JPH09139417A - Method and device for plasma treatment - Google Patents

Method and device for plasma treatment

Info

Publication number
JPH09139417A
JPH09139417A JP29512595A JP29512595A JPH09139417A JP H09139417 A JPH09139417 A JP H09139417A JP 29512595 A JP29512595 A JP 29512595A JP 29512595 A JP29512595 A JP 29512595A JP H09139417 A JPH09139417 A JP H09139417A
Authority
JP
Japan
Prior art keywords
sample
plasma processing
plasma
wafer
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29512595A
Other languages
Japanese (ja)
Inventor
Takeshi Tsubaki
武士 椿
Kenji Nakada
健二 中田
Naoyuki Tamura
直行 田村
Hideyuki Yamamoto
秀之 山本
Hiroyoshi Hirano
裕義 平野
Masamichi Sakaguchi
正道 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Kasado Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Kasado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Kasado Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP29512595A priority Critical patent/JPH09139417A/en
Publication of JPH09139417A publication Critical patent/JPH09139417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Jigs For Machine Tools (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To attenuate the electrostatic attraction force between a sample and a sample stand, to confirm the separation of the sample from the sample stand, and to quickly and safely carry the process-finished sample. SOLUTION: A vacuum gauge is used to give a decision whether or not a wafer 85 and a sample stand 6 which is given after finish of process of a sample are separated. First, while a process is being conducted, inert gas is stored in a tank 81, and the pressure P1 of the tank 81 is measured by a vacuum manometer 82. The pressure Pj of the tank 81 is monitored at all times by the vacuum manometer 82 while an electrostatic attraction removing treatment is being conducted, and the separation of the wafer 85 and the sample stand 68 is judged by comparing the pressure P1 and Pj. When the holding strength of electrostatic attraction is attenuated, as the pressure Pj becomes small, and the separation of the wafer and the sample stand 68 can be confirmed. Accordingly, the process-finished wafer can be conveyed quickly and safely.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はプラズマ処理方法お
よび装置に係り、特に静電吸着保持を利用したプラズマ
処理の除電確認および該プラズマによって半導体素子等
の試料を除電するのに好適なプラズマ処理方法および装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing method and apparatus, and particularly to a plasma processing method suitable for confirming static elimination of plasma processing using electrostatic attraction and holding and for statically eliminating a sample such as a semiconductor element by the plasma. And the device.

【0002】[0002]

【従来の技術】従来、静電吸着保持を用いた装置として
は、例えば、特開昭62−54637号広報記載のよう
に、電極に印可される電圧を検出する手段を設け、電圧
の値から被処理物の着脱状態を検出することにより、被
処理物の落下あるいは未接着等の異常状態を検出して、
信頼性を向上できるようにしたものがある。
2. Description of the Related Art Conventionally, as an apparatus using electrostatic attraction and holding, a means for detecting a voltage applied to an electrode is provided as described in, for example, JP-A-62-54637, and the value of the voltage is detected. By detecting the attachment / detachment state of the object to be processed, it is possible to detect an abnormal state such as falling or non-adhesion of the object to be processed,
There are some that have improved reliability.

【0003】[0003]

【発明が解決しようとする課題】プラズマを利用したサ
ブミクロン対応の半導体製造プロセスにおいては、異物
低減等の目的から試料台上には被処理物であるウエハ以
外の物、例えばウエハを保持するためのウエハ押さえ等
の物体を配置しないでウエハを試料台に保持し、処理す
ることが必要である。
In a semiconductor manufacturing process for submicron using plasma, in order to reduce foreign matters and the like, an object other than the wafer to be processed, such as a wafer, is held on the sample table. It is necessary to hold the wafer on the sample table and process it without arranging an object such as the wafer retainer.

【0004】また、プラズマの熱からウエハを保護する
ために、ウエハと試料台の間に冷却ガスを流し、ウエハ
と試料台の間で熱交換を行わせてウエハを冷却する必要
がある。
Further, in order to protect the wafer from the heat of the plasma, it is necessary to cool the wafer by flowing a cooling gas between the wafer and the sample table to cause heat exchange between the wafer and the sample table.

【0005】このようなことから、例えばプラズマを用
いたエッチング装置は、上記従来技術のような静電吸着
保持を用いて前記のごとくウエハ押さえを削除し、ウエ
ハを試料台に保持する形態をとることができるが、ウエ
ハを保持するためのウエハ押さえ等の物体を配置しない
ため、プロセス処理中における熱交換のための冷却ガス
の圧力に十分耐えうる静電吸着保持力が必要であるが、
プロセス処理終了後はその静電吸着保持力を減衰させ、
次に保持をするウエハとの交換を行うための搬送が直ち
に行えるための静電吸着解除処理が必要であった。この
静電吸着解除処理が不十分な場合、または余分な静電吸
着解除処理による再吸着保持が発生する場合、ウエハが
試料台に保持されたままの状態でウエハの交換が行わ
れ、場合によっては正常なウエハの搬送が行えない可能
性があった。
For this reason, an etching apparatus using plasma, for example, takes the form of holding the wafer on the sample stage by removing the wafer retainer as described above by using the electrostatic attraction holding as in the above-mentioned conventional technique. However, since an object such as a wafer retainer for holding the wafer is not arranged, it is necessary to have an electrostatic adsorption holding force that can sufficiently withstand the pressure of the cooling gas for heat exchange during the process.
After the process is finished, the electrostatic adsorption holding force is attenuated,
Next, electrostatic attraction release processing was required so that the wafer can be immediately transferred for replacement with the wafer to be held. If this electrostatic adsorption release process is insufficient or if re-adsorption holding occurs due to the extra electrostatic adsorption release process, the wafer is exchanged while it is still held on the sample table. There was a possibility that normal wafer transfer could not be performed.

【0006】本発明の目的は、プロセス処理後の試料の
搬送をすみやかに、かつ安全に行うことのできるプラズ
マ処理方法および装置を提供することにある。
An object of the present invention is to provide a plasma processing method and apparatus capable of promptly and safely carrying a sample after processing.

【0007】[0007]

【課題を解決するための手段】上記目的は、処理ガスが
供給されるとともに所定圧力に減圧される真空室と、前
記真空室内の前記処理ガスをプラズマ化する手段と、前
記真空室内に設けられた試料台と、前記試料台に配置さ
れる試料を静電吸着保持する手段と、前記試料台に吸着
保持された前記試料の裏面に伝熱ガスを供給する手段
と、前記試料台と前記試料の離脱を確認する手段とを具
備した装置である。また、試料台に静電吸着電圧を印加
して前記試料台に配置した試料を静電吸着保持し、プラ
ズマによって試料を処理するプラズマ処理方法におい
て、試料台と試料の間の吸着力を測定することによりに
静電吸着解除処理実行中に試料台と試料の離脱を確認す
ることで、達成される。
The above object is to provide a vacuum chamber in which a processing gas is supplied and which is depressurized to a predetermined pressure, a means for converting the processing gas in the vacuum chamber into a plasma, and the vacuum chamber. Sample stage, means for electrostatically holding the sample placed on the sample stage by electrostatic attraction, means for supplying heat transfer gas to the back surface of the sample attracted and held on the sample stage, the sample stage and the sample And a means for confirming the separation of Further, in a plasma processing method in which an electrostatic attraction voltage is applied to the sample stage to electrostatically attract and hold the sample placed on the sample stage, and the sample is treated with plasma, the attraction force between the sample stage and the sample is measured. Therefore, it is achieved by confirming the separation between the sample table and the sample during the electrostatic adsorption release process.

【0008】[0008]

【発明の実施の形態】静電吸着解除処理実行中に、試料
台と試料との間の空間に不活性ガスを貯蓄し不活性ガス
を一定流量流す、または不活性ガスを貯蓄した状態で圧
力を常時測定する、あるいは、静電吸着解除処理実行中
に試料台と試料との間の空間に不活性ガスを貯蓄し、そ
の空間内の圧力が一定になるように不活性ガスの流量制
御を行い、不活性ガスの流量を常時測定する。この結果
得られた測定値とオペレータによる設定値を比較し、試
料台と試料の離脱の有無を判定し、これにより、試料の
搬送に十分な静電吸着保持力の減衰が行われ、静電吸着
解除処理に伴う試料台と試料の再保持がないため、プロ
セス処理後の試料の搬送をすみやかにかつ安全に行うこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION During execution of electrostatic adsorption release processing, an inert gas is stored in a space between a sample stage and a sample and a constant flow rate of the inert gas is flown, or pressure is applied in a state where the inert gas is stored. Is constantly measured, or the inert gas is stored in the space between the sample stage and the sample during the electrostatic adsorption release process, and the flow rate of the inert gas is controlled so that the pressure in the space becomes constant. Perform and always measure the flow rate of the inert gas. The measurement value obtained as a result is compared with the set value by the operator to determine whether the sample stage and the sample are detached.By this, the electrostatic adsorption holding force sufficient for transporting the sample is attenuated and Since the sample table and the sample are not held again due to the adsorption release process, the sample after the process process can be transported promptly and safely.

【0009】以下、本発明の一実施例を図1ないし図3
により説明する。図1はプラズマ処理装置の一実施例を
示す。図2は図1におけるプラズマ生成部、及び試料台
の詳細を示した図である。本実施例はプラズマを生成す
る手段としてマイクロ波と磁界を利用した例である。6
1はマイクロ波を発生するマグネトロン、62はマイク
ロ波を伝播する矩形の導波管、63は円矩形変換導波
管、64は円筒空洞部、641は円筒空洞部64の天
板、65は磁場を発生するソレノイドコイル、66はマ
イクロ波透過窓(例えば石英平板)、67は真空容器、
68は試料であるウエハを配置する試料台、69は試料
台を上下に移動させる駆動機構、610はプラズマ処
理、例えば、エッチング時に試料台に高周波バイアス電
圧を印加するための高周波電源、611は処理ガス、例
えば、エッチングガスを真空容器67に導入するための
シャワープレート、612は真空容器67内の圧力の調
整を行うバリアブルバルブ、613は真空容器67を真
空に減圧するためのタ−ボ分子ポンプ、614は粗引用
の真空ポンプ、616は試料台に配置されるウエハを静
電吸着させるための静電吸着電源、81はウエハを配置
することで空間を形成しウエハの冷却に必要な不活性ガ
スの蓄積が行えるタンク、82は81のタンク内の圧力
を測定する真空計、83は81のタンクに不活性ガスを
供給するガス流量計、84はガス流量計83を通して8
1のタンクへ不活性ガスを供給するガス導入経路であ
る。
An embodiment of the present invention will be described below with reference to FIGS.
This will be described below. FIG. 1 shows an embodiment of the plasma processing apparatus. FIG. 2 is a diagram showing details of the plasma generation unit and the sample table in FIG. The present embodiment is an example in which a microwave and a magnetic field are used as a means for generating plasma. 6
1 is a magnetron that generates microwaves, 62 is a rectangular waveguide that propagates microwaves, 63 is a circular rectangular conversion waveguide, 64 is a cylindrical cavity portion, 641 is a top plate of the cylindrical cavity portion 64, and 65 is a magnetic field. , 66 is a microwave transparent window (for example, a quartz flat plate), 67 is a vacuum container,
Reference numeral 68 is a sample stage on which a wafer as a sample is placed, 69 is a drive mechanism for moving the sample stage up and down, 610 is plasma processing, for example, a high frequency power source for applying a high frequency bias voltage to the sample stage during etching, and 611 is processing. A shower plate for introducing a gas, for example, an etching gas into the vacuum container 67, a variable valve 612 for adjusting the pressure in the vacuum container 67, and a turbo molecular pump 613 for depressurizing the vacuum container 67 to a vacuum. , 614 is a vacuum pump of rough quotation, 616 is an electrostatic attraction power supply for electrostatically attracting a wafer placed on a sample stage, 81 is an inertness necessary for cooling the wafer by forming a space by placing the wafer. A tank capable of accumulating gas, a vacuum gauge 82 for measuring the pressure in the tank 81, and a gas flow meter 83 for supplying an inert gas to the tank 81. 84 through the gas flow meter 83 8
It is a gas introduction path for supplying an inert gas to the first tank.

【0010】バッファ室3の下部には下部容器31が取
り付けられている。下部容器31にはバッファ室3の開
口に対応して試料台68が設けられている。下部容器3
1は途中にバリアブルバルブ612を有し、下部容器3
1の端部にはターボ分子ポンプ613が設けられてい
る。ターボ分子ポンプ613には粗引用の真空ポンプ6
14が連結されている。
A lower container 31 is attached to the lower portion of the buffer chamber 3. The lower container 31 is provided with a sample table 68 corresponding to the opening of the buffer chamber 3. Lower container 3
1 has a variable valve 612 in the middle, and the lower container 3
A turbo molecular pump 613 is provided at one end. The turbo molecular pump 613 is a rough reference vacuum pump 6
14 are connected.

【0011】試料台68には駆動機構69が設けられ、
試料台上部が上下動可能となっている。試料台68には
高周波電源610が接続され、試料台68に高周波バイ
アス電圧を印加可能になっている。
A drive mechanism 69 is provided on the sample table 68,
The upper part of the sample table can be moved up and down. A high frequency power source 610 is connected to the sample stage 68, and a high frequency bias voltage can be applied to the sample stage 68.

【0012】バッファ室3の上部には、円筒状の真空容
器67が取り付けられ、真空容器67の上部開口部には
平板状のマイクロ波透過窓66が気密に取り付けられ、
真空容器67とマイクロ波透過窓66とによってプラズ
マ発生室が形成される。マイクロ波透過窓66の上部に
は、真空容器67と略同径に構成された円筒壁642が
真空容器67と電気的に接続されて設けられ、円筒壁6
42の上部開口部には中央に円形の開口部を有する天板
641が円筒壁642と電気的に接続されて設けられ、
マイクロ波透過窓66と円筒壁642と天板641とで
囲まれた円筒空洞部64が設けられる。天板641の中
央の円形開口部には円矩形変換導波管63が電気的に接
続されて設けられ、円矩形変換導波管63に続いて導波
管62およびマグネトロン61が順次電気的に接続され
て設けられる。
A cylindrical vacuum container 67 is attached to the upper portion of the buffer chamber 3, and a flat microwave transmitting window 66 is airtightly attached to the upper opening of the vacuum container 67.
A plasma generation chamber is formed by the vacuum container 67 and the microwave transmission window 66. A cylindrical wall 642 configured to have substantially the same diameter as the vacuum container 67 is provided on the microwave transmission window 66 so as to be electrically connected to the vacuum container 67.
A top plate 641 having a circular opening in the center is provided in the upper opening of 42 so as to be electrically connected to the cylindrical wall 642.
A cylindrical cavity portion 64 surrounded by the microwave transmission window 66, the cylindrical wall 642, and the top plate 641 is provided. A circular rectangular conversion waveguide 63 is electrically connected to the circular opening in the center of the top plate 641, and the circular rectangular conversion waveguide 63 is electrically connected to a waveguide 62 and a magnetron 61 sequentially. It is connected and provided.

【0013】マイクロ波透過窓66の下面には、図2に
示すようにガス吹き出し口111を多数有するシャワー
プレート611がマイクロ波透過窓66との間にわずか
な隙間を有して設けてあり、マイクロ波透過窓66とシ
ャワープレート611との隙間にはガス導入経路112
が接続されている。
As shown in FIG. 2, a shower plate 611 having a large number of gas outlets 111 is provided on the lower surface of the microwave transmitting window 66 with a slight gap between the microwave transmitting window 66 and the shower plate 611. A gas introduction path 112 is provided in the gap between the microwave transmission window 66 and the shower plate 611.
Is connected.

【0014】バッファ室3には、バッファ室3内の試料
搬送空間である通路と処理室6とを仕切る円筒状の仕切
り弁であるリングゲート15が設けられている。リング
ゲート15は、真空容器67の内径と同径もしくは略同
径に形成され、バッファ室3の下方から組み込まれ、リ
ングゲート15の中心軸に対称に配置した2つのエアー
シリンダ(図示省略)によって上下方向に駆動される。
The buffer chamber 3 is provided with a ring gate 15 which is a cylindrical partition valve for partitioning a processing chamber 6 from a passage which is a sample transfer space in the buffer chamber 3. The ring gate 15 is formed to have the same or substantially the same diameter as the inner diameter of the vacuum container 67, is incorporated from below the buffer chamber 3, and is formed by two air cylinders (not shown) symmetrically arranged with respect to the central axis of the ring gate 15. It is driven vertically.

【0015】円筒空洞部64および真空容器67の外周
部にはソレノイドコイル65が設けてある。ソレノイド
コイル65は、円筒空洞部64および真空容器67の外
周部に巻装したソレノイドコイル652および653
と、円筒空洞部64の天板641上部に配置した内径が
小さく円周方向に巻数を多くしたソレノイドコイル65
1とから成る。ソレノイドコイル651は主磁束用とし
て用いられ、ソレノイドコイル652および653は磁
力線の制御用として用いられる。さらに、ソレノイドコ
イル651,652および653の外周には、これらソ
レノイドコイルを囲んでヨーク654が設けてある。ヨ
ーク654のソレノイドコイル651に対応した内側上
端部は円筒空洞部64および真空容器67の軸心と同心
で、円筒空洞部64に向けて下方に曲げて形成されてい
る。
A solenoid coil 65 is provided on the outer peripheral portions of the cylindrical hollow portion 64 and the vacuum container 67. The solenoid coil 65 includes solenoid coils 652 and 653 wound around the cylindrical cavity 64 and the outer periphery of the vacuum container 67.
And a solenoid coil 65 arranged on the top plate 641 of the cylindrical hollow portion 64 and having a small inner diameter and a large number of turns in the circumferential direction.
And 1. The solenoid coil 651 is used for main magnetic flux, and the solenoid coils 652 and 653 are used for controlling magnetic force lines. Further, a yoke 654 is provided around the solenoid coils 651, 652 and 653 so as to surround these solenoid coils. The inner upper end portion of the yoke 654 corresponding to the solenoid coil 651 is concentric with the axial center of the cylindrical hollow portion 64 and the vacuum container 67, and is bent downward toward the cylindrical hollow portion 64.

【0016】真空容器67の内面側には図2に示すよう
に、真空容器67からの金属汚染をさけるために石英,
セラミックなどの耐プラズマ性の材料で形成された円筒
状の絶縁物カバー671を設置してある。また、真空容
器67の内側には電極である試料台68近傍に接地電位
の部材であるアース電極672を配置する。アース電極
672は、接地電位となっているバッファ室3に電気的
に接続され、真空容器67の内側に向けて真空容器67
との間に溝部を設けて取り付けられている。アース電極
672は、絶縁物カバー672によって電気的に絶縁さ
れた真空容器67とプラズマ615との電気導通性を取
る働きをする。絶縁物カバー671は真空容器67の内
壁面とアース電極672とにより形成された溝部におと
しこまれて保持される。
As shown in FIG. 2, the inner surface of the vacuum container 67 is made of quartz to prevent metal contamination from the vacuum container 67.
A cylindrical insulator cover 671 formed of a plasma resistant material such as ceramic is installed. Further, inside the vacuum container 67, a ground electrode 672, which is a member of ground potential, is arranged near the sample table 68, which is an electrode. The ground electrode 672 is electrically connected to the buffer chamber 3 that is at the ground potential, and is directed toward the inside of the vacuum container 67.
It is attached by providing a groove portion between and. The ground electrode 672 serves to establish electrical continuity between the plasma 615 and the vacuum container 67 electrically insulated by the insulator cover 672. The insulator cover 671 is held in the groove formed by the inner wall surface of the vacuum container 67 and the ground electrode 672.

【0017】上述のように構成された装置において、真
空容器67内にプラズマを発生させるには、まず、真空
容器67の内部はターボ分子ポンプ613と真空ポンプ
614によって減圧される。試料を処理する場合、プロ
セスガスをガス導入経路112からマイクロ波透過窓6
6とシャワープレート611の間に導入し、シャワープ
レート611に設けられたガス吹き出し口111から真
空容器67に導く(図3ステップa)。真空容器67の
内部圧力はバリアブルバルブ612によって調節され、
マグネトロン61から設定電流値のマイクロ波電流とな
るマイクロ波を発信させる(図3ステップb)。マグネ
トロン61から発振した、この場合、2.45GHzの
マイクロ波は矩形の導波管62,円矩形変換導波管63
を経由し、円筒空洞部64内に導かれる。この場合、導
波管62内は矩形TE10モードのマイクロ波が伝播さ
れ、円矩形変換導波管63によって円形TE11モード
のマイクロ波に変換されて円筒空洞部64に導かれる。
円筒空洞部64内に導入されたマイクロ波は、マイクロ
波透過窓66,シャワープレート611を経て真空容器
67内に導かれる。一方、真空容器67の周囲に設けら
れたソレノイドコイル65によって真空容器67の内部
には、真空容器67の軸方向の磁界が形成される。真空
容器67内に導入されたマイクロ波及びソレノイドコイ
ル65による磁界の作用によって、プラズマ中の電子は
磁界からローレンツ力を受けて旋回運動を行う。旋回運
動の周期とマイクロ波の周波数がほぼ一致したとき、電
子はマイクロ波から効率良くエネルギーを受け取り、電
子サイクロトロン共鳴現象(Electron Cyc
lotron Resonance、以下「ECR」と
略す。)によって密度の高いプラズマ615が生成され
る。本装置では、ECR条件を満たす等磁界面(以下
「ECR面」と略す。)を真空容器67の内部に存在さ
せる。この場合、ECR面における磁場の強さは875
ガウスである。これによって、真空容器67内に密度の
高いプラズマ615を生成する。
In the apparatus configured as described above, in order to generate plasma in the vacuum container 67, first, the inside of the vacuum container 67 is depressurized by the turbo molecular pump 613 and the vacuum pump 614. When processing the sample, the process gas is introduced from the gas introduction path 112 into the microwave transmission window 6
6 and the shower plate 611 and introduced into the vacuum container 67 from the gas outlet 111 provided in the shower plate 611 (step a in FIG. 3). The internal pressure of the vacuum container 67 is adjusted by the variable valve 612,
A microwave that is a microwave current having a set current value is emitted from the magnetron 61 (step b in FIG. 3). In this case, the microwave of 2.45 GHz oscillated from the magnetron 61 has a rectangular waveguide 62 and a circular rectangular conversion waveguide 63.
Is introduced into the cylindrical hollow portion 64 via. In this case, a rectangular TE10 mode microwave is propagated in the waveguide 62, converted into a circular TE11 mode microwave by the circular rectangular conversion waveguide 63, and guided to the cylindrical cavity portion 64.
The microwave introduced into the cylindrical cavity portion 64 is guided into the vacuum container 67 via the microwave transmission window 66 and the shower plate 611. On the other hand, a magnetic field in the axial direction of the vacuum container 67 is formed inside the vacuum container 67 by the solenoid coil 65 provided around the vacuum container 67. Due to the action of the microwave introduced into the vacuum chamber 67 and the magnetic field of the solenoid coil 65, the electrons in the plasma receive the Lorentz force from the magnetic field and make a turning motion. When the period of the swirling motion and the frequency of the microwaves are substantially equal to each other, the electrons efficiently receive energy from the microwaves, and the electron cyclotron resonance phenomenon (Electron Cyc
lotron Resonance, hereinafter abbreviated as "ECR". ) Produces a dense plasma 615. In this apparatus, an equal magnetic field surface (hereinafter abbreviated as “ECR surface”) satisfying the ECR condition is present inside the vacuum container 67. In this case, the strength of the magnetic field on the ECR plane is 875.
Gauss. As a result, a high density plasma 615 is generated in the vacuum container 67.

【0018】プラズマが生成した後に、静電吸着電源6
16よりウエハを試料台68に吸着させるための直流電
圧を出力する(図3ステップc)。プラズマ615を介
してアース電極672,静電吸着電源616および試料
台68の間で構成される電気回路において、試料台68
とウエハおよびウエハ自体が容量成分を持つため、静電
吸着電源616から出力された直流電圧は、試料台68
とウエハとの間にチャージされ、これによりウエハが試
料台68に吸着される。
After the plasma is generated, the electrostatic attraction power supply 6
A DC voltage for adsorbing the wafer to the sample table 68 is output from 16 (step c in FIG. 3). In the electric circuit configured between the ground electrode 672, the electrostatic attraction power supply 616 and the sample table 68 via the plasma 615, the sample table 68 is used.
Since the wafer and the wafer itself have a capacitive component, the DC voltage output from the electrostatic attraction power supply 616 is
And the wafer are charged, so that the wafer is attracted to the sample table 68.

【0019】ウエハが試料台68に吸着された後に、プ
ラズマによる入熱を防ぐ目的でウエハと試料台68で形
成されたタンクに不活性ガスを導入し(図3ステップ
d)、さらに高周波電源610より設定電圧の高周波バ
イアス電圧を出力し(図3ステップe)、プロセス処理
を開始する。
After the wafer is adsorbed on the sample stage 68, an inert gas is introduced into the tank formed by the wafer and the sample stage 68 for the purpose of preventing heat input by the plasma (step d in FIG. 3), and then the high frequency power source 610. The high-frequency bias voltage of the set voltage is output (step e in FIG. 3), and the process processing is started.

【0020】その後、プロセス処理の終了に伴い、ウエ
ハ裏面に供給していた冷却ガスの供給を停止(図3ステ
ップf)し、静電吸着されたウエハを静電吸着解除処理
により試料台68から取り外したのを確認(図3ステッ
プg)後、引き続き試料台への高周波電力の供給を停止
(図3ステップh)し、マイクロ波を発振するマグネト
ロン61への電力の供給を停止する(図3ステップ
i)。その後プロセスガスの供給を停止させ(図3ステ
ップj)、次ウエハとの交換のために搬出する。
After that, when the process processing is completed, the supply of the cooling gas supplied to the back surface of the wafer is stopped (step f in FIG. 3), and the electrostatically adsorbed wafer is removed from the sample table 68 by the electrostatic adsorption release processing. After confirming the removal (step g in FIG. 3), the supply of high frequency power to the sample stage is continuously stopped (step h in FIG. 3), and the power supply to the magnetron 61 that oscillates microwaves is stopped (FIG. 3). Step i). After that, the supply of the process gas is stopped (step j in FIG. 3), and the wafer is unloaded for replacement with the next wafer.

【0021】ここで、ウエハと試料台68が離脱できた
か否かの判定は、圧力真空計82またはガス流量計83
を用いて行う。
Here, the pressure vacuum gauge 82 or the gas flow meter 83 is used to judge whether or not the wafer and the sample table 68 have been separated.
This is performed using

【0022】プロセス処理中にウエハと試料台で形成さ
れたタンク81に貯蓄された不活性ガスの圧力は静電吸
着保持力が減衰しないかぎり、低下しない。すなわち、
静電吸着解除処理実行中に静電吸着保持力の減衰が発生
したときに限り、圧力の低下が見られる。また、ウエハ
と試料台で形成されたタンク81に貯蓄された空間の圧
力を一定に保つために不活性ガスの流量の制御を行った
場合、静電吸着保持力の減衰が発生したときは圧力の保
持を保つため不活性ガスの流量が増加する。
The pressure of the inert gas stored in the tank 81 formed by the wafer and the sample stage during the process is not lowered unless the electrostatic adsorption holding force is attenuated. That is,
Only when the electrostatic adsorption holding force is attenuated during the electrostatic adsorption releasing process, the pressure is reduced. Further, when the flow rate of the inert gas is controlled in order to keep the pressure of the space stored in the tank 81 formed by the wafer and the sample table constant, when the electrostatic adsorption holding force is attenuated, the pressure is reduced. The flow rate of the inert gas is increased in order to maintain the retention.

【0023】プロセス処理中に、ウエハの冷却のために
ウエハと試料台で形成されたタンク81に不活性ガスを
貯蓄し、圧力真空計82を用いタンク81の圧力P1を
測定する。静電吸着解除処理実行中には、圧力真空計8
2によりタンク81の圧力Pjを常時監視し、圧力P1
とPjとを比較することでウエハと試料台68が離脱が
できたと判断する。静電吸着保持力が減衰すれば、圧力
Pjが小さくなるので、例えば、以下に示す式にてウエ
ハと試料台68との離脱の確認を行うことができる。
During the process, an inert gas is stored in a tank 81 formed by the wafer and the sample table for cooling the wafer, and the pressure P1 in the tank 81 is measured by using a pressure vacuum gauge 82. During the electrostatic adsorption release process, the pressure gauge 8
2, the pressure Pj of the tank 81 is constantly monitored, and the pressure P1
And Pj are compared, it is determined that the wafer and the sample table 68 can be separated. If the electrostatic adsorption holding force is attenuated, the pressure Pj is reduced, so that it is possible to confirm the separation between the wafer and the sample table 68, for example, by the following equation.

【0024】P1−Pj>Pxのときウエハと試料台6
8とが離脱できたと判断する。ここで、Pxはウエハの
種類、プロセス処理の条件等によりオペレータが設定し
た値であり、上記条件により複数個設定できる。
When P1-Pj> Px, the wafer and sample stage 6
It is judged that 8 and 8 have been able to leave. Here, Px is a value set by the operator according to the type of wafer, the conditions of process processing, etc., and a plurality of Px can be set under the above conditions.

【0025】静電吸着解除処理実行中に一定流量の不活
性ガスの供給を行った場合も、静電吸着保持力の減衰に
よる圧力の減少が、不活性ガスの供給による圧力の増加
に比べ大きくなるように不活性ガス流量を設定すれば、
同様の確認を行うことができる。
Even when the inert gas is supplied at a constant flow rate during the electrostatic adsorption canceling process, the decrease in pressure due to the decrease in electrostatic adsorption holding force is larger than the increase in pressure due to the supply of inert gas. If the inert gas flow rate is set so that
Similar confirmations can be made.

【0026】また、プロセス処理中に、ウエハの冷却の
ためにウエハと試料台で形成されたタンク81に不活性
ガスを貯蓄し、静電吸着解除処理実行中にタンク81の
圧力を一定になるように不活性ガスの流量の制御行う。
このとき一定時間の不活性ガスの流量の和Qjを測定す
ることでウエハと試料台68が離脱ができたと判断す
る。静電吸着保持力の減衰が発生すれば圧力が減少し、
一定圧力を保つために不活性ガスの流量が増加するの
で、例えば、以下に示す式にてウエハと試料台68との
離脱の確認を行うことができる。
Further, during the process processing, an inert gas is stored in the tank 81 formed by the wafer and the sample table for cooling the wafer, and the pressure of the tank 81 becomes constant during the electrostatic adsorption releasing process. Thus, the flow rate of the inert gas is controlled.
At this time, it is determined that the wafer and the sample stage 68 can be separated by measuring the sum Qj of the flow rates of the inert gas for a certain period of time. If the electrostatic adsorption holding force decays, the pressure will decrease,
Since the flow rate of the inert gas increases in order to maintain a constant pressure, it is possible to confirm the separation between the wafer and the sample table 68, for example, by the following formula.

【0027】Qj>Qxのときウエハと試料台68が離
脱ができたと判断する。ここで、Qxはウエハの種類、
プロセス処理の条件等によりオペレータが設定した値を
示す。 また、ウエハと試料台68の離脱を確認した場
合、静電吸着解除処理が実行中でも停止させることで、
余分の静電吸着解除処理によるウエハと試料台68の再
保持を防ぐとともに、静電吸着解除処理の短縮ができ
る。更に、何らかの要因で静電吸着解除処理においてウ
エハと試料台68の離脱ができない場合、エラータイマ
を設定することで次ウエハとの交換を停止させオペレー
タに警告を与えるため、搬送時のウエハのズレや落下に
よるウエハの破損がなくなる。
When Qj> Qx, it is determined that the wafer and the sample table 68 can be separated. Where Qx is the type of wafer,
Indicates the value set by the operator according to the process processing conditions. Further, when it is confirmed that the wafer and the sample table 68 are detached, the electrostatic attraction release process is stopped even during execution,
It is possible to prevent the wafer and the sample table 68 from being re-held by the extra electrostatic attraction release processing and to shorten the electrostatic attraction release processing. Further, when the wafer and the sample table 68 cannot be separated from each other in the electrostatic attraction release process for some reason, an error timer is set to stop the replacement of the next wafer and give a warning to the operator. The wafer will not be damaged due to falling or falling.

【0028】[0028]

【発明の効果】本発明によれば、試料と試料台の間の静
電吸着力を減衰させ、試料と試料台との離脱を確認する
ことができるので、プロセス処理終了後の試料の搬送を
すみやかにかつ安全に行うことができるという効果があ
る。
According to the present invention, the electrostatic attraction force between the sample and the sample stage can be attenuated and the separation between the sample and the sample stage can be confirmed, so that the sample can be transported after the process treatment is completed. The effect is that it can be performed promptly and safely.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のプラズマ処理装置を搭載す
る真空処理装置の縦断面図である。
FIG. 1 is a vertical sectional view of a vacuum processing apparatus equipped with a plasma processing apparatus according to an embodiment of the present invention.

【図2】図1の装置のプラズマ生成部及び試料台部の詳
細を示した図である。
FIG. 2 is a diagram showing details of a plasma generation unit and a sample stage unit of the apparatus of FIG.

【図3】図1の装置の運転ステップを示すタイムチャー
ト図である。
3 is a time chart diagram showing operating steps of the apparatus of FIG. 1. FIG.

【符号の説明】[Explanation of symbols]

61…マグネトロン、62…導波管、63…円矩形変換
導波管、64…円筒空洞部、65…ソレノイドコイル、
66…マイクロ波透過窓、67…真空容器、68…試料
台、610…高周波電源、611…シャワープレート、
613…タ−ボ分子ポンプ、615…高密度プラズマ、
616…静電吸着電源、81…冷却ガス貯蓄用タンク、
82…圧力真空計、83…ガス流量計、84…冷却ガス
導入経路、85…試料(ウエハ)。
61 ... Magnetron, 62 ... Waveguide, 63 ... Circular rectangular conversion waveguide, 64 ... Cylindrical cavity part, 65 ... Solenoid coil,
66 ... Microwave transmission window, 67 ... Vacuum container, 68 ... Sample stand, 610 ... High frequency power supply, 611 ... Shower plate,
613 ... Turbo molecular pump, 615 ... High density plasma,
616 ... Electrostatic adsorption power source, 81 ... Cooling gas storage tank,
82 ... Pressure vacuum gauge, 83 ... Gas flow meter, 84 ... Cooling gas introduction path, 85 ... Sample (wafer).

フロントページの続き (72)発明者 田村 直行 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 (72)発明者 山本 秀之 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 (72)発明者 平野 裕義 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 (72)発明者 坂口 正道 山口県下松市大字東豊井794番地 日立笠 戸エンジニアリング株式会社内Front Page Continuation (72) Inventor Naoyuki Tamura, Higashi-Toyoi 794, Higashi-Toyoi, Shimomatsu, Yamaguchi Prefecture Inside the Kasado Plant, Hitachi Ltd. (72) Hideyuki Yamamoto 794, Higashi-Toyoi, Shimomatsu, Yamaguchi Prefecture Hitachi, Ltd. In the Kasado Plant (72) Inventor Hiroyoshi Hirano 794 Higashi-Toyoi, Higashi-Tomoi, Yamaguchi Prefecture Stock company Hitachi Ltd.In the Kasado Plant (72) Inventor Masamichi Sakaguchi 794, Toyoi, Higashi-Toyo, Hitachi Kasato Engineering Co., Ltd. In the company

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】真空室内にプラズマを発生させるととも
に、試料台に静電吸着電圧を印加して前記試料台に配置
した試料を静電吸着保持し、前記プラズマによって前記
試料を処理するプラズマ処理方法において、前記試料台
と前記試料の間の吸着力を測定することにより静電吸着
解除処理実行中に前記試料台と前記試料の離脱が確認で
きることを特徴とするプラズマ処理方法。
1. A plasma processing method in which plasma is generated in a vacuum chamber, and an electrostatic attraction voltage is applied to the sample stage to electrostatically attract and hold a sample placed on the sample stage, and the sample is treated with the plasma. 2. The plasma processing method according to claim 1, wherein the detachment of the sample stage from the sample can be confirmed during the electrostatic adsorption cancellation process by measuring the attraction force between the sample stage and the sample.
【請求項2】請求項1記載において、前記試料台と前記
試料の間の吸着力としてはプラズマ処理中の試料の冷却
のために不活性圧力を貯める空間を利用できることを特
徴とするプラズマ処理方法。
2. The plasma processing method according to claim 1, wherein a space for storing an inert pressure for cooling the sample during plasma processing can be used as an adsorption force between the sample stage and the sample. .
【請求項3】請求項2記載において、前記試料台と前記
試料の間の空間に貯蓄する不活性ガスはプラズマ処理中
の試料の冷却のために使用する冷却ガスを用いることが
できることを特徴とするプラズマ処理方法。
3. The inert gas stored in the space between the sample stage and the sample according to claim 2, wherein a cooling gas used for cooling the sample during plasma processing can be used. Plasma treatment method.
【請求項4】請求項1記載において、前記試料台と前記
試料の離脱の確認は、静電吸着保持中に前記試料台と前
記試料の間の空間に不活性ガスを貯め、静電吸着解除処
理実行中にその空間内の圧力を測定することにより行う
ことを特徴とするプラズマ処理方法。
4. The method according to claim 1, wherein the separation of the sample table and the sample is confirmed by storing an inert gas in a space between the sample table and the sample while holding the sample by electrostatic adsorption. A plasma processing method, which is performed by measuring the pressure in the space during processing.
【請求項5】請求項1記載において、前記試料台と前記
試料の離脱の確認は、静電吸着解除処理実行中に前記試
料台と前記試料の間の空間に不活性ガスを一定流量流し
たときのその空間内の圧力を測定することにより行うこ
とを特徴とするプラズマ処理方法。
5. The method according to claim 1, wherein the separation of the sample table and the sample is confirmed by flowing a constant flow rate of an inert gas into the space between the sample table and the sample during the electrostatic adsorption releasing process. The plasma processing method is performed by measuring the pressure in the space at that time.
【請求項6】請求項1記載において、前記試料台と前記
試料の離脱の確認は、静電吸着解除処理実行中に前記試
料台と前記試料の間の空間の圧力が一定になるように不
活性ガス流量を制御し、その不活性ガスの流量を測定す
ることにより行うことを特徴とするプラズマ処理方法。
6. The method according to claim 1, wherein the separation of the sample table and the sample is confirmed so that the pressure in the space between the sample table and the sample becomes constant during the electrostatic adsorption canceling process. A plasma processing method, which is performed by controlling a flow rate of an active gas and measuring a flow rate of the inert gas.
【請求項7】請求項4〜6のいずれか一つの請求項記載
において、試料の種類、プラズマ処理時の装置状態等に
より前記試料台と前記試料の離脱の確認を判定するため
の条件がオペレータにより複数個設定できることを特徴
とするプラズマ処理方法。
7. The operator according to any one of claims 4 to 6, wherein a condition for determining whether or not the sample stage and the sample are separated from each other is determined by an operator depending on a type of sample, an apparatus state during plasma processing, and the like. A plasma processing method characterized in that a plurality of them can be set by
【請求項8】請求項1記載において、静電吸着解除処理
実行中に前記試料台と前記試料の離脱の確認を行った場
合、静電吸着解除処理をただちに停止させることによ
り、静電吸着解除処理の短縮が行えることを特徴とする
プラズマ処理方法。
8. The electrostatic chuck release according to claim 1, wherein when the separation of the sample table and the sample is confirmed during execution of the electrostatic chuck release processing, the electrostatic chuck release processing is immediately stopped to release the electrostatic chuck. A plasma processing method characterized in that the processing can be shortened.
【請求項9】請求項8記載において、静電吸着解除処理
をただちに停止させることにより、余分な静電吸着解除
処理に伴う前記試料台と前記試料の再保持が発生しない
ことを特徴とするプラズマ処理方法。
9. The plasma according to claim 8, wherein the electrostatic adsorption release process is immediately stopped so that re-holding of the sample stage and the sample due to the extra electrostatic adsorption release process does not occur. Processing method.
【請求項10】請求項8記載において、静電吸着解除処
理の短縮により、静電吸着解除処理に伴う試料のダメー
ジが減少することを特徴とするプラズマ処理方法。
10. The plasma processing method according to claim 8, wherein the shortening of the electrostatic adsorption releasing treatment reduces damage to the sample due to the electrostatic adsorption releasing treatment.
【請求項11】請求項1記載において、前記試料台と前
記試料の離脱の確認ができない場合、オペレータにその
旨を報告し、オペレータの判断により次処理の起動を行
うか否かを問う機能を具備したことを特徴とするプラズ
マ処理装置。
11. The function according to claim 1, wherein when the separation of the sample table and the sample cannot be confirmed, the fact is reported to the operator and the operator is asked whether to start the next process. A plasma processing apparatus comprising:
【請求項12】請求項11記載において、前記試料台と
前記試料の離脱の確認ができない場合、試料の搬出を停
止させる機能を具備したことを特徴とするプラズマ処理
装置。
12. The plasma processing apparatus according to claim 11, further comprising a function of stopping unloading of the sample when the separation of the sample from the sample cannot be confirmed.
【請求項13】処理ガスが供給されるとともに所定圧力
に減圧される真空室と、前記真空室内の前記処理ガスを
プラズマ化する手段と、前記真空室内に設けられた試料
台と、前記試料台に配置される試料を静電吸着保持する
手段と、前記試料台に吸着保持された前記試料の裏面に
伝熱ガスを供給する手段と、前記試料台と前記試料の間
の吸着力を測定し静電吸着解除処理中に前記試料台と前
記試料の離脱を確認する手段とを具備したことを特徴と
するプラズマ処理装置。
13. A vacuum chamber which is supplied with a processing gas and is depressurized to a predetermined pressure, a means for converting the processing gas in the vacuum chamber into plasma, a sample stage provided in the vacuum chamber, and the sample stage. Means for electrostatically holding the sample placed on the sample table, means for supplying a heat transfer gas to the back surface of the sample held on the sample table by suction, and measuring the attraction force between the sample table and the sample. A plasma processing apparatus comprising: the sample stage and means for confirming separation of the sample during the electrostatic adsorption release process.
JP29512595A 1995-11-14 1995-11-14 Method and device for plasma treatment Pending JPH09139417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29512595A JPH09139417A (en) 1995-11-14 1995-11-14 Method and device for plasma treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29512595A JPH09139417A (en) 1995-11-14 1995-11-14 Method and device for plasma treatment

Publications (1)

Publication Number Publication Date
JPH09139417A true JPH09139417A (en) 1997-05-27

Family

ID=17816618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29512595A Pending JPH09139417A (en) 1995-11-14 1995-11-14 Method and device for plasma treatment

Country Status (1)

Country Link
JP (1) JPH09139417A (en)

Similar Documents

Publication Publication Date Title
JP6435135B2 (en) Plasma processing equipment
EP0073963B1 (en) Inductively coupled discharge for plasma etching and resist stripping
JP3689732B2 (en) Monitoring device for plasma processing equipment
TWI567862B (en) A particle adhesion control method and a processing device for the substrate to be processed
JP2012506620A (en) Plasma source and process for cleaning the chamber
JP2001148378A (en) Plasma processing apparatus, cluster tool and plasma control method
JP6339866B2 (en) Plasma processing apparatus and cleaning method
JP3254069B2 (en) Plasma equipment
TW201904359A (en) Plasma reaction device for processing workpieces
US20240063000A1 (en) Method of cleaning plasma processing apparatus and plasma processing apparatus
JP2010192513A (en) Plasma processing apparatus and method of operating the same
JPH088235B2 (en) Plasma reactor
JPH09139417A (en) Method and device for plasma treatment
JPH09148418A (en) Plasma processing method and device
JPH0269956A (en) Method and apparatus for electrostatically chucking
JP3582163B2 (en) Plasma processing method
JPH09148309A (en) Method and apparatus for plasma processing
JPH06120169A (en) Plasma generating apparatus
JPH11162946A (en) Semiconductor manufacturing equipment and substrate processing
US20220102120A1 (en) Operating method of etching device
WO2023275958A1 (en) Method for regenerating inner wall member
JP5913817B2 (en) Plasma processing equipment
WO2022202551A1 (en) Plasma treatment device and plasma treatment method
JPH06283123A (en) Electron beam excitation plasma generating device
JPH11340215A (en) Cleaning method for plasma treatment chamber