JPH09145544A - Method for measuring mtf - Google Patents

Method for measuring mtf

Info

Publication number
JPH09145544A
JPH09145544A JP30165895A JP30165895A JPH09145544A JP H09145544 A JPH09145544 A JP H09145544A JP 30165895 A JP30165895 A JP 30165895A JP 30165895 A JP30165895 A JP 30165895A JP H09145544 A JPH09145544 A JP H09145544A
Authority
JP
Japan
Prior art keywords
mtf
minimum value
maximum value
detection circuit
output data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30165895A
Other languages
Japanese (ja)
Inventor
Yukihiko Yamamoto
幸彦 山本
Hiroyuki Kawamura
浩幸 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP30165895A priority Critical patent/JPH09145544A/en
Publication of JPH09145544A publication Critical patent/JPH09145544A/en
Pending legal-status Critical Current

Links

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure an MTF immediately and adjust synchronously with the measurement of the MTF, by obtaining the MTF of an object to be detected, by hardware in real time. SOLUTION: An output data of a solid scanning element 12 to an effective part of a chart is sent to a maximum value detection circuit 16 and a minimum value detection circuit 17. A clock-counting part 14 makes the maximum value detection circuit 16 and the minimum value detection circuit 17 output a maximum value and a minimum value of the output data every predetermined time. The maximum and minimum values are converted to an MTF by an MTF conversion part 22. Accordingly, the MTF of an object to be detected is obtained in real time by hardware.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は所定空間周波数のパ
ターンを有するチャートを使用して被検物のMTFを求
めるMTF測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an MTF measuring method for obtaining an MTF of a test object by using a chart having a pattern of a predetermined spatial frequency.

【0002】[0002]

【従来の技術】MTF測定方法は、0空間周波数を使用
するMTF測定方法と、0空間周波数を使用しないMT
F測定方法がある。0空間周波数を使用しないMTF測
定方法は、所定空間周波数のパターンを有するチャート
の像を被検物を通してCCD(電荷結合素子)に結像し
て光電変換し、このCCDの出力データの最大値MA
X、最小値MIN及びダミービットデータDから MTF=(MAX−MIN)/(MAX+MIN−2×
D) で定義される被検物のMTFを求めている。
2. Description of the Related Art MTF measurement methods include an MTF measurement method that uses 0 spatial frequency and an MT method that does not use 0 spatial frequency.
There is an F measurement method. In the MTF measurement method that does not use 0 spatial frequency, an image of a chart having a pattern of a predetermined spatial frequency is imaged on a CCD (charge coupled device) through an object to be photoelectrically converted, and the maximum value MA of output data of this CCD is obtained.
From X, minimum value MIN and dummy bit data D, MTF = (MAX-MIN) / (MAX + MIN-2 ×)
The MTF of the test object defined in D) is calculated.

【0003】また、特開昭56ー2516号公報には、
0空間周波数の白レベル及び黒レベルを使用するMTF
測定方法が記載されている。このMTF測定方法では、
所定空間周波数のパターンを有するチャートの像を被検
物を通してCCDに結像して光電変換し、このCCDか
らの時系列的信号を図5に示すようにA/Dコンバータ
1でデジタル化して入出力ポート2を介してRAM3に
格納する。マイクロCPU4は、RAM3内のデータに
よりデジタル計算を行って必要チャート部の白レベルa
と黒レベルb、つまり、白レベル領域の最大値数ビット
の信号の平均値aと黒レベルの最小値近辺数ビットの信
号の平均値b、0空間周波数に近い白レベルAと黒レベ
ルBを求め、 MTF={(a−b)/(a+b)÷(A−B)/(A
+B)}×100% の演算で被検物のMTFを求める。a、b、A、Bをそ
れぞれ複数ビット検出してそれらの各平均値を上記式に
代入すればMTFの計算精度が向上する。
Further, JP-A-56-2516 discloses that
MTF using 0 spatial frequency white and black levels
The measuring method is described. In this MTF measuring method,
An image of a chart having a pattern of a predetermined spatial frequency is formed on a CCD through a test object and photoelectrically converted, and a time-series signal from the CCD is digitized and input by an A / D converter 1 as shown in FIG. It is stored in the RAM 3 via the output port 2. The micro CPU 4 performs a digital calculation based on the data in the RAM 3 to obtain the white level a of the necessary chart portion.
And the black level b, that is, the average value a of the signal of the maximum value several bits in the white level area, the average value b of the signal of the several bits near the minimum value of the black level, the white level A and the black level B close to 0 spatial frequency. MTF = {(a−b) / (a + b) ÷ (A−B) / (A
+ B)} × 100% calculation to obtain the MTF of the test object. If a plurality of bits of a, b, A, and B are detected and their respective average values are substituted into the above equation, the MTF calculation accuracy is improved.

【0004】また、0空間周波数の白レベル及び黒レベ
ルを使用するMTF測定方法では、全像高のMTF測定
を行う場合には、チャートとして0空間周波数の白レベ
ル及び黒レベル、MTF測定用所定周波数のチャートの
3種類が必要であり、これらのチャートは切り換えて用
いられる。
Further, in the MTF measuring method using the white level and black level of 0 spatial frequency, when the MTF measurement of the entire image height is performed, the white level and black level of 0 spatial frequency and a predetermined MTF measurement are shown as a chart. Three types of frequency charts are required, and these charts are used by switching.

【0005】また、被検物の3色、例えば赤(以下Rと
いう)、青(以下Bという)、緑(以下Gという)のM
TFを測定する場合には、上記MTF測定方法におい
て、CCDとしてチャート像の各色成分を光電変換する
3ラインCCDを用い、この3ラインCCDの各色の出
力データについて別々にMTFを求めている。
Further, three colors of the object to be inspected, for example, red (hereinafter referred to as R), blue (hereinafter referred to as B), and green (hereinafter referred to as G) M
When measuring TF, in the above MTF measuring method, a 3-line CCD that photoelectrically converts each color component of the chart image is used as the CCD, and the MTF is separately obtained for output data of each color of the 3-line CCD.

【0006】[0006]

【発明が解決しようとする課題】所定空間周波数のパタ
ーンを有するチャートを使用したMTF測定方法は、上
記特開昭56ー2516号公報記載のMTF測定方法の
ようにハードウェアで構成されていてもMTF演算に関
してはソフトウェアで行っている。このため、MTF演
算を高速で行うことが困難であり、MTFを高速で測定
する際のネックになっていた。
The MTF measuring method using a chart having a pattern of a predetermined spatial frequency may be constructed by hardware like the MTF measuring method described in Japanese Patent Laid-Open No. 56-2516. Software is used for MTF calculation. For this reason, it is difficult to perform MTF calculation at high speed, which has been a bottleneck in measuring MTF at high speed.

【0007】また、所定空間周波数のパターンを有する
チャートを使用したMTF測定方法は、0空間周波数の
白レベル及び黒レベルを使用しないので、3ラインCC
Dを用いるMTF測定では高精度なMTF測定ができな
い。また、0空間周波数の白レベル及び黒レベルを使用
するMTF測定方法では、チャートを切り換えたり全像
高のMTFをとれなかったりする問題があった。本発明
は、高速かつ高精度なMTF測定を実現できるMTF測
定方法を提供することを目的とする。
Further, since the MTF measuring method using the chart having the pattern of the predetermined spatial frequency does not use the white level and the black level of the 0 spatial frequency, the 3-line CC is used.
MTF measurement using D cannot perform highly accurate MTF measurement. Further, in the MTF measuring method using the white level and the black level of 0 spatial frequency, there are problems that the charts are switched and the MTF of the entire image height cannot be obtained. An object of the present invention is to provide an MTF measuring method capable of realizing high speed and highly accurate MTF measurement.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、請求項1記載の発明は、所定空間周波数のパターン
を有するチャートの像を被検物を通して固体走査素子に
結像して光電変換し、この固体走査素子の出力データか
ら被検物のMTFを求めるMTF測定方法において、前
記チャートの有効部に対する固体走査素子の出力データ
を最大値検出回路及び最小値検出回路に送り、これらの
最大値検出回路及び最小値検出回路に対してクロックカ
ウント部により一定時間毎に前記出力データの最大値及
び最小値を出力させ、この最大値及び最小値をMTF変
換部にてMTFに変換することによって、ハードウェア
によりリアルタイムで被検物のMTFを求める。
In order to achieve the above object, the invention according to claim 1 forms an image of a chart having a pattern of a predetermined spatial frequency on a solid-state scanning element through an object to be photoelectrically converted. In the MTF measuring method for obtaining the MTF of an object from the output data of the solid-state scanning element, the output data of the solid-state scanning element for the effective part of the chart is sent to a maximum value detection circuit and a minimum value detection circuit, and these maximum values are output. By causing the detection circuit and the minimum value detection circuit to output the maximum value and the minimum value of the output data at regular intervals by the clock counting unit, and converting the maximum value and the minimum value into the MTF by the MTF conversion unit. The MTF of the test object is calculated in real time by hardware.

【0009】請求項2記載の発明は、請求項1記載のM
TF測定方法において、前記固体走査素子として前記チ
ャートの有効部に対して3つの色の光電変換を行う3色
分の固体走査素子を用い、これらの3色分の固体走査素
子の出力データから各色毎に最大値検出回路及び最小値
検出回路、クロックカウント部により一定時間毎に前記
出力データの最大値及び最小値を求め、この3色分の最
大値及び最小値をMTF変換部にて色毎に別々に設定し
た変換係数でMTFに変換する。
The invention according to claim 2 is the M according to claim 1.
In the TF measuring method, solid color scanning elements for three colors that perform photoelectric conversion of three colors to the effective portion of the chart are used as the solid state scanning elements, and each color is determined from output data of the solid color scanning elements for these three colors. The maximum value detection circuit, the minimum value detection circuit, and the clock count unit obtain the maximum value and the minimum value of the output data at regular time intervals, and the MTF conversion unit determines the maximum value and the minimum value for the three colors for each color. It is converted into MTF with the conversion coefficient set separately for each.

【0010】[0010]

【発明の実施の形態】図1は請求項1記載の発明を適用
したMTF測定装置の一実施形態例を示し、図2はその
具体的な構成を示し、図4は全体的なハードウェア処理
フローを示す。図3に示すような0空間周波数の白レベ
ル及び黒レベルを持たない、所定空間周波数だけのパタ
ーンを有するチャート11は光源により照明され、チャ
ート11の像が被検レンズ等の光学系からなる被検物を
通してCCDからなる固体走査素子12上に結像され
る。CCD12は、チャート11の像を繰り返してスキ
ャン(走査)して光電変換して時系列で出力する。
1 shows an embodiment of an MTF measuring apparatus to which the invention according to claim 1 is applied, FIG. 2 shows its concrete configuration, and FIG. 4 shows an overall hardware processing. The flow is shown. A chart 11 having a pattern of only a predetermined spatial frequency, which does not have a white level and a black level of 0 spatial frequency as shown in FIG. 3, is illuminated by a light source, and an image of the chart 11 is an object formed by an optical system such as a lens to be inspected. An image is formed on the solid-state scanning element 12 composed of a CCD through the inspection object. The CCD 12 repeatedly scans the image of the chart 11 to perform photoelectric conversion and outputs it in time series.

【0011】ところで、0空間周波数の白レベル及び黒
レベルを使用したMTF測定方法には、所定空間周波数
のパターンを有するチャートに対するCCD出力データ
における必要チャート部の最大値及び最小値と0空間周
波数の白レベル及び黒レベルから MTF=(最大値−最小値)/{(0空間周波数の白レベル−0空間周波数の 黒レベル)}・・・(1) で定義される被検物のMTFを求める方法がある。
By the way, in the MTF measuring method using the white level and the black level of 0 spatial frequency, the maximum and minimum values of the necessary chart portion in the CCD output data for the chart having the pattern of the predetermined spatial frequency and the 0 spatial frequency From the white level and the black level, MTF = (maximum value−minimum value) / {(white level of 0 spatial frequency−black level of 0 spatial frequency)} ... (1) MTF of the test object defined by There is a way.

【0012】ここで、0空間周波数の白レベルのデータ
と(最大値+最小値)/2<幅の中央値>のデータとは
相関があり、0空間周波数の黒レベルのデータは絶対値
が非常に小さくて(1)式への寄与率が低いことから、
(1)式は MTF=(最大値−最小値)/{(最大値+最小値)/2}・・・(2) に置き換えることが可能である。
Here, there is a correlation between the data of the white level of 0 spatial frequency and the data of (maximum value + minimum value) / 2 <median of width>, and the absolute value of the data of black level of 0 spatial frequency is Since it is very small and its contribution to equation (1) is low,
Expression (1) can be replaced with MTF = (maximum value-minimum value) / {(maximum value + minimum value) / 2} (2).

【0013】そこで、この実施形態例は、0空間周波数
の白レベル及び黒レベルを持たない、所定空間周波数だ
けのパターンを有するチャート11を使用し、チャート
11の有効部に対するCCD12の出力データの最大値
と最小値から(2)式のMTF演算で被検物のMTFを
求める。すなわち、CCD12は設定された取り込み時
間にクロック発生部(Clock)13からのクロック
により駆動され、チャート11の像を取り込んで光電変
換する。クロック(Clock)カウント部14はクロ
ック発生部13からのクロックをカウントして出力タイ
ミング用ゲート信号を発生する。
Therefore, in this embodiment, the chart 11 having a pattern of only a predetermined spatial frequency, which does not have the white level and the black level of 0 spatial frequency, is used, and the maximum output data of the CCD 12 with respect to the effective portion of the chart 11 is used. The MTF of the test object is obtained from the value and the minimum value by the MTF calculation of the equation (2). That is, the CCD 12 is driven by the clock from the clock generator (Clock) 13 at the set capture time, captures the image of the chart 11 and performs photoelectric conversion. The clock counting unit 14 counts the clocks from the clock generating unit 13 and generates an output timing gate signal.

【0014】このクロックカウント部14はカウンタ用
ICからなるカウンタ回路15が用いられ、このカウン
タ用IC15は例えばTTLICが用いられる。カウン
タ用IC15はTTLであればFタイプ等の高速のもの
を使用した方がより有効である。最大値検出回路16及
び最小値検出回路17はコンパレータICからなる最大
値検出用コンパレータ回路18及び最小値検出用コンパ
レータ回路19と、最大値ラッチ用フリップフロップ回
路20及び最小値ラッチ用フリップフロップ回路21が
用いられる。
The clock counting unit 14 uses a counter circuit 15 composed of a counter IC, and the counter IC 15 is, for example, TTLIC. If the counter IC 15 is a TTL, it is more effective to use a high speed type such as an F type. The maximum value detection circuit 16 and the minimum value detection circuit 17 are a maximum value detection comparator circuit 18 and a minimum value detection comparator circuit 19 each including a comparator IC, a maximum value latch flip-flop circuit 20, and a minimum value latch flip-flop circuit 21. Is used.

【0015】最大値検出用コンパレータ回路18及び最
小値検出用コンパレータ回路19はコンパレータICの
代りにROM、RAM等を用いることも有効である。最
大値ラッチ用フリップフロップ回路20及び最小値ラッ
チ用フリップフロップ回路21はTTLであればFタイ
プ等の高速のものを使用した方がより有効である。チャ
ート11の有効部に対するCCD12の出力データは図
示しないA/D変換器によりA/D変換され、最大値検
出回路16及び最小値検出回路17はクロックカウント
部14からの出力タイミング用ゲート信号によりクロッ
クカウント部14にて設定した設定時間(任意に設定可
能な時間)内における上記A/D変換器の出力データの
最大値及び最小値を検出する。
For the maximum value detecting comparator circuit 18 and the minimum value detecting comparator circuit 19, it is effective to use a ROM, a RAM or the like instead of the comparator IC. If the maximum value latch flip-flop circuit 20 and the minimum value latch flip-flop circuit 21 are TTL, it is more effective to use a high-speed type such as F type. The output data of the CCD 12 for the effective part of the chart 11 is A / D converted by an A / D converter (not shown), and the maximum value detection circuit 16 and the minimum value detection circuit 17 are clocked by the output timing gate signal from the clock count part 14. The maximum value and the minimum value of the output data of the A / D converter within the set time (time that can be arbitrarily set) set by the counting unit 14 are detected.

【0016】最大値ラッチ用フリップフロップ回路20
及び最小値ラッチ用フリップフロップ回路21は、最大
値検出回路16及び最小値検出回路17により検出した
設定時間内の最大値及び最小値をクロックカウント部1
4からの出力タイミング用ゲート信号により次の設定時
間が終了するまで保持する。この最大値ラッチ用フリッ
プフロップ回路20及び最小値ラッチ用フリップフロッ
プ回路21により保持された最大値及び最小値はMTF
変換部22に送られる。
Maximum value latch flip-flop circuit 20
The minimum value latch flip-flop circuit 21 determines the maximum value and the minimum value within the set time detected by the maximum value detection circuit 16 and the minimum value detection circuit 17, respectively.
It is held until the next set time ends by the output timing gate signal from 4. The maximum value and the minimum value held by the maximum value latch flip-flop circuit 20 and the minimum value latch flip-flop circuit 21 are MTF.
It is sent to the conversion unit 22.

【0017】このMTF変換部22は、上記(2)式の
MTF算定式が格納されたテーブルを有するMTF変換
用ROM23が用いられるが、ROM以外にRAM等も
有効である。MTF変換用ROM23は最大値ラッチ用
フリップフロップ回路20及び最小値ラッチ用フリップ
フロップ回路21により保持された最大値及び最小値を
上記テーブルによりハード的に即座にMTFに変換す
る。このような動作がクロックカウント部14による設
定時間の周期で繰り返して行われ、これがCCD12の
1回のスキャン毎に繰り返して行われて被検物のMTF
が求められる。
As the MTF conversion unit 22, an MTF conversion ROM 23 having a table storing the MTF calculation formula of the above formula (2) is used, but a RAM or the like is also effective in addition to the ROM. The MTF conversion ROM 23 immediately converts the maximum value and the minimum value held by the maximum value latching flip-flop circuit 20 and the minimum value latching flip-flop circuit 21 into the MTF by the hardware described above. Such an operation is repeatedly performed at the cycle of the set time by the clock counting unit 14, and this is repeatedly performed for each scan of the CCD 12 to perform the MTF of the test object.
Is required.

【0018】したがって、CCD12の出力データを全
てハード的に処理するので、1スキャン毎にリアルタイ
ムでMTF測定を行うことが可能となる。また、チャー
ト11が0空間周波数の白レベル及び黒レベルを持たな
いこと、時間設定用のクロックカウント部14を設けた
ことにより、全像高の任意の像高におけるMTF測定が
可能となる。
Therefore, since all the output data of the CCD 12 is processed by hardware, MTF measurement can be performed in real time for each scan. Further, since the chart 11 does not have the white level and the black level of 0 spatial frequency and the clock count unit 14 for setting the time is provided, the MTF measurement at an arbitrary image height of the entire image height can be performed.

【0019】このように、この実施形態例は、請求項1
記載の発明を適用したMTF測定装置の実施形態例であ
って、所定空間周波数のパターンを有するチャート11
の像を被検物を通して固体走査素子としてのCCD12
に結像して光電変換し、この固体走査素子12の出力デ
ータから被検物のMTFを求めるMTF測定装置におい
て、チャート11の有効部に対する固体走査素子12の
出力データを最大値検出回路16及び最小値検出回路1
7に送り、これらの最大値検出回路16及び最小値検出
回路17に対してクロックカウント部14により一定時
間毎に前記出力データの最大値及び最小値を出力させ、
この最大値及び最小値をMTF変換部22にてMTFに
変換することによって、ハードウェアによりリアルタイ
ムで被検物のMTFを求めるので、高速なMTF測定を
実現できる。また、MTF測定をリアルタイムで行える
ことにより、MTF測定と同期した高速な調整が可能と
なる。
As described above, this embodiment is characterized by claim 1.
11 is an example of an embodiment of an MTF measuring apparatus to which the described invention is applied, which is a chart 11 having a pattern of a predetermined spatial frequency.
CCD image as a solid-state scanning device
In the MTF measuring device for obtaining the MTF of the test object from the output data of the solid-state scanning element 12 by forming an image on and photoelectrically converting the output data of the solid-state scanning element 12 with respect to the effective portion of the chart 11, the maximum value detection circuit 16 and Minimum value detection circuit 1
7, the clock count unit 14 outputs the maximum value and the minimum value of the output data to the maximum value detection circuit 16 and the minimum value detection circuit 17 at regular intervals,
By converting the maximum value and the minimum value into the MTF by the MTF conversion unit 22, the MTF of the test object is obtained in real time by hardware, so that high-speed MTF measurement can be realized. Further, since the MTF measurement can be performed in real time, high-speed adjustment synchronized with the MTF measurement becomes possible.

【0020】請求項2記載の発明を適用したMTF測定
装置の一実施形態例では、上記実施形態例において、被
検物の3色、例えばR、B、GのMTFを測定するよう
にした例であり、チャート11が光源により照明されて
チャート11の像が被検レンズ等の光学系からなる被検
物を通して3ラインCCDからなる固体走査素子上に結
像される。
In an embodiment of the MTF measuring apparatus to which the invention described in claim 2 is applied, an example in which the MTFs of three colors, for example, R, B, and G, of the test object are measured in the above embodiment The chart 11 is illuminated by the light source, and the image of the chart 11 is formed on the solid-state scanning device composed of a 3-line CCD through a test object including an optical system such as a test lens.

【0021】この3ラインCCDはクロック発生部13
からのクロックにより駆動されてチャート11の像の各
色成分をそれぞれ光電変換し、この3ラインCCDの各
色の出力データからその各色毎の最大値及び最小値が別
々に上述の最大値検出回路16及び最小値検出回路17
と同様な3組の最大値検出回路及び最小値検出回路とク
ロックカウント部14により上述と同様に検出されて3
個のMTF変換部にそれぞれ入力される。
This three-line CCD has a clock generator 13
Each color component of the image of the chart 11 is photo-electrically converted by being driven by the clock from, and the maximum value and the minimum value for each color are separately obtained from the output data of each color of the 3-line CCD. Minimum value detection circuit 17
3 sets of the maximum value detection circuit and the minimum value detection circuit and the clock count unit 14 are detected in the same manner as described above.
It is input to each of the MTF converters.

【0022】この3個のMTF変換部は、0空間周波数
の白レベル及び黒レベルを使用しないことによるR、
B、Gの各MTFの間の誤差を防いでより高精度なMT
F測定を行うために、上記(2)式のMTF算定式に
R、B、Gの各色で互いに異なる補正係数をかけたもの
がそれぞれ格納されたテーブルを有し、上記3組の最大
値検出回路及び最小値検出回路からそれぞれ入力された
最大値及び最小値をMTFに変換して補正する。
These three MTF converters use R, which is obtained by not using the white level and the black level of the 0 spatial frequency,
MT with higher accuracy by preventing errors between MTFs of B and G
In order to perform F measurement, the MTF calculation formula of the above formula (2) has a table in which different correction factors for R, B, and G are respectively stored, and a table is stored, and the maximum value of the above three sets is detected. The maximum value and the minimum value input from the circuit and the minimum value detection circuit are converted into MTF and corrected.

【0023】すなわち、0空間周波数の白レベルのデー
タと(最大値+最小値)/2<幅の中央値>のデータと
間の傾きがR、B、Gの各色の間で若干異なるので、予
め実験にてその傾きを求めて補正係数を決定し、上記
(2)式のMTF算定式の代りに MTF=(最大値−最小値)/{(最大値+最小値)/2}×補正係数・・・ ・・(3) なるMTF算定式を格納したテーブルを上記3個のMT
F変換部に持たせておく。これらのMTF変換部は、そ
れぞれ入力された最大値及び最小値を(3)式で被検物
のMTFに変換する。
That is, since the slope between the data of the white level of 0 spatial frequency and the data of (maximum value + minimum value) / 2 <median value of width> is slightly different for each color of R, B and G, The slope is obtained in advance by an experiment, and the correction coefficient is determined, and MTF = (maximum value−minimum value) / {(maximum value + minimum value) / 2} × correction instead of the MTF calculation formula of the above formula (2). Coefficients ···· (3) The table storing the MTF calculation formula is the above three MTs.
The F converter has it. These MTF converters convert the input maximum value and minimum value into the MTF of the test object by the expression (3).

【0024】このように、請求項2記載の発明を適用し
たMTF測定装置の実施形態例では、上記実施形態例に
おいて、固体走査素子としてチャート11の有効部に対
して3つの色の光電変換を行う固体走査素子としての3
ラインCCDを用い、この固体走査素子の出力データか
ら各色毎に最大値検出回路及び最小値検出回路、クロッ
クカウント部により一定時間毎に前記出力データの最大
値及び最小値を求め、この3色分の最大値及び最小値を
MTF変換部にて色毎に別々に設定した変換係数でMT
Fに変換するので、被検物の3色のMTF測定で各色の
間で補正を行うことにより、0空間周波数の白レベル及
び黒レベルを使用する際のチャートの切り換えが不要に
なり、全像高のMTF測定を高精度で行うことができ
る。
As described above, in the embodiment of the MTF measuring apparatus to which the invention according to claim 2 is applied, photoelectric conversions of three colors are performed on the effective portion of the chart 11 as the solid-state scanning element in the embodiment described above. 3 as a solid-state scanning device
Using a line CCD, the maximum value detection circuit and the minimum value detection circuit for each color are obtained from the output data of the solid-state scanning element, and the maximum value and the minimum value of the output data are obtained at fixed time intervals by a clock counting unit, and these three colors are obtained. The maximum and minimum values of MT are converted by the MTF converter using the conversion coefficient set separately for each color.
Since it is converted into F, the MTF measurement of the three colors of the test object is performed to correct between the respective colors, thereby making it unnecessary to switch the chart when using the white level and the black level of the 0 spatial frequency, and the entire image is obtained. High MTF measurement can be performed with high accuracy.

【0025】なお、本発明は、上記実施形態例に限定さ
れるものではなく、例えば上記実施形態例ではCCDの
出力データをA/D変換して処理するデジタル方式の例
であるが、CCDの出力データをアナログ値のまま処理
するアナログ方式としてもよい。
The present invention is not limited to the above embodiment, and for example, the above embodiment is an example of a digital system in which the output data of the CCD is A / D converted and processed. An analog method may be used in which the output data is processed as it is as an analog value.

【0026】[0026]

【発明の効果】以上のように請求項1記載の発明によれ
ば、所定空間周波数のパターンを有するチャートの像を
被検物を通して固体走査素子に結像して光電変換し、こ
の固体走査素子の出力データから被検物のMTFを求め
るMTF測定方法において、前記チャートの有効部に対
する固体走査素子の出力データを最大値検出回路及び最
小値検出回路に送り、これらの最大値検出回路及び最小
値検出回路に対してクロックカウント部により一定時間
毎に前記出力データの最大値及び最小値を出力させ、こ
の最大値及び最小値をMTF変換部にてMTFに変換す
ることによって、ハードウェアによりリアルタイムで被
検物のMTFを求めるので、高速なMTF測定を実現で
き、MTF測定と同期した高速な調整が可能となる。
As described above, according to the first aspect of the invention, the image of the chart having the pattern of the predetermined spatial frequency is formed on the solid-state scanning element through the object to be photoelectrically converted, and the solid-state scanning element is formed. In the MTF measuring method for obtaining the MTF of a test object from the output data of the solid state scanning element, the output data of the solid scanning element for the effective part of the chart is sent to a maximum value detection circuit and a minimum value detection circuit, and these maximum value detection circuit and minimum value are detected. The clock counting unit outputs the maximum value and the minimum value of the output data to the detection circuit at regular time intervals, and the MTF conversion unit converts the maximum value and the minimum value into MTF. Since the MTF of the test object is obtained, high-speed MTF measurement can be realized, and high-speed adjustment synchronized with the MTF measurement becomes possible.

【0027】請求項2記載の発明によれば、請求項1記
載のMTF測定方法において、前記固体走査素子として
前記チャートの有効部に対して3つの色の光電変換を行
う固体走査素子を用い、この固体走査素子の出力データ
から各色毎に最大値検出回路及び最小値検出回路、クロ
ックカウント部により一定時間毎に前記出力データの最
大値及び最小値を求め、この3色分の最大値及び最小値
をMTF変換部にて色毎に別々に設定した変換係数でM
TFに変換するので、被検物の3色のMTF測定で各色
の間で補正を行うことにより、0空間周波数の白レベル
及び黒レベルを使用する際のチャートの切り換えが不要
になり、全像高のMTF測定を高精度で行うことができ
る。
According to a second aspect of the present invention, in the MTF measuring method according to the first aspect, a solid-state scanning element that performs photoelectric conversion of three colors on the effective portion of the chart is used as the solid-state scanning element, From the output data of the solid-state scanning device, the maximum value detection circuit and the minimum value detection circuit for each color, and the clock count unit obtain the maximum value and the minimum value of the output data at regular intervals, and the maximum value and the minimum value for the three colors are obtained. The value is M with the conversion coefficient set separately for each color in the MTF converter.
Since it is converted to TF, by performing MTF measurement of the three colors of the test object between each color, it is not necessary to switch the chart when using the white level and the black level of the 0 spatial frequency, and the whole image is obtained. High MTF measurement can be performed with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1記載の発明を適用したMTF測定装置
の一実施形態例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of an MTF measuring device to which the invention according to claim 1 is applied.

【図2】同実施形態例の具体的な構成を示すブロック図
である。
FIG. 2 is a block diagram showing a specific configuration of the embodiment example.

【図3】同実施形態例のチャートとCCD出力データを
示す図である。
FIG. 3 is a diagram showing a chart and CCD output data of the embodiment.

【図4】同実施形態例の全体的なハードウェア処理フロ
ーを示すフローチャートである。
FIG. 4 is a flowchart showing an overall hardware processing flow of the embodiment example.

【図5】従来のMTF測定装置の一例を示すブロック図
である。
FIG. 5 is a block diagram showing an example of a conventional MTF measuring device.

【符号の説明】[Explanation of symbols]

11 チャート 12 CCD 13 クロック発生部 14 クロッカウント部 16 最大値検出回路 17 最小値検出回路 22 MTF変換部 11 chart 12 CCD 13 clock generator 14 clock counter 16 maximum value detection circuit 17 minimum value detection circuit 22 MTF converter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】所定空間周波数のパターンを有するチャー
トの像を被検物を通して固体走査素子に結像して光電変
換し、この固体走査素子の出力データから被検物のMT
Fを求めるMTF測定方法において、前記チャートの有
効部に対する固体走査素子の出力データを最大値検出回
路及び最小値検出回路に送り、これらの最大値検出回路
及び最小値検出回路に対してクロックカウント部により
一定時間毎に前記出力データの最大値及び最小値を出力
させ、この最大値及び最小値をMTF変換部にてMTF
に変換することによって、ハードウェアによりリアルタ
イムで被検物のMTFを求めることを特徴とするMTF
測定方法。
1. An image of a chart having a pattern of a predetermined spatial frequency is formed on a solid-state scanning element through a test object and photoelectrically converted, and MT of the test object is detected from output data of the solid-state scanning element.
In the MTF measuring method for obtaining F, the output data of the solid-state scanning element for the effective part of the chart is sent to a maximum value detection circuit and a minimum value detection circuit, and a clock count part is supplied to these maximum value detection circuit and minimum value detection circuit. The maximum value and the minimum value of the output data are output at regular time intervals by using the
The MTF of the object to be measured is calculated in real time by hardware by converting to MTF.
Measuring method.
【請求項2】請求項1記載のMTF測定方法において、
前記固体走査素子として前記チャートの有効部に対して
3つの色の光電変換を行う固体走査素子を用い、この固
体走査素子の出力データから各色毎に最大値検出回路及
び最小値検出回路、クロックカウント部により一定時間
毎に前記出力データの最大値及び最小値を求め、この3
色分の最大値及び最小値をMTF変換部にて色毎に別々
に設定した変換係数でMTFに変換することを特徴とす
るMTF測定方法。
2. The MTF measuring method according to claim 1,
As the solid-state scanning element, a solid-state scanning element that performs photoelectric conversion of three colors on the effective portion of the chart is used, and a maximum value detection circuit, a minimum value detection circuit, and a clock count are output for each color from the output data of the solid-state scanning element. The maximum value and the minimum value of the output data are calculated at regular intervals by
An MTF measuring method characterized in that the maximum value and the minimum value of color components are converted into MTF by a conversion coefficient set separately for each color in an MTF conversion unit.
JP30165895A 1995-11-20 1995-11-20 Method for measuring mtf Pending JPH09145544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30165895A JPH09145544A (en) 1995-11-20 1995-11-20 Method for measuring mtf

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30165895A JPH09145544A (en) 1995-11-20 1995-11-20 Method for measuring mtf

Publications (1)

Publication Number Publication Date
JPH09145544A true JPH09145544A (en) 1997-06-06

Family

ID=17899590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30165895A Pending JPH09145544A (en) 1995-11-20 1995-11-20 Method for measuring mtf

Country Status (1)

Country Link
JP (1) JPH09145544A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9020928B2 (en) 2000-04-07 2015-04-28 Ip Reservoir, Llc Method and apparatus for processing streaming data using programmable logic
US9176775B2 (en) 2003-05-23 2015-11-03 Ip Reservoir, Llc Intelligent data storage and processing using FPGA devices
US9323794B2 (en) 2006-11-13 2016-04-26 Ip Reservoir, Llc Method and system for high performance pattern indexing
US9547824B2 (en) 2008-05-15 2017-01-17 Ip Reservoir, Llc Method and apparatus for accelerated data quality checking
US9582831B2 (en) 2006-06-19 2017-02-28 Ip Reservoir, Llc High speed processing of financial information using FPGA devices
US9633097B2 (en) 2012-10-23 2017-04-25 Ip Reservoir, Llc Method and apparatus for record pivoting to accelerate processing of data fields
US9633093B2 (en) 2012-10-23 2017-04-25 Ip Reservoir, Llc Method and apparatus for accelerated format translation of data in a delimited data format
US9990393B2 (en) 2012-03-27 2018-06-05 Ip Reservoir, Llc Intelligent feed switch
US10037568B2 (en) 2010-12-09 2018-07-31 Ip Reservoir, Llc Method and apparatus for managing orders in financial markets
US10062115B2 (en) 2008-12-15 2018-08-28 Ip Reservoir, Llc Method and apparatus for high-speed processing of financial market depth data
US10121196B2 (en) 2012-03-27 2018-11-06 Ip Reservoir, Llc Offload processing of data packets containing financial market data
US10146845B2 (en) 2012-10-23 2018-12-04 Ip Reservoir, Llc Method and apparatus for accelerated format translation of data in a delimited data format
US10229453B2 (en) 2008-01-11 2019-03-12 Ip Reservoir, Llc Method and system for low latency basket calculation
US10572824B2 (en) 2003-05-23 2020-02-25 Ip Reservoir, Llc System and method for low latency multi-functional pipeline with correlation logic and selectively activated/deactivated pipelined data processing engines
US10650452B2 (en) 2012-03-27 2020-05-12 Ip Reservoir, Llc Offload processing of data packets
US10846624B2 (en) 2016-12-22 2020-11-24 Ip Reservoir, Llc Method and apparatus for hardware-accelerated machine learning
US10902013B2 (en) 2014-04-23 2021-01-26 Ip Reservoir, Llc Method and apparatus for accelerated record layout detection
US10909623B2 (en) 2002-05-21 2021-02-02 Ip Reservoir, Llc Method and apparatus for processing financial information at hardware speeds using FPGA devices
US10942943B2 (en) 2015-10-29 2021-03-09 Ip Reservoir, Llc Dynamic field data translation to support high performance stream data processing
US11436672B2 (en) 2012-03-27 2022-09-06 Exegy Incorporated Intelligent switch for processing financial market data

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9020928B2 (en) 2000-04-07 2015-04-28 Ip Reservoir, Llc Method and apparatus for processing streaming data using programmable logic
US10909623B2 (en) 2002-05-21 2021-02-02 Ip Reservoir, Llc Method and apparatus for processing financial information at hardware speeds using FPGA devices
US9176775B2 (en) 2003-05-23 2015-11-03 Ip Reservoir, Llc Intelligent data storage and processing using FPGA devices
US10719334B2 (en) 2003-05-23 2020-07-21 Ip Reservoir, Llc Intelligent data storage and processing using FPGA devices
US10929152B2 (en) 2003-05-23 2021-02-23 Ip Reservoir, Llc Intelligent data storage and processing using FPGA devices
US10572824B2 (en) 2003-05-23 2020-02-25 Ip Reservoir, Llc System and method for low latency multi-functional pipeline with correlation logic and selectively activated/deactivated pipelined data processing engines
US10346181B2 (en) 2003-05-23 2019-07-09 Ip Reservoir, Llc Intelligent data storage and processing using FPGA devices
US11275594B2 (en) 2003-05-23 2022-03-15 Ip Reservoir, Llc Intelligent data storage and processing using FPGA devices
US9898312B2 (en) 2003-05-23 2018-02-20 Ip Reservoir, Llc Intelligent data storage and processing using FPGA devices
US11182856B2 (en) 2006-06-19 2021-11-23 Exegy Incorporated System and method for routing of streaming data as between multiple compute resources
US10169814B2 (en) 2006-06-19 2019-01-01 Ip Reservoir, Llc High speed processing of financial information using FPGA devices
US9916622B2 (en) 2006-06-19 2018-03-13 Ip Reservoir, Llc High speed processing of financial information using FPGA devices
US9582831B2 (en) 2006-06-19 2017-02-28 Ip Reservoir, Llc High speed processing of financial information using FPGA devices
US9672565B2 (en) 2006-06-19 2017-06-06 Ip Reservoir, Llc High speed processing of financial information using FPGA devices
US10817945B2 (en) 2006-06-19 2020-10-27 Ip Reservoir, Llc System and method for routing of streaming data as between multiple compute resources
US12056767B2 (en) 2006-06-19 2024-08-06 Exegy Incorporated System and method for distributed data processing across multiple compute resources
US10504184B2 (en) 2006-06-19 2019-12-10 Ip Reservoir, Llc Fast track routing of streaming data as between multiple compute resources
US10467692B2 (en) 2006-06-19 2019-11-05 Ip Reservoir, Llc High speed processing of financial information using FPGA devices
US10360632B2 (en) 2006-06-19 2019-07-23 Ip Reservoir, Llc Fast track routing of streaming data using FPGA devices
US9323794B2 (en) 2006-11-13 2016-04-26 Ip Reservoir, Llc Method and system for high performance pattern indexing
US10229453B2 (en) 2008-01-11 2019-03-12 Ip Reservoir, Llc Method and system for low latency basket calculation
US11677417B2 (en) 2008-05-15 2023-06-13 Ip Reservoir, Llc Method and system for accelerated stream processing
US10411734B2 (en) 2008-05-15 2019-09-10 Ip Reservoir, Llc Method and system for accelerated stream processing
US10158377B2 (en) 2008-05-15 2018-12-18 Ip Reservoir, Llc Method and system for accelerated stream processing
US10965317B2 (en) 2008-05-15 2021-03-30 Ip Reservoir, Llc Method and system for accelerated stream processing
US9547824B2 (en) 2008-05-15 2017-01-17 Ip Reservoir, Llc Method and apparatus for accelerated data quality checking
US11676206B2 (en) 2008-12-15 2023-06-13 Exegy Incorporated Method and apparatus for high-speed processing of financial market depth data
US10929930B2 (en) 2008-12-15 2021-02-23 Ip Reservoir, Llc Method and apparatus for high-speed processing of financial market depth data
US10062115B2 (en) 2008-12-15 2018-08-28 Ip Reservoir, Llc Method and apparatus for high-speed processing of financial market depth data
US10037568B2 (en) 2010-12-09 2018-07-31 Ip Reservoir, Llc Method and apparatus for managing orders in financial markets
US11803912B2 (en) 2010-12-09 2023-10-31 Exegy Incorporated Method and apparatus for managing orders in financial markets
US11397985B2 (en) 2010-12-09 2022-07-26 Exegy Incorporated Method and apparatus for managing orders in financial markets
US10963962B2 (en) 2012-03-27 2021-03-30 Ip Reservoir, Llc Offload processing of data packets containing financial market data
US10872078B2 (en) 2012-03-27 2020-12-22 Ip Reservoir, Llc Intelligent feed switch
US10650452B2 (en) 2012-03-27 2020-05-12 Ip Reservoir, Llc Offload processing of data packets
US9990393B2 (en) 2012-03-27 2018-06-05 Ip Reservoir, Llc Intelligent feed switch
US11436672B2 (en) 2012-03-27 2022-09-06 Exegy Incorporated Intelligent switch for processing financial market data
US10121196B2 (en) 2012-03-27 2018-11-06 Ip Reservoir, Llc Offload processing of data packets containing financial market data
US10146845B2 (en) 2012-10-23 2018-12-04 Ip Reservoir, Llc Method and apparatus for accelerated format translation of data in a delimited data format
US10133802B2 (en) 2012-10-23 2018-11-20 Ip Reservoir, Llc Method and apparatus for accelerated record layout detection
US10949442B2 (en) 2012-10-23 2021-03-16 Ip Reservoir, Llc Method and apparatus for accelerated format translation of data in a delimited data format
US10102260B2 (en) 2012-10-23 2018-10-16 Ip Reservoir, Llc Method and apparatus for accelerated data translation using record layout detection
US10621192B2 (en) 2012-10-23 2020-04-14 IP Resevoir, LLC Method and apparatus for accelerated format translation of data in a delimited data format
US9633093B2 (en) 2012-10-23 2017-04-25 Ip Reservoir, Llc Method and apparatus for accelerated format translation of data in a delimited data format
US11789965B2 (en) 2012-10-23 2023-10-17 Ip Reservoir, Llc Method and apparatus for accelerated format translation of data in a delimited data format
US9633097B2 (en) 2012-10-23 2017-04-25 Ip Reservoir, Llc Method and apparatus for record pivoting to accelerate processing of data fields
US10902013B2 (en) 2014-04-23 2021-01-26 Ip Reservoir, Llc Method and apparatus for accelerated record layout detection
US10942943B2 (en) 2015-10-29 2021-03-09 Ip Reservoir, Llc Dynamic field data translation to support high performance stream data processing
US11526531B2 (en) 2015-10-29 2022-12-13 Ip Reservoir, Llc Dynamic field data translation to support high performance stream data processing
US11416778B2 (en) 2016-12-22 2022-08-16 Ip Reservoir, Llc Method and apparatus for hardware-accelerated machine learning
US10846624B2 (en) 2016-12-22 2020-11-24 Ip Reservoir, Llc Method and apparatus for hardware-accelerated machine learning

Similar Documents

Publication Publication Date Title
JPH09145544A (en) Method for measuring mtf
KR100278172B1 (en) Image Forming Device
JP2007174117A (en) Image processing circuit and image processing method
EP1961207B1 (en) Scanner and method of scanning
KR100277829B1 (en) Color correction device and method for minimizing the mystery of a color scanner
JPH03285459A (en) Picture reader
JPH09145543A (en) Method for measuring mtf
JP2984306B2 (en) Image reading device having focus adjusting device
US6608301B2 (en) Single step multi-section exposure scanning method
JP3123415B2 (en) Single-chip color solid-state imaging device
KR100645856B1 (en) Signal processing method and image acquisition device
GB2122338A (en) Image information output apparatus
US7751097B2 (en) Methods and apparatuses for changing driving sequence to output charge coupled device signal
JP2656026B2 (en) Image reading device
KR100248226B1 (en) Method and apparatus of brightness control for image scanner
WO2021210968A1 (en) Image processing apparatus and image processing method
US7071983B2 (en) System and method for controlling photosensitive charge transfers
JP2748860B2 (en) Digital converter
JP3936696B2 (en) Image reader
JPS62145489A (en) Picture recognition device
JP3327946B2 (en) Color image reader
JPH10285333A (en) Image reader
JPH0314359A (en) Color image reader
JPH07107292A (en) Picture reader
JPH03184469A (en) Black reference level correcting device