention.

【符号の説明】[Explanation of symbols]

10 鉄筋コンクリート柱(既存構造物) 12 繊維シート 12a 繊維担持体 12b 炭素繊維(高張力繊維材) 12c 潜在硬化型エポキシ樹脂 16 ストランド状炭素繊維 10 Reinforced Concrete Column (Existing Structure) 12 Fiber Sheet 12a Fiber Carrier 12b Carbon Fiber (High Tensile Fiber Material) 12c Latent Curing Epoxy Resin 16 Stranded Carbon Fiber

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 63/00 NKT C08L 63/00 NKT E04H 9/02 E04H 9/02 // B29K 105:08 307:04 (72)発明者 小川 晴果 東京都清瀬市下清戸4−640 株式会社大 林組技術研究所内 (72)発明者 三谷 一房 東京都清瀬市下清戸4−640 株式会社大 林組技術研究所内 (72)発明者 川原 正雄 埼玉県川越市南台1丁目10番地4 株式会 社ショックベトン・ジャパン内Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display area C08L 63/00 NKT C08L 63/00 NKT E04H 9/02 E04H 9/02 // B29K 105: 08 307: 04 ( 72) Inventor Haruka 4-640 Shimo-Seido Co., Ltd., Kiyose-shi, Tokyo, Obayashi Technical Research Institute Co., Ltd. Inventor Masao Kawahara 1-10-10 Minamidai, Kawagoe City, Saitama Prefecture Shock Beton Japan Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 既存構造物の外表面に炭素繊維などの高
張力繊維材にエポキシ樹脂などの熱硬化性樹脂を含浸さ
せて貼付または捲回し、その後に前記熱硬化性樹脂を硬
化させる既存構造物の耐震補強工法において、 前記熱硬化性樹脂を、60℃以上の温度で加熱すると硬
化を開始する潜在硬化型のもので構成することを特徴と
する既存構造物の耐震補強工法。
1. An existing structure in which a high-strength fiber material such as carbon fiber is impregnated with a thermosetting resin such as an epoxy resin on the outer surface of an existing structure to be attached or wound, and then the thermosetting resin is cured. A method for earthquake-proofing reinforcement of an existing structure, wherein the thermosetting resin is composed of a latent-curing type that starts to cure when heated at a temperature of 60 ° C. or higher.
【請求項2】 前記熱硬化性樹脂は、エポキシ樹脂主剤
と、マイクロカプセル膜に包囲された硬化剤とからなる
ことを特徴とする請求項1記載の既存構造物の耐震補強
工法。
2. The seismic retrofitting method for an existing structure according to claim 1, wherein the thermosetting resin is composed of an epoxy resin base material and a curing agent surrounded by a microcapsule film.
【請求項3】 既存構造物の外表面にエポキシ樹脂など
の熱硬化性樹脂を含浸させて貼付される繊維シートであ
って、 前記繊維シートは、メッシュ状の繊維担持体と、 前記繊維担持体の一面に止着され、一方向に引き揃えら
れた炭素繊維などの高張力長繊維とを備え、 前記熱硬化性樹脂は、60℃以上の温度で加熱すると硬
化を開始する潜在硬化型からなることを特徴とする既存
構造物の耐震補強工法に用いる繊維シート。
3. A fiber sheet which is attached by impregnating a thermosetting resin such as an epoxy resin on the outer surface of an existing structure, the fiber sheet comprising a mesh-shaped fiber carrier, and the fiber carrier. And a high-tensile long fiber such as carbon fiber fixed to one surface and aligned in one direction, and the thermosetting resin is a latent curing type that starts to cure when heated at a temperature of 60 ° C. or higher. A fiber sheet used for the seismic retrofitting method for existing structures, which is characterized in that
JP32450395A 1995-12-13 1995-12-13 Seismic retrofitting method for existing structures and fiber sheet used in the method Expired - Fee Related JP3527341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32450395A JP3527341B2 (en) 1995-12-13 1995-12-13 Seismic retrofitting method for existing structures and fiber sheet used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32450395A JP3527341B2 (en) 1995-12-13 1995-12-13 Seismic retrofitting method for existing structures and fiber sheet used in the method

Publications (2)

Publication Number Publication Date
JPH09158495A true JPH09158495A (en) 1997-06-17
JP3527341B2 JP3527341B2 (en) 2004-05-17

Family

ID=18166537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32450395A Expired - Fee Related JP3527341B2 (en) 1995-12-13 1995-12-13 Seismic retrofitting method for existing structures and fiber sheet used in the method

Country Status (1)

Country Link
JP (1) JP3527341B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027417A1 (en) * 2001-09-25 2003-04-03 Structural Quality Assurance, Inc. Reinforcement material and reinforcement structure of structure and method of designing reinforcement material
KR20030038135A (en) * 2001-11-08 2003-05-16 홍원기 A concrete construction method using carbon fiber mold
KR100498247B1 (en) * 2002-09-02 2005-07-01 김원기 Seismic upgrading method of concrete column and concrete column reinforced thereby
CN104453267A (en) * 2013-09-18 2015-03-25 福州大学 Structure and manufacturing method of CFRP (carbon fiber reinforced plastic) sheet reinforced tenon-and-mortise-structure extension wooden beam
WO2015136771A1 (en) * 2014-03-14 2015-09-17 オムロン株式会社 Resin composition and cured product thereof
JP5974157B1 (en) * 2015-12-02 2016-08-23 株式会社ブルーム Reinforced structure of reinforced concrete structure
CN113882705A (en) * 2021-09-24 2022-01-04 北京工业大学 Reinforced structure of reinforced concrete shear wall

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107327153A (en) * 2016-04-28 2017-11-07 卡本复合材料(天津)有限公司 A kind of carbon fiber mesh is to pillar resistance to compression reinforcement means

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027417A1 (en) * 2001-09-25 2003-04-03 Structural Quality Assurance, Inc. Reinforcement material and reinforcement structure of structure and method of designing reinforcement material
KR20030038135A (en) * 2001-11-08 2003-05-16 홍원기 A concrete construction method using carbon fiber mold
KR100498247B1 (en) * 2002-09-02 2005-07-01 김원기 Seismic upgrading method of concrete column and concrete column reinforced thereby
CN104453267A (en) * 2013-09-18 2015-03-25 福州大学 Structure and manufacturing method of CFRP (carbon fiber reinforced plastic) sheet reinforced tenon-and-mortise-structure extension wooden beam
WO2015136771A1 (en) * 2014-03-14 2015-09-17 オムロン株式会社 Resin composition and cured product thereof
JP2015174912A (en) * 2014-03-14 2015-10-05 オムロン株式会社 Resin composition and cured article thereof
JP5974157B1 (en) * 2015-12-02 2016-08-23 株式会社ブルーム Reinforced structure of reinforced concrete structure
CN113882705A (en) * 2021-09-24 2022-01-04 北京工业大学 Reinforced structure of reinforced concrete shear wall
CN113882705B (en) * 2021-09-24 2023-01-20 北京工业大学 Reinforced structure of reinforced concrete shear wall

Also Published As

Publication number Publication date
JP3527341B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
KR100417892B1 (en) Flat strip lamella for reinforcing building components and method for placing a flat strip lamella on a component
EP1298267B1 (en) Structure reinforcing method, reinforcing structure material and reinforced structure
JP3527341B2 (en) Seismic retrofitting method for existing structures and fiber sheet used in the method
JPS6115881B2 (en)
JP3415107B2 (en) Method for reinforcing concrete structure and reinforcing structure
JP3806252B2 (en) Reinforcing method of concrete structure with reinforcing fiber sheet
JP3630380B2 (en) Repair and reinforcement method for existing structures
JP4272781B2 (en) Seismic reinforcement method
JP2004181934A (en) Method for frp lining
JP3779806B2 (en) Method for reinforcing concrete columnar body
JP3979912B2 (en) Reinforcing prepreg sheet and method for reinforcing concrete structure
JP2000043043A (en) Construction method for frp shear reinforcing bar
JP3553865B2 (en) Method of reinforcing steel structure and buffer layer for reinforcing steel structure
JP3868059B2 (en) Waterproofing method using photo-curable prepreg sheet
JP3246297B2 (en) Construction method of anticorrosion lining
JPH06193281A (en) Concrete repairing method with unidirectionally arranged fiber-reinforced sheet
JP4041708B2 (en) Reinforcement method of pier cross beam
JP3220540B2 (en) Concrete repair method using unidirectional reinforced fiber sheet
JPH08218646A (en) Method of reinforcing concrete structure
JP7201464B2 (en) Steel structure repair method
JPH02150456A (en) Fiber-reinforced plastic sheet, material for civil engineering and construction and reinforcing process therefor
JP2000265680A (en) Earthquake resistance reinforcing method
SE9701816D0 (en) Reinforcement procedure
JP2545259B2 (en) Method of strengthening structures with carbon fiber reinforced plastic plates
JPH10298930A (en) Reinforcing method for concrete structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040219

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees