JPH09154570A - Microorganism having property of preventing replant failure and microbial material using the same - Google Patents

Microorganism having property of preventing replant failure and microbial material using the same

Info

Publication number
JPH09154570A
JPH09154570A JP7345236A JP34523695A JPH09154570A JP H09154570 A JPH09154570 A JP H09154570A JP 7345236 A JP7345236 A JP 7345236A JP 34523695 A JP34523695 A JP 34523695A JP H09154570 A JPH09154570 A JP H09154570A
Authority
JP
Japan
Prior art keywords
soil
chitin
strain
microorganism
culturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7345236A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzuki
浩 鈴木
Kazuo Akashi
和夫 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUUKISHITSU HIRYO SEIBUTSU KAS
YUUKISHITSU HIRYO SEIBUTSU KASSEI RIYOU GIJUTSU KENKYU KUMIAI
Original Assignee
YUUKISHITSU HIRYO SEIBUTSU KAS
YUUKISHITSU HIRYO SEIBUTSU KASSEI RIYOU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUUKISHITSU HIRYO SEIBUTSU KAS, YUUKISHITSU HIRYO SEIBUTSU KASSEI RIYOU GIJUTSU KENKYU KUMIAI filed Critical YUUKISHITSU HIRYO SEIBUTSU KAS
Priority to JP7345236A priority Critical patent/JPH09154570A/en
Publication of JPH09154570A publication Critical patent/JPH09154570A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a new actinomyces K-31 strain, belonging to the genus Streptomyces, having functions to suppress the raising of pathogenic fungi for crops in soil and capable of providing a microbial material capable of preventing replant failure by culturing vermiculite and wheat bran therewith and applying the cultured product to soil. SOLUTION: This microorganism is a new actinomyces K-31 strain (FERM P-15204), having functions to suppress the raising of pathogenic fungi for crops in soil and belonging to the genus Streptomyces. The microorganism is capable of producing a microbial material capable of preventing replant failure by culturing together with a carrier such as vermiculite and a culture medium such as wheat bran and application thereof to soil. The microorganism is obtained by embedding chitin as a separation source in a plowland soil, etc., then directly culturing the resultant plowland soil, etc., after the passage of 2 months or mixing chitin therewith, culturing the resultant mixture under conditions for preferentially increasing the microorganism capable of decomposing the chitin, adding the cultured product to sterile water, shaking the mixture for 30min, diluting the shaken mixture, smearing a chitin agar plate culture medium with a part thereof, carrying out the culturing at 28 deg.C in the dark for 1 week and collecting the microorganism of a colony capable of decomposing the chitin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、土壌中の作物病原
菌密度を低下し、連作障害を軽減することができる微生
物およびそれを用いた微生物資材に関する。
TECHNICAL FIELD [0001] The present invention relates to a microorganism capable of reducing the density of crop pathogens in soil and mitigating continuous crop damage, and a microbial material using the same.

【0002】[0002]

【従来の技術】昭和45年に作物の指定産地制度が導入
されて以来、農地では作物の連作化が進み、それに伴っ
て連作障害という土壌病原菌に由来する病害の発生が問
題となっている。この防除方法とし、農薬を使用して病
原菌を殺す方法を用いると、病原菌のみならず有用な微
生物をも殺菌してしまうため、土壌中の生物的環境が乱
れ、作物生育の悪化、あるいは新たな病害の発生などが
起こるという問題が生じてしまう。一方、同一作物の連
作を避け、輪作を行うようにして連作障害を防止するこ
ともできるが、収益性などが問題となる。
2. Description of the Related Art Since the introduction of the designated production area system for crops in 1970, continuous crop production has progressed in agricultural lands, which has led to a problem of continuous crop failure, which is a disease caused by soil pathogens. When this method of control is used to kill pathogenic bacteria using pesticides, not only the pathogenic bacteria but also useful microorganisms are sterilized, which disturbs the biological environment in the soil, deteriorates crop growth, or introduces new There is a problem that diseases will occur. On the other hand, it is possible to avoid continuous cropping of the same crop and prevent crop failure, but profitability becomes a problem.

【0003】このような問題に対応して、微生物を用い
微生物の作用により土壌病害、連作障害の軽減する方法
があり、例えば、特開平03−72825号公報には、
農業用有用微生物が添加された成形培地が記載されてお
り、また、特開昭62−234005号公報には、微生
物を高分子物質に固定した農林水産業用微生物製剤が開
示されている。
In response to such a problem, there is a method of using a microorganism to reduce soil diseases and continuous crop damage by the action of the microorganism. For example, Japanese Patent Laid-Open No. 03-72825 discloses a method.
A molding medium to which useful agricultural microbes have been added is disclosed, and Japanese Patent Application Laid-Open No. 62-234005 discloses a microbial preparation for agriculture, forestry and fisheries, in which microbes are immobilized on a polymeric substance.

【0004】[0004]

【発明が解決しようとする課題】しかし、特開平03−
72825号公報に記載の形成培地は、ロックウール繊
維などを用いた無機の成形培地を用た植物栽培におい
て、有用微生物を培地に添加し、培地内に繁殖させるこ
とによって連作障害を防止するものであり、これを種々
の微生物が生存している土壌にそのまま適用することは
できない。また、特開昭62−234005号公報に記
載されている微生物製剤では、用いている微生物は公知
の種であり、これらの微生物では土壌病原菌抑制作用が
充分ではなく、連作障害軽減に効果があるとはいえな
い。
However, Japanese Patent Laid-Open No. 03-
The formation medium described in Japanese Patent No. 72825 is to prevent continuous cropping by adding useful microorganisms to the medium and propagating in the medium in plant cultivation using an inorganic molding medium such as rockwool fiber. However, it cannot be directly applied to soil in which various microorganisms live. Further, in the microbial preparation described in JP-A-62-234005, the microorganism used is a known species, and these microorganisms are not sufficient in suppressing soil pathogens and are effective in reducing continuous cropping disorders. Not really.

【0005】従って、本発明の目的は、上述の問題を解
決し、一般の土壌に対して適用できる土壌病原菌抑制効
果が高い微生物を提供し、さらにこれを用いて連作障害
軽減用農業微生物資材を提供することである。
Therefore, an object of the present invention is to solve the above-mentioned problems and provide a microorganism having a high effect of suppressing soil pathogens that can be applied to general soil, and further use this to provide an agricultural microbial material for reducing continuous crop damage. Is to provide.

【0006】[0006]

【課題を解決するための手段】本発明者らは、病原菌の
細胞壁構成成分であるキチンを病害発生土壌に添加する
ことにより病害の発生が抑制される現象に着目し、キチ
ンを分解する能力が高く、かつ病原菌の育成に対し抑制
能力を有する微生物を分離し、これを病害が発生してい
る土壌に施用すると、土壌中の作物病原菌の菌密度を低
下させ、病害を抑えることができることを見いだし、本
発明をなすに至った。
[Means for Solving the Problems] The present inventors have focused on the phenomenon that the occurrence of disease is suppressed by adding chitin, which is a component of the cell wall of pathogenic bacteria, to disease-producing soil, and have the ability to decompose chitin. It was found that by separating a microorganism that is high and capable of suppressing the growth of pathogenic bacteria and applying it to soil in which the disease has occurred, the bacterial density of the crop pathogenic bacteria in the soil can be reduced and the disease can be suppressed. The present invention has been completed.

【0007】すなわち、本発明の微生物は、土壌中の作
物病原菌の育成を抑制する機能を有するストレプトミセ
ス属(strptomyces)に属する新規な放線菌
K−31株FERM P−15204であり、この放線
菌と同一の種に属し、キチンを混合した土壌または植物
性あるいは動物性資材から分離され、土壌中の作物病原
菌の育成を抑制する機能を有する放線菌であることを特
徴とする。
That is, the microorganism of the present invention is a novel actinomycete K-31 strain FERM P-15204 belonging to the genus Streptomyces having a function of suppressing the growth of crop pathogens in soil. And actinomycetes belonging to the same species as the above, separated from soil mixed with chitin or plant or animal material, and having a function of suppressing the growth of crop pathogens in soil.

【0008】また、本発明の微生物を含有する微生物資
材は、上記の新規な放線菌を、担体および培養基ととも
に培養して得た微生物資材であり、担体としてバーミキ
ュライト、培養基としてフスマを用いて培養して得た微
生物資材であることを特徴とする。
The microbial material containing the microorganism of the present invention is a microbial material obtained by culturing the above-mentioned novel actinomycetes together with a carrier and a culture medium, and is cultivated using vermiculite as a carrier and bran as a culture medium. It is a microbial material obtained by

【0009】さらに、本発明は、上記の新規な放線菌を
土壌に施用することを特徴とする連作障害の防止方法で
あり、上記の微生物資材を施用することによって、連作
障害を防止することを特徴とするものである。
Furthermore, the present invention is a method for preventing continuous cropping disorders, characterized by applying the above-mentioned novel actinomycetes to soil. By applying the above-mentioned microbial material, it is possible to prevent continuous cropping disorders. It is a feature.

【0010】本発明で用いる微生物は、土壌より分離さ
れた、ストレプトミセス属(Streptomyce
s)に属する放線菌K−31株(受託番号:FERM
P−15204)およびそれと同様の性状を示す放線菌
であり、キチナーゼを産生し、土壌病原菌の育成を抑制
し、連作障害を防止するものである。
The microorganism used in the present invention is a genus Streptomyces isolated from soil.
actinomycete K-31 strain (accession number: FERM)
P-15204) and actinomycetes having the same properties as those, which produce chitinase, suppress the growth of soil pathogens, and prevent continuous crop failure.

【0011】この放線菌K−31株はキチン培地を使用
した希釈平板法を用いて分離したものであり、次のよう
にしてストレプトミセス属(Streptomyce
s)に属する新規な放線菌であると同定した。
The actinomycete K-31 strain was isolated by the dilution plate method using a chitin medium, and was treated with Streptomyces in the following manner.
It was identified as a new actinomycete belonging to s).

【0012】すなわち、「放線菌の同定実験法、第1
版、日本放線菌研究会編、日本放線菌研究会事務局(1
985)」、「微生物の科学分類実験法、初版、駒形和
男編、学会出版センター(1982)」および「新しい
分類学に伴走する細菌同定法、第1版、菜根出版(19
87)」を参考に、また、菌種の検索については、「H.
Nonomura, J. Ferment. Technol.,52, 78 (1974) 」、
「Bergey's Manual of Systematic Bacterology, Vol.
4, S. T. Williams, M. E. Sharpe, J. G. Holt,Wiliam
s & Wilkins (1989)」、「ISP description reports 」
である「E. B. Shirling, D. Gottlieb, Int. J. Syste
m. Bacteriol., 18, 69 (1968)、E. B. Shirling, D. G
ottlieb, Int. J. System. Bacteriol., 18, 279 (196
8) 、E. B.Shirling, D. Gottlieb, Int. J. System. B
acteriol., 19, 391 (1969) 、E. B. Shirling, D. Got
tlieb, Int. J. System. Bacteriol., 22, 265 (1972)
を参考にして、形態観察、生理的性状試験および菌体成
分の分析を行い同定を行った。
That is, "Experimental method for identifying actinomycetes, No. 1
Edition, Japan Actinomycete Study Group, Japan Actinomycete Study Group Secretariat (1
985) ”,“ Scientific Methods for Scientific Classification of Microorganisms, First Edition, Kazuo Komagata, Academic Publishing Center (1982) ”and“ Bacterial Identification Method Accompanied by New Taxonomy, 1st Edition, Nane Publishing (19)
87) ”, and regarding the search for bacterial species, refer to“ H.
Nonomura, J. Ferment. Technol., 52, 78 (1974) '',
`` Bergey's Manual of Systematic Bacterology, Vol.
4, ST Williams, ME Sharpe, JG Holt, Wiliam
s & Wilkins (1989) "," ISP description reports "
`` EB Shirling, D. Gottlieb, Int. J. Syste
m. Bacteriol., 18, 69 (1968), EB Shirling, D. G
ottlieb, Int. J. System. Bacteriol., 18, 279 (196
8), EB Shirling, D. Gottlieb, Int. J. System. B
acteriol., 19, 391 (1969), EB Shirling, D. Got
tlieb, Int. J. System. Bacteriol., 22, 265 (1972)
The morphological observation, physiological property test and analysis of bacterial cell components were carried out for identification with reference to.

【0013】その結果、細胞壁タイプ、形態およびキノ
ン系から、細胞壁タイプI型の放線菌で、基生菌糸を形
成し、気菌糸上の胞子柄に長い胞子連鎖を形成している
特徴からストレプトミセス(Streptomyce
s)に属する放線菌と同定した。次に、Nonomuraの文献
を参考にして種の検索を行ったが、当該文献には完全に
一致する菌種の記載がみられなかった。そこで、集落表
面の色調と資化性のみに着目して再検索したところ、S
treptomyces viridifacienc
s、Streptomyces recifensi
s、Streptomyces xanthocidi
cusの3菌種に比較的近いと考えられたため、これら
3菌種の基準株と培養性状の比較を行った。その結果、
K−31株は集落の色調などが基準株と異なり、これら
の菌種とは別の菌種であることが判明した。なお、K−
31株の性状を表1に、K−31株と3菌種の基準株と
のISP各培地での色調の比較結果を表2に示す。ま
た、胞子連鎖の形状を示す顕微鏡写真を図1に、胞子の
表面構造を示す顕微鏡写真を図2に示す。
As a result, from the cell wall type, morphology, and quinone system, cell wall type I actinomycetes form basal hyphae and form long spore chains in the spore stalk on aerial hyphae. (Streptomy
It was identified as an actinomycete belonging to s). Next, a species search was carried out with reference to Nonomura's literature, but no description of a completely matching bacterial species was found in the literature. Therefore, when I re-searched focusing only on the color tone and assimilation of the village surface,
Treptomyces viridifacienc
s, Streptomyces recifensi
s, Streptomyces xanthocidi
Since it was considered to be relatively close to the three strains of C. cus, the culture properties were compared with the reference strains of these three strains. as a result,
It was found that the K-31 strain differs from the reference strain in the color tone of the settlement and the like, and is a strain different from these strains. K-
The properties of the 31 strains are shown in Table 1, and the comparison results of the color tone of the K-31 strain and the reference strains of the three strains in each ISP medium are shown in Table 2. A micrograph showing the shape of the spore chain is shown in FIG. 1, and a micrograph showing the surface structure of the spores is shown in FIG.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】本発明の放線菌が病原菌の生育を抑制する
理由は理論的に充分解明されているわけではないが、一
般的に、作物の病害が発病している土壌に作物の病原菌
の細胞壁構成成分であるキチンあるいはラミナリンを施
用して病害を抑制できることが知られており、これは、
これらの物質を添加することによって、キチンあるいは
ラミナリンを資化し、分解することができる微生物が選
択的に増殖し、その結果、キチナーゼなどのキチンを分
解する物質が土壌中に放出され、病原菌の溶菌を誘発
し、病原菌が作物に感染できなくするものと考えられ
る。すなわち、本発明の土壌から分離した、具体的には
畑地土壌をポットにとり、その中にガーゼに包んだキチ
ン5gを埋没させて、その土壌を湿潤状態に保ちつつ2
カ月間放置した後、ガーゼ内のキチンよりキチン培地を
用いて分離した放線菌は、キチナーゼ類の産生量が多
く、キチンを資化し、分解する能力が高いものであり、
これによって病原菌の育成を有効に抑制するものと思わ
れる。
The reason why the actinomycete of the present invention suppresses the growth of pathogenic bacteria is not fully understood theoretically, but in general, the cell wall composition of the pathogenic bacteria of the crop is found in the soil in which the disease of the crop is developed. It is known that the disease can be suppressed by applying the component chitin or laminarin, which is
By adding these substances, microorganisms that can assimilate and decompose chitin or laminarin selectively grow, and as a result, substances that decompose chitin such as chitinase are released into the soil and lysis of pathogenic bacteria is performed. It is believed that the pathogenic fungus prevents the crop from infecting the crop. That is, the field soil separated from the soil of the present invention, specifically, the field soil is placed in a pot, and 5 g of chitin wrapped in gauze is buried therein to keep the soil in a wet state.
After being left for a month, the actinomycete separated from the chitin in the gauze using a chitin medium has a large production amount of chitinases, assimilates chitin, and has a high ability to decompose,
This is believed to effectively suppress the growth of pathogenic bacteria.

【0017】なお、K−31株が有する病原菌の抑制性
は、図3〜図6に示すように、従来知られている放線菌
であるStreptomyces viridifac
iencsやStreptomyces recife
nsisなど既知の放線菌種が示す病原菌抑制能力に比
べて大きな抑制能力を有している。
As shown in FIGS. 3 to 6, the inhibitory effect of the K-31 strain on pathogenic bacteria is Streptomyces viridifac which is a conventionally known actinomycete.
iencs and Streptomyces receive
It has a large inhibitory ability as compared with the ability of the known actinomycetes such as Nsis to inhibit pathogenic bacteria.

【0018】連作障害を防止するためには、本発明の微
生物であるストレプトミセス属(Streptomyc
es)に属する放線菌K−31株(受託番号:FERM
P−15204)またはそれと同様の性状を示す放線
菌を栽培土壌に施用することによって行うことができ
る。施用の形態としては、放線菌の菌糸や胞子を含む懸
濁液、放線菌培養液、胞子発芽液などを潅注したり、作
条施用する方法があり、また、取扱の容易さや効果の安
定性などを考慮し放線菌を含む微生物資材を調製し、こ
れを栽培土壌中に混合施用することによって行うことが
できる。
In order to prevent continuous cropping disorders, the microorganism of the present invention, Streptomyces.
es) actinomycete K-31 strain (accession number: FERM
P-15204) or actinomycetes exhibiting properties similar thereto can be applied to cultivated soil. As the application form, there is a method of irrigating suspension containing actinomycete hyphae and spores, actinomycete culture solution, spore germination solution, etc., or applying a row, and easy handling and stability of effect. It can be carried out by preparing a microbial material containing actinomycetes in consideration of the above and mixing and applying it to cultivated soil.

【0019】放線菌を含む微生物資材は、放線菌をバー
ミキュライトのような担体およびフスマのような培養基
として固形状に調製したものである。ここで用いること
ができる担体は、放線菌の増殖基体として用いるもので
あり、例えば、バーミキュライト、ゼオライトなどの無
機系のもの、骨粉、卵殻、ピートモス、炭などの有機系
のものなどが使用できる。また、培養基は、放線菌の増
殖栄養源として用いるものであり、例えば、フスマ、米
糠、フィッシュミールなど種々のものを使用することが
できる。これらのうちバーミキュライトとフスマとを組
合せたものが、K−31株の育成のため好ましい結果が
得られる。
The microbial material containing actinomycetes is prepared by solidifying actinomycetes as a carrier such as vermiculite and a culture medium such as bran. The carrier that can be used here is used as a growth substrate for actinomycetes, and for example, inorganic ones such as vermiculite and zeolite, and organic ones such as bone meal, egg shell, peat moss and charcoal can be used. The culture medium is used as a source of growth nutrients for actinomycetes, and various types such as bran, rice bran, and fish meal can be used. Among these, the combination of vermiculite and bran is preferable because of the growth of the K-31 strain.

【0020】担体と培養基との配合量は、培養基1容量
に対して、担体1〜10容量くらいがよく、フスマとバ
ーミキュライトの場合には容量比で1:1〜1:3、特
に好ましくは1:1の混合比で用いるとよい結果が得ら
れる。
The amount of the carrier and the culture medium to be blended is preferably about 1 to 10 volumes of the carrier with respect to 1 volume of the culture medium. In the case of fusuma and vermiculite, the volume ratio is 1: 1 to 1: 3, particularly preferably 1 volume. Good results are obtained with a mixing ratio of 1: 1.

【0021】[0021]

【発明の実施の形態】本発明に用いる放線菌は次のよう
にして分離することができる。すなわち、畑地土壌、植
物性あるいは動物性有機質資材などから直接、または、
これらにキチンを混合施用し、微生物を繁殖させた後、
これらを分離源としてサンプルを採取し、滅菌水中に懸
濁させ、希釈液を調製する。ついで、希釈液の一部をキ
チン寒天平板培地上で28℃、暗所下において1週間培
養し、培地上に発生したコロニーを観察し、培地中のキ
チンの溶解を示す透明リングを有するものをキチン分解
菌として純粋分離する。その後、この純粋分離した株
を、(1)キチン培地を用いた、固体静置培養、液体振
とう培養条件で培地中のキチンの分解能力が高いこと、
(2)麦芽・酵母エキス培地でダイコン萎黄病病原菌で
あるフザリウム(Fusarium)との対峙培養によ
り、フザリウムの菌糸の伸長を抑制すること、(3)ア
ルブミン培地の液体振とう培養条件で、増殖能力が高い
ことを基準として株の選抜を行った。このような方法に
より分離選抜された本発明のK−31株はストレプトミ
セス(Streptomyces)属に属する新規な放
線菌であったため、受託番号FERM P−15204
として寄託を行った。
BEST MODE FOR CARRYING OUT THE INVENTION The actinomycetes used in the present invention can be isolated as follows. That is, directly from upland soil, plant or animal organic material, or
After applying chitin to these and breeding microorganisms,
A sample is collected using these as a separation source and suspended in sterile water to prepare a diluent. Then, a part of the diluted solution was cultivated on a chitin agar plate medium at 28 ° C. in the dark for 1 week, and the colonies generated on the medium were observed, and those having a transparent ring showing dissolution of chitin in the medium were observed. Purely isolated as a chitin-degrading bacterium. Thereafter, the purely isolated strain was (1) having a high ability to decompose chitin in the medium under solid stationary culture and liquid shaking culture conditions using a chitin medium,
(2) Suppress the growth of Fusarium hyphae by facing culture with Fusarium, which is a causal agent of yellow radish radish in malt / yeast extract medium, (3) Proliferation ability under liquid shaking culture conditions of albumin medium The stock was selected based on the high value. The K-31 strain of the present invention, which was separately selected by such a method, was a new actinomycete belonging to the genus Streptomyces, and therefore has the accession number FERM P-15204.
As a deposit.

【0022】なお、本発明に用いることができる放線菌
は、同様な分離法で分離し、キチナーゼやラミナリナー
ゼなどを産生し病原菌の育成を抑制するものであれば、
K−31株と全く同一の株ばかりでなく、K−31株が
多少変異した株または同様な方法で分離した類似する株
であっても使用することができる。
The actinomycetes that can be used in the present invention can be separated by the same separation method as long as they produce chitinase, laminarinase and the like and suppress the growth of pathogenic bacteria.
Not only the same strain as the K-31 strain but also a strain in which the K-31 strain is slightly mutated or a similar strain isolated by a similar method can be used.

【0023】連作障害の防止には、上述のK−31株を
土壌中に任意な形態で施用することにより達成すること
ができるが、取扱いが容易で、再現性があり、安定した
効果を示す微生物資材を用いるのが便利であり、これを
用いた場合について説明する。
The prevention of continuous cropping can be achieved by applying the above-mentioned K-31 strain in soil in any form, but it is easy to handle, has reproducibility, and shows a stable effect. It is convenient to use a microbial material, and the case of using this will be described.

【0024】本発明の微生物資材は、ストレプトミセス
属の微生物が有する病原菌に対する抑制作用を利用した
ものであって、このような微生物資材を調製するには、
例えば、フスマとバーミキュライトとを所定の容量比で
混合し、水を添加し、オートクレーブで滅菌した後、キ
チン培地で液体振とう培養したK−31株を移植し、例
えば、28℃、暗所下で40日間充分に混合しながら培
養する。この培養に際し、キチナーゼの分泌を促進させ
るようにキチンを、またはラミナリナーゼの分泌を促進
させるためにラミナリンなど他の培養基を培地中に添加
することができ、また、安定した培養が可能なように、
例えば、活性炭、パーライトのような種々の添加剤を添
加することができ、培養後に必要により造粒剤などを用
いて微生物資材を調製することもできる。なお、培養し
た資材の菌密度は、キチン寒天平板培地を用いた希釈平
板法により測定することができ、一般に、資材1gあた
り106 cfu以上の菌密度を有していることが好まし
い。
The microbial material of the present invention utilizes the inhibitory action against pathogenic bacteria possessed by microorganisms of the genus Streptomyces. To prepare such microbial material,
For example, bran and vermiculite are mixed at a predetermined volume ratio, water is added, and the mixture is sterilized by an autoclave, and then the K-31 strain that has been subjected to liquid shaking culture in a chitin medium is transplanted. For example, at 28 ° C. in the dark. Incubate for 40 days with thorough mixing. During this culture, chitin can be added to the medium to promote the secretion of chitinase, or other culture medium such as laminarin can be added to the medium to promote the secretion of laminarinase, and stable culture can be performed.
For example, various additives such as activated carbon and perlite can be added, and a microbial material can also be prepared by using a granulating agent or the like after culturing, if necessary. The bacterial density of the cultivated material can be measured by the dilution plate method using a chitin agar plate medium, and it is generally preferable that the cultivated material has a bacterial density of 10 6 cfu or more per 1 g of the material.

【0025】このようにして調製した微生物資材を土壌
中に混合施用することにより、土壌中の病原菌の増殖を
抑制し、連作障害を防止することができる。施用量はフ
ザリウム菌などの増殖を抑制するのに必要な放線菌の量
が必要となるが、一般に圃場1アールあたり10〜10
0kgくらいの割合で施用すると連作障害を効果的に防
止することができる。
By mixing and applying the thus-prepared microbial material into the soil, it is possible to suppress the growth of pathogenic bacteria in the soil and prevent the continuous cropping disorder. The amount of actinomycetes necessary for suppressing the growth of Fusarium bacterium, etc. is required, but generally 10 to 10 per field are.
When applied at a rate of about 0 kg, continuous crop failure can be effectively prevented.

【0026】以上のように、Streptomyces
属の放線菌K−31株は、産出するキチナーゼなどの酵
素により共存する病原菌の細胞壁を溶解し、細胞壁の形
成を阻止することにより病原菌に対して優れた抑制作用
を示すものであり、この放線菌を土壌中に施用すること
により、放線菌は土壌中で増殖し、作物の病害が発生し
ている圃場土壌においては、土壌中の作物病原菌の菌密
度を低下させ病害を抑制し、一方、病害が未発病の土壌
においては、作物病原菌の菌密度の増加を妨げ発病を予
防することにより、連作障害が防止されることになる。
As described above, Streptomyces
The actinomycete K-31 strain of the genus has an excellent inhibitory action against pathogenic bacteria by lysing the cell wall of coexisting pathogenic bacteria with an enzyme such as chitinase produced and inhibiting the formation of the cell wall. By applying the fungus in the soil, actinomycetes grow in the soil, in the field soil where the disease of the crop is occurring, the fungus density of the crop pathogen in the soil is reduced to suppress the disease, while, In the soil where the disease has not yet occurred, the continuous cropping failure can be prevented by preventing the disease from occurring by preventing an increase in the bacterial density of the crop pathogen.

【0027】以下、実施例によりさらに詳しく説明す
る。
A more detailed description will be given below with reference to examples.

【0028】[0028]

【実施例】【Example】

実施例1 微生物の分離:分離源として、キチンを埋設後、2カ月
間経過した畑地土壌、植物性あるいは動物性有機質資材
などから直接、または、これらにキチンを混合し、キチ
ンを分解する微生物が優先的に増加するような条件で培
養した土壌などを10g採取し、90mlの滅菌水中に
加え、30分間振とうする。この懸濁液(10倍希釈
液)1mlに9mlの滅菌水を添加し、よく混合し、1
2 倍の希釈液を調製し、さらに、102 倍の希釈液を
1ml採取し滅菌水9mlで希釈混合して103 倍希釈
液を調製し、この操作を6回繰り返し106 倍希釈液を
調製した。ついで、105 、106 倍希釈液を0.1m
l採取し、キチン寒天平板培地に分注し、コンラージ棒
で均一に塗抹し、28℃、暗所で1週間培養した。培養
終了後、培地中に発生したコロニーのうち、培地中のキ
チンの溶解を示す透明リングを有するコロニーをキチン
分解菌と判断し純粋分離を行った。ついで、純粋分離し
た株から、(1)キチン培地を用いた、固体静置培養、
液体振とう培養条件で培地中のキチンの分解能力が高い
こと。(2)麦芽・酵母エキス培地でダイコン萎黄病病
原菌であるフザリウム(Fusarium)との対峙培
養により、フザリウムの菌糸の伸長を抑制すること。
(3)放線菌の培地として一般的なアルブミン培地の液
体振とう培養条件で、増殖能力が高いことを基準として
株の選抜を行ない、本発明のK−31株を選抜した。
Example 1 Separation of Microorganisms: As a separation source, a chitin-degrading microorganism was directly decomposed from field soil, vegetative or animal organic material, etc., which had been stored for 2 months after being embedded, or by mixing chitin therewith. 10 g of soil or the like cultivated under the condition of increasing preferentially is collected, added to 90 ml of sterilized water, and shaken for 30 minutes. To 1 ml of this suspension (10-fold diluted solution), add 9 ml of sterilized water and mix well.
Prepare a 0 2 -fold diluted solution, collect 1 ml of 10 2 -fold diluted solution, dilute and mix with 9 ml of sterilized water to prepare a 10 3 -fold diluted solution, repeat this operation 6 times, and dilute 10 6 -fold diluted solution. Was prepared. Next, add 10 5 , 10 6 times diluted solution to 0.1 m
l was collected, dispensed on a chitin agar plate medium, evenly smeared with a conradi stick, and cultured at 28 ° C. in the dark for 1 week. After completion of the culture, among the colonies generated in the medium, a colony having a transparent ring showing dissolution of chitin in the medium was judged to be a chitin-decomposing bacterium, and pure separation was performed. Then, from the purely isolated strain, (1) solid static culture using chitin medium,
High ability to decompose chitin in the medium under liquid shaking culture conditions. (2) Suppression of growth of Fusarium hyphae by confronting culture with malt / yeast extract medium with Fusarium, which is a pathogen of radish chlorosis.
(3) K-31 strain of the present invention was selected by selecting a strain under the liquid shaking culture condition of an albumin medium, which is a general medium for actinomycetes, based on its high growth ability.

【0029】得られたK−31株について、形態観察、
生理的性状試験および菌体成分の分析を行い菌の同定を
行った。結果を表1、2および図1、2に示す。その結
果、分離選抜されたK−31株は、種を確定するには至
らなかったがストレプトミセス属に属する新規な株であ
ることが判明した。
Morphological observation of the obtained K-31 strain,
Physiological property tests and analysis of bacterial cell components were carried out to identify the bacteria. The results are shown in Tables 1 and 2 and FIGS. As a result, the isolated and selected K-31 strain was found to be a novel strain belonging to the genus Streptomyces, although the species could not be determined.

【0030】実施例2 K−31株の病原菌の抑制性試験:同一シャーレ内で、
病原菌であるフザリウムオキシスポラム エスピー ラ
ファニ(Fusarium oxysporum s
p. raphani)とK−31株とを同時に培養
し、病原菌に対する抑制性を調べる試験を行った。
Example 2 Inhibitory test of K-31 strain against pathogenic bacteria: In the same petri dish,
Fusarium oxysporum which is pathogenic fungus (Fusarium oxysporum s)
p. Raphani) and the K-31 strain were cultured at the same time, and a test for examining the inhibitory effect against pathogenic bacteria was conducted.

【0031】病原菌はCzapek−Dox培地を用い
て、K−31株は、ショ糖、硝酸塩培地でそれぞれ液体
振とう培養を1週間続け、各菌体を調製した。両者の培
養液を直径7mmのロ紙にしみ込ませ、麦芽・酵母エキ
ス寒天平板培地に置き、28℃で1カ月培養し、病原菌
の菌糸の生育状態を観察し、K−31株による抑制程度
を調べた。なお、対照として比較的近縁菌株と考えられ
る公知のストレプトミセス属のStreptomyce
s viridiciensおよびStreptomy
ces recifenisについても同様に試験し
た。その結果を図3〜図6に示す。図3〜図5は麦芽・
酵母エキス寒天平板培地の中央部にフザリウムオキシス
ポラムの培養液をしみ込ませたロ紙を置き、その左右に
それぞれK−31株、Streptomyces vi
ridiciensおよびStreptomyces
recifenisの培養液をしみ込ませたロ紙を置い
て同時に培養したときの育成状態を示している。また、
図6は麦芽・酵母エキス寒天平板培地の中央部にフザリ
ウムオキシスポラムの培養液をしみ込ませたロ紙を置い
てフザリウム菌のみを培養したときの生育状態を示して
いる。
As the pathogenic bacteria, Czapek-Dox medium was used, and for K-31 strain, liquid shaking culture was continued for 1 week in sucrose and nitrate medium, respectively, to prepare each bacterial cell. Both culture solutions were soaked in a paper with a diameter of 7 mm, placed on a malt / yeast extract agar plate medium, cultured at 28 ° C for 1 month, and the growth state of the mycelium of the pathogenic bacteria was observed to determine the degree of inhibition by the K-31 strain. Examined. As a control, a known Streptomyces of the genus Streptomyces considered to be relatively related strains
s viridiens and Streptomy
The same test was performed for ces recifenis. The results are shown in FIGS. Figures 3-5 show malt
Place a paper impregnated with the culture solution of Fusarium oxysporum in the center of the yeast extract agar plate medium, and to the left and right of the paper, K-31 strain, Streptomyces vi, respectively.
ridiciens and Streptomyces
It shows a growing state when a paper roll impregnated with a culture fluid of Recifenis is placed and simultaneously cultured. Also,
FIG. 6 shows the growth state when only Fusarium bacterium was cultivated by placing a paper impregnated with a culture solution of Fusarium oxysporum in the center of a malt / yeast extract agar plate medium.

【0032】実施例3 微生物資材の調製:フスマ:バーミキュライトを容量比
で1:1(100ml+100ml)および1:3(5
0ml+150ml)で混合し、300mlの三角フラ
スコに充填した。各フラスコは水分が最大容水量の60
%となるように蒸留水を添加し、オートクレーブで滅菌
した。そこに液体振とう培養したK−31株の培養液を
5ml移植し、暗所、28℃で40日間培養した。
Example 3 Preparation of Microbial Material: Buma: vermiculite in a volume ratio of 1: 1 (100 ml + 100 ml) and 1: 3 (5
0 ml + 150 ml) and mixed in a 300 ml Erlenmeyer flask. Each flask has a maximum water content of 60
Distilled water was added so that the concentration became 100%, and the mixture was sterilized by an autoclave. 5 ml of a culture solution of the K-31 strain that had been subjected to liquid shaking culture was transplanted therein and cultured at 28 ° C. in the dark for 40 days.

【0033】培養した資材の菌密度は、キチン寒天平板
培地を用いた希釈平板法により測定した。結果を表3に
示す。
The bacterial density of the cultivated material was measured by the dilution plate method using a chitin agar plate medium. Table 3 shows the results.

【0034】[0034]

【表3】 [Table 3]

【0035】実施例4 土壌中での病原菌の抑制試験:ダイコン萎黄病病原菌分
性胞子土壌密度が106 cfu/土壌1gとなるように
調製した黒ボク土壌に、実施例3で調製した微生物資材
(菌密度:2.32×107 cfu/資材1g)を1.
5重量%の割合で十分に混合し、容量200mlのスチ
ロール製ビンに充填した。各区ごとにスチロール製ビン
10個を用いて、ビン1個あたり1本のダイコン(品
種:T−340種)を栽培し、10日後および20日後
の土壌中のダイコン萎黄病病原菌密度を駒田培地を用い
た希釈平板法により測定した。なお、対照として、微生
物資材を加えない条件で同様に実験を行った。結果を表
4に示す。
Example 4 Suppression Test of Pathogenic Bacteria in Soil: Japanese radish chlorophyll disease pathogenic spores Spore density was 10 6 cfu / g of soil. (Bacterial density: 2.32 × 10 7 cfu / g of material)
The mixture was thoroughly mixed at a ratio of 5% by weight and filled in a styrene bottle having a volume of 200 ml. Using 10 styrol bottles for each ward, one radish (varieties: T-340 species) was cultivated per bottle, and the radish chlorophyll pathogen density in the soil after 10 days and 20 days was measured using a Komada medium. It was measured by the dilution plate method used. As a control, the same experiment was conducted under the condition that no microbial material was added. Table 4 shows the results.

【0036】[0036]

【表4】 [Table 4]

【0037】実施例5 罹病抑制試験:あらかじめ元肥を施用したダイコン萎黄
病汚染土壌(土壌名:蒜山土壌)に実施例3で調製した
微生物資材をそれぞれ1重量%の割合で混合し、400
mlのポリカーボネート製ポットに350gづつ充填
し、ガラス室内でダイコン(品種:T−340株)を2
6日間栽培した後、罹病状態を調査した。栽培は資材無
施用区を対照区とし、各区10ポット、ポット当たり3
本立で行った。
Example 5 Disease Suppression Test: The microbial material prepared in Example 3 was mixed at a ratio of 1% by weight with the radish chlorosis-contaminated soil (soil name: Hiruzen soil) to which the original fertilizer had been applied in advance, and 400
350ml pots made of polycarbonate are filled with 350g each, and 2 Japanese radish (variety: T-340 strain) are placed in the glass chamber.
After cultivating for 6 days, the disease state was investigated. Cultivation was done with no material applied as a control, 10 pots in each plot, 3 per pot
I went on a regular basis.

【0038】罹病状態の調査は、胚軸を切断し軸中央部
に褐変がみられる株を罹病株と判断し、罹病の度合いの
めやすとして、次の式に従い「罹病率」、「罹病指数」
を求め、罹病抑制性を検討した。結果を表5に示した。
なお、「罹病率」とは栽培本数中の罹病本数の割合を示
すものであり、「罹病指数」とは一般的に用いられる発
病度に準じ、罹病により枯死した株を2度、生存してい
る罹病株を1度として、罹病の程度を次式に従い表した
ものである。
In the investigation of the morbidity, a strain in which the hypocotyl was cut and browning was observed in the central part of the shaft was judged as a sick strain, and as a measure of the degree of morbidity, the “morbidity rate” and “morbidity index” were calculated according to the following formulas.
The disease suppressive properties were investigated. Table 5 shows the results.
The "morbidity rate" indicates the ratio of the number of diseased plants to the number of cultivated plants, and the "morbidity index" conforms to the commonly used disease severity, and the strains killed by the disease survive twice. The degree of morbidity is represented by the following equation, assuming that the diseased strain is 1.

【0039】[0039]

【数1】 (Equation 1)

【0040】[0040]

【表5】 [Table 5]

【0041】実施例6 罹病抑制試験:実施例3で調製した微生物資材を各々1
重量%添加した土壌およびこれにキチンを添加した土壌
を用いて、実施例5と同様にして42日間ダイコンを栽
培し、罹病状態を観察した。なお、キチンの添加はフス
マ:バーミキュライトの混合比が1:3の微生物資材を
用いた土壌について行い、キチンの添加量は各ポットあ
たり0.6gとした。栽培は資材無施用区を対照区と
し、ポット当たり3本立で行った。また、栽培終了後の
土壌に対して、K−31株および病原菌の菌密度をK−
31株はキチン培地、病原菌は駒田培地を用いた希釈平
板法により測定した。栽培結果を表6に、菌密度の結果
を表7に示す。
Example 6 Disease control test: 1 of each of the microbial materials prepared in Example 3
The radish was cultivated for 42 days in the same manner as in Example 5 using the soil added with wt% and the soil added with chitin, and the diseased state was observed. Note that chitin was added to soil using a microbial material having a bran: vermiculite mixing ratio of 1: 3, and the amount of chitin added was 0.6 g per pot. Cultivation was carried out in three stands per pot, with the group to which no material was applied as a control. In addition, the K-31 strain and the bacterial density of the pathogenic fungus on the soil after the cultivation were K-
31 strains were measured by a dilution plate method using chitin medium and pathogenic bacteria were measured by Komada medium. The cultivation results are shown in Table 6 and the bacterial density results are shown in Table 7.

【0042】[0042]

【表6】 [Table 6]

【0043】[0043]

【表7】 [Table 7]

【0044】実施例7 連作障害罹病抑制試験:連作障害は各地で発生している
が、同じ病害の発生する土壌でも、場所によって理化学
性、生物性など性質が異なっている。このことから、同
じ環境条件でダイコンを栽培しても、発生する病害の程
度、資材の施用効果などが異なることが考えられる。そ
こで、ダイコン萎黄病の発生がみられる3地区の土壌を
供試し、性質が異なる土壌でのK−31株培養微生物資
材の罹病抑制効果を検討した。
Example 7 Suppression test for susceptibility to continuous cropping disorder: Succeeding cropping disorder occurs in various places, but even in soil where the same disease occurs, properties such as physicochemical properties and biological properties differ depending on the location. From this, it is considered that even if the Japanese radish is cultivated under the same environmental conditions, the degree of disease that occurs and the effect of applying the material are different. Therefore, soils in three districts where radish chlorosis was found were tested, and the disease-controlling effect of the K-31 strain cultivated microbial material in soils having different properties was examined.

【0045】検討した土壌は、岡山県蒜山地区、岩手県
川井村、岩手県岩手町沼宮内地区の3種である。用いた
土壌の性質を表8に示す。
Three types of soils were examined: Hiruyama area, Okayama prefecture, Kawai village, Iwate prefecture, and Numamiyauchi area, Iwate town, Iwate prefecture. Table 8 shows the properties of the soil used.

【0046】[0046]

【表8】 [Table 8]

【0047】これらの土壌を風乾し、2mmのふるいを
通し、風乾細土を調製した。得られた風乾細土に肥料お
よびフスマ:バーミキュライトの混合比を1:1で培養
調製した微生物資材を1重量%混合し、400ml容量
のポリカーボネート製ポットに充填し、10個のポット
を用いダイコン(品種名:T−340種)をポットあた
り3本立となるように播種後(栽培本数:30)、温室
内で32日間栽培した(ただし、蒜山は33日間栽
培)。栽培終了後、根上部を切断し第1作目における罹
病状態を調査した。ついで、同一のポットに再びダイコ
ンを同様に播種し、蒜山の土壌については33日間、川
井の土壌については34日間、岩手の土壌については5
4日間温室内で栽培し、第2作目の罹病状態を観察し
た。栽培終了後の罹病状態の観察では、根上部を切断
し、軸中央部に褐変を示すものを罹病株として分類し
て、実施例5に示した「罹病率」、「罹病指数」さら
に、次式で定義する「枯死率」を用いて連作障害罹病抑
制効果を求めた。
These soils were air-dried and passed through a 2 mm sieve to prepare air-dried fine soil. The obtained air-dried fine soil was mixed with 1% by weight of a fertilizer and a microbial material that had been prepared by culturing at a mixing ratio of fusuma: vermiculite of 1: 1 and filled in a polycarbonate pot having a capacity of 400 ml. After breeding (cultivar number: T-340 species) so that 3 pots per pot (cultivation number: 30), it was cultivated in a greenhouse for 32 days (however, Hiruzen is cultivated for 33 days). After the cultivation was completed, the upper part of the root was cut and the diseased state in the first crop was investigated. Then, radish was sown in the same pot again in the same manner, for 33 days for Hiruyama soil, 34 days for Kawai soil, and 5 days for Iwate soil.
It was cultivated in a greenhouse for 4 days, and the diseased state of the second crop was observed. In the observation of the diseased state after the completion of cultivation, the root upper part was cut, and those showing browning in the central axis were classified as diseased strains, and the “morbidity rate” and “morbidity index” shown in Example 5 Using the "mortality rate" defined by the formula, the effect of suppressing susceptibility to continuous cropping disorders was determined.

【0048】[0048]

【数2】 (Equation 2)

【0049】なお、各土壌とも微生物資材を用いずに肥
料のみを施用したものを対照区として用いた。また、栽
培前後の土壌中のフザリウム菌密度は、駒田培地を利用
した希釈平板法を用いて測定した。罹病抑制の結果およ
び栽培前後の菌密度の結果について、表9〜11に示
す。
In each of the soils, fertilizer only was applied without using a microbial material as a control. In addition, the density of Fusarium bacterium in the soil before and after cultivation was measured by the dilution plate method using Komada medium. The results of disease control and bacterial density before and after cultivation are shown in Tables 9 to 11.

【0050】[0050]

【表9】 [Table 9]

【0051】[0051]

【表10】 [Table 10]

【0052】[0052]

【表11】 [Table 11]

【0053】図3および図4〜図6の比較からわかるよ
うに、麦芽・酵母エキス寒天平板培地の中央にフザリウ
ム菌を配置し、その左右にK−31株を配置し培養した
結果によると、フザリウム菌の菌糸は左右に配置された
K−31株の方向へはわずかに伸長するものの、菌糸自
体の増殖を強く抑制していることがわかる(図3)。こ
れに対して他の2種類のストレプトミセス属の菌では、
フザリウム菌の菌糸の増殖はほとんど抑制されていない
(図4および図5)。このフザリウム菌の菌糸増殖結果
から明かなように、本発明のK−31株が示す病原菌抑
制作用は公知のストレプトミセス属の菌が有する抑制作
用に比較してきわめて大きなものであることがわかる。
このように、土壌中に埋設したキチンからキチン培地に
より選抜された株は、キチナーゼなどの酵素を盛んに産
生する能力をもち、これを菌体外に分泌し、病原菌であ
るフザリウム菌などの細胞壁を溶解させることにより、
増殖を抑制するものと思われる。
As can be seen from the comparison between FIG. 3 and FIGS. 4 to 6, Fusarium bacteria were placed in the center of the malt / yeast extract agar plate medium, and the K-31 strain was placed on the left and right sides of the medium, and the results showed that It can be seen that the hyphae of Fusarium bacterium slightly extend in the direction of the K-31 strains arranged on the left and right, but strongly suppress the growth of the hyphae themselves (FIG. 3). On the other hand, in the other two species of Streptomyces,
Growth of mycelium of Fusarium is hardly suppressed (Figs. 4 and 5). As is clear from the results of mycelial growth of Fusarium, the inhibitory effect of the K-31 strain of the present invention on the pathogenic bacteria is significantly greater than the inhibitory effect of known Streptomyces bacteria.
Thus, the strain selected from the chitin buried in the soil by the chitin medium has the ability to actively produce enzymes such as chitinase, which is secreted outside the cells and the cell wall of Fusarium, which is a pathogen. By dissolving
It seems to suppress proliferation.

【0054】表3〜7からわかるように、微生物資材中
のK−31株の菌密度は、バーミキュライトの比率を多
くしたほうが高くなっている。しかし、この微生物資材
を用いて罹病抑制効果を調べた場合には、むしろフス
マ:バーミキュライトを1:1で混合した培養した資材
のほうが、対照区に比較して罹病率、罹病指数とも大幅
に低下し、優れた罹病抑制効果を有している。さらに、
現実に罹病抑制効果を示しているにもかかわらず、フザ
リウム菌の菌密度は低下していない場合もある。
As can be seen from Tables 3 to 7, the bacterial density of the K-31 strain in the microbial material was higher when the ratio of vermiculite was increased. However, when using this microbial material to investigate the morbidity-suppressing effect, rather, the cultivated material containing a mixture of fusuma: vermiculite at a ratio of 1: 1 significantly reduced both the morbidity rate and morbidity index compared to the control group. However, it has an excellent disease control effect. further,
In some cases, the bacterial density of Fusarium is not reduced, although the disease-controlling effect is actually exhibited.

【0055】このように、罹病抑制効果は、施用前の資
材中のK−31株の菌密度には直接影響されず、また、
栽培終了後の跡地土壌中のフザリウム菌の菌密度との間
にも強い相関性は認められなかった。
As described above, the disease control effect is not directly influenced by the bacterial density of the K-31 strain in the material before application, and
No strong correlation was found with the density of Fusarium in the soil after the cultivation.

【0056】これは、バーミキュライトのような担体は
微生物の増殖を均一に、そして活発にするために必要な
ものであり、資材中でのK−31株の菌密度を高めるこ
とができる。しかし、罹病抑制は土壌で増殖する放線菌
と放線菌が産出するキチナーゼなどによるものであるた
め、バーミキュライトのような担体が土壌中で放線菌の
均一な増殖に影響をあたえ、効果的な場を提供するとし
ても、放線菌の増殖は、土壌の性質や状態など土壌の環
境や増殖条件などに強く影響されるものであり、微生物
資材を施用したあとの土壌中での微生物の増殖が重要で
あることを示している。さらに、実験結果から、罹病抑
制は病原菌自体の菌密度ばかりでなく、K−31株など
のフザリウム拮抗性菌との相対的な存在比率など土壌中
における両者の微生物の存在状態によっても影響される
ことがわかる。
This is because a carrier such as vermiculite is necessary for uniform and active growth of microorganisms, and can increase the bacterial density of strain K-31 in the material. However, since disease control is due to actinomycetes growing in soil and chitinase produced by actinomycetes, a carrier such as vermiculite affects the uniform growth of actinomycetes in soil and creates an effective site. Even if provided, the growth of actinomycetes is strongly influenced by the environment and growth conditions of the soil such as the nature and condition of the soil, and the growth of microorganisms in the soil after applying the microbial material is important. It indicates that there is. Further, from the experimental results, the disease control is affected not only by the density of the pathogenic bacteria themselves but also by the state of existence of both microorganisms in the soil such as the relative abundance ratio with the Fusarium antagonistic bacteria such as the K-31 strain. I understand.

【0057】なお、土壌に培養資材とともにキチンを添
加した系では、キチンによりフザリウム菌の増殖も起こ
り菌密度は上昇するが、それ以上にK−31株が増殖す
るため、フザリウム菌の存在割合は相対的に減少した。
In addition, in a system in which chitin was added to the soil together with the culture material, the growth of Fusarium bacterium caused by chitin also increased the bacterial density, but since the K-31 strain grew more than that, the proportion of Fusarium bacterium was It decreased relatively.

【0058】次に、表9〜11および12により連作障
害の罹病抑制効果について説明する。表12は、ダイコ
ンの連作を行った場合の罹病抑制効果として、表9〜1
0に示した対照区の罹病率から資材区の罹病率を差し引
いた値を各土壌について示したものである。これによれ
ば、川井、岩手、蒜山の各土壌とも資材区の罹病率が低
く、連作障害を抑制していることがわかる。
Next, the effects of suppressing susceptibility to continuous cropping disorders will be described with reference to Tables 9 to 11 and 12. Table 12 shows the morbidity-suppressing effect when the continuous radish cropping is performed.
The value obtained by subtracting the morbidity rate of the material group from the morbidity rate of the control group shown in 0 is shown for each soil. According to this, it can be seen that the morbidity rate of the material section is low in each of the soils of Kawai, Iwate, and Hiruzen, and that the continuous crop failure is suppressed.

【0059】[0059]

【表12】 [Table 12]

【0060】また、各土壌について、栽培終了時点のフ
ザリウム菌の栽培前の菌密度に対する増殖率と罹病率お
よび罹病指数との関係を示すと表13のようになる。こ
れによれば、前述のように、罹病抑制効果は土壌中のフ
ザリウム菌自体の増殖率、すなわち土壌中のフザリウム
菌の絶対的な存在量のみに依存するのではなく、土壌中
におけるフザリウム拮抗菌であるK−31株との相対的
な存在量により強く影響されるものと考えられる。すな
わち、連作障害の防止のためには、フザリウム拮抗菌で
あるK−31株のような有用菌が優先的に繁殖した菌叢
を土壌中に形成することが重要となる。
Table 13 shows the relationship between the growth rate of the Fusarium bacterium at the end of cultivation and the morbidity and morbidity index with respect to the fungal density before cultivation for each soil. According to this, as described above, the disease-controlling effect does not depend only on the growth rate of Fusarium bacterium itself in soil, that is, only on the absolute abundance of Fusarium bacterium in soil, but the Fusarium antagonistic bacteria in soil. It is considered that it is strongly influenced by the relative abundance with the K-31 strain. That is, in order to prevent the continuous cropping disorder, it is important to form a flora in the soil in which useful bacteria such as the Fusarium antagonistic strain K-31 preferentially propagate.

【0061】従って、拮抗性微生物である有用菌が土壌
へ定着し、増殖して優先的に繁殖した菌叢を形成して、
病原菌への拮抗作用が現れるためには、ある程度の時間
を要するものと思われる。そこで、本実施例で採用し
た、資材を土壌に施用した直後に、播種して栽培試験を
行う資材の施用方法ではなく、資材施用後、一定期間土
壌を培養し、その後ダイコンなどの播種を行うことによ
り、連作障害の抑制効果が一層顕著になるものと思われ
る。
Therefore, useful bacteria which are antagonistic microorganisms settle in the soil and grow to form a flora preferentially propagated,
It seems that it takes some time for the antagonistic action against the pathogenic bacteria to appear. Therefore, adopted in this example, immediately after applying the material to the soil, not the method of applying the material to sow and carry out a cultivation test, after the application of the material, cultivate the soil for a certain period of time, and then sowing such as radish Therefore, the effect of suppressing the continuous cropping disorder will be more remarkable.

【0062】[0062]

【表13】 [Table 13]

【0063】[0063]

【発明の効果】本発明に従い、新規なストレプトミセス
属に属するK−31株を、ダイコン萎黄病の連作障害が
発生している土壌中に施用することにより、土壌中の病
原菌密度を1/20程度にまで低下させることができ、
また、ダイコン萎黄病の発生率は93%から60%にま
で低下させることができ、連作障害を防止することがで
きる。
INDUSTRIAL APPLICABILITY According to the present invention, the novel strain K-31 belonging to the genus Streptomyces is applied to the soil in which the continuous dysfunction of Japanese radish chlorosis is occurring, whereby the density of pathogenic bacteria in the soil is reduced to 1/20. Can be lowered to a degree,
In addition, the incidence of radish chlorosis can be reduced from 93% to 60%, and continuous crop failure can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】胞子連鎖の形状を示す図面代用顕微鏡写真(×
800)。
FIG. 1 is a drawing-substituting micrograph showing the shape of spore linkage (×
800).

【図2】胞子の表面構造を示す図面代用顕微鏡写真(×
15000)。
FIG. 2 is a drawing-substitute photomicrograph showing the surface structure of spores (×
15000).

【図3】麦芽・酵母エキス寒天平板培地の中央部にフザ
リウム菌を配置し、その左右にK−31株を配置して培
養した状態を示す図面代用写真。
FIG. 3 is a drawing-substituting photograph showing a state in which Fusarium bacterium is placed in the center of a malt / yeast extract agar plate medium and K-31 strain is placed on the left and right sides of the medium to culture.

【図4】麦芽・酵母エキス寒天平板培地の中央部にフザ
リウム菌を配置し、その左右にStreptomyce
s viridiciensを配置して培養した状態を
示す図面代用写真。
FIG. 4: Fusarium bacterium is placed in the center of malt / yeast extract agar plate medium, and Streptomyce is placed on the left and right sides of the bacterium.
A photograph as a substitute for a drawing, showing a state in which s viridiens are arranged and cultured.

【図5】麦芽・酵母エキス寒天平板培地の中央部にフザ
リウム菌を配置し、その左右にStreptomyce
s recifenisを配置して培養した状態を示す
図面代用写真。
FIG. 5: Fusarium bacterium is placed in the center of malt / yeast extract agar plate medium, and Streptomyce is placed on the left and right of it.
A photograph as a substitute for a drawing showing a state in which S. recifenis is arranged and cultured.

【図6】麦芽・酵母エキス寒天平板培地の中央部にフザ
リウム菌を配置し、フザリウム菌のみを培養した状態を
示す図面代用写真。
FIG. 6 is a drawing-substituting photograph showing a state in which Fusarium is placed in the center of a malt / yeast extract agar plate medium and only Fusarium is cultured.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 土壌中の作物病原菌の育成を抑制する機
能を有し、ストレプトミセス属(strptomyce
s)に属する放線菌K−31株FERM P−1520
4。
1. A bacterium of the genus Streptomyces, which has a function of suppressing the growth of crop pathogens in soil.
s) actinomycete K-31 strain FERM P-1520
4.
【請求項2】 放線菌K−31株FERM P−152
04と同一の種に属し、キチンを混合した土壌または植
物性あるいは動物性資材から分離され、土壌中の作物病
原菌の育成を抑制する機能を有する放線菌。
2. An actinomycete K-31 strain FERM P-152.
Actinomycetes belonging to the same species as 04, isolated from soil mixed with chitin or from plant or animal materials and having a function of suppressing the growth of crop pathogens in soil.
【請求項3】 請求項1または2に記載の放線菌を、担
体および培養基とともに培養して得た微生物資材。
3. A microbial material obtained by culturing the actinomycete according to claim 1 or 2 together with a carrier and a culture medium.
【請求項4】 担体がバーミキュライトであり、培養基
がフスマである請求項3に記載の微生物資材。
4. The microbial material according to claim 3, wherein the carrier is vermiculite and the culture medium is bran.
【請求項5】 請求項1または2に記載の放線菌を土壌
に施用することを特徴とする連作障害の防止方法。
5. A method for preventing continuous crop damage, which comprises applying the actinomycete according to claim 1 or 2 to soil.
【請求項6】 請求項3または4に記載の微生物資材を
土壌に施用することを特徴とする連作障害の防止方法。
6. A method for preventing continuous cropping disorders, which comprises applying the microbial material according to claim 3 or 4 to soil.
JP7345236A 1995-12-07 1995-12-07 Microorganism having property of preventing replant failure and microbial material using the same Pending JPH09154570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7345236A JPH09154570A (en) 1995-12-07 1995-12-07 Microorganism having property of preventing replant failure and microbial material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7345236A JPH09154570A (en) 1995-12-07 1995-12-07 Microorganism having property of preventing replant failure and microbial material using the same

Publications (1)

Publication Number Publication Date
JPH09154570A true JPH09154570A (en) 1997-06-17

Family

ID=18375227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7345236A Pending JPH09154570A (en) 1995-12-07 1995-12-07 Microorganism having property of preventing replant failure and microbial material using the same

Country Status (1)

Country Link
JP (1) JPH09154570A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001052655A3 (en) * 2000-01-21 2002-03-28 Entomos L L C Materials and methods for biological control of soilborne pathogens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001052655A3 (en) * 2000-01-21 2002-03-28 Entomos L L C Materials and methods for biological control of soilborne pathogens

Similar Documents

Publication Publication Date Title
DE69417750T2 (en) USE OF STREPTOMYCES WYEC 108 FOR CONTROLLING PLANT Pests
Huang et al. Effect of organic amendments on Verticillium wilt of cotton
CN104818216B (en) One plant is used to prevent and treat tomato and the Paecilomyces lilacinus of grape root knot nematode disease evil
El-Mehalawy et al. Influence of maize root colonization by the rhizosphere actinomycetes and yeast fungi on plant growth and on the biological control of late wilt disease
US20030211119A1 (en) Synergistic bioinoculant composition comprising bacterial strains of accession Nos. NRRL B-30486, NRRL B-30487, and NRRL B-30488 and a method of producing said composition thereof
CN111705020B (en) Pseudomonas chlororaphis aurantiacus subspecies and preparation and application of microbial agent thereof
FI95598B (en) Microorganism for biological control of plant diseases
CN101805717A (en) Method for efficiently and directionally screening biocontrol bacteria in soil-borne diseases of crops
US6133196A (en) Biological control of plant disease on roots of conifer seedlings
US20080248058A1 (en) Plant Disease Control Agent And Method For Controlling Plant Disease
US4948413A (en) Physiologically active agent for agriculture use
JP3601928B2 (en) A new microorganism showing anthracnose control effect
CN110129242B (en) Continuous cropping resistant composite microbial preparation and preparation method thereof
JP2011016769A (en) Agricultural material
CN103834580B (en) The endogenetic fungus CEF-642 of cotton and application thereof
JP5807950B2 (en) Microbial strains and cultivation methods that show increased yield and control of plague disease on solanaceous plants, and prevent yield reduction by continuous cropping on legumes
JP3192577B2 (en) Pest control material
Rai et al. Competitive saprophytic colonization of pigeon-pea substrate by Fusarium udum in relation to environmental factors, chemical treatments and microbial antagonism
JP2009096721A (en) Method of controlling plant insect pest derived from plant parasitic nematode and agent for controlling the plant insect pest
Gupta et al. Integration of soil solarization and potential native antagonist for the management of crown gall on cherry rootstock colt
Martinson Active survival of Verticillium dahliae in soil
US5968504A (en) Fungus Gliocladium catenulatum for biological control of plant diseases
JPH09154570A (en) Microorganism having property of preventing replant failure and microbial material using the same
JP4287899B1 (en) Eggplant half body wilt inhibitor and method for suppressing eggplant half wilt disease
KR20100133307A (en) Microorganism mixture improving soil and enhancing crop growth