JPH09137450A - Vibrating penetration device - Google Patents

Vibrating penetration device

Info

Publication number
JPH09137450A
JPH09137450A JP29455495A JP29455495A JPH09137450A JP H09137450 A JPH09137450 A JP H09137450A JP 29455495 A JP29455495 A JP 29455495A JP 29455495 A JP29455495 A JP 29455495A JP H09137450 A JPH09137450 A JP H09137450A
Authority
JP
Japan
Prior art keywords
penetration
probe
vibration
penetrating
probes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29455495A
Other languages
Japanese (ja)
Other versions
JP2853829B2 (en
Inventor
Shuichiro Koga
修一郎 古賀
Nobuhiro Shimoi
信浩 下井
Fujio Iitaka
不二男 飯高
Akihiro Nakayama
章弘 中山
Tomonori Kimura
智納 木村
Masayoshi Uno
昌嘉 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Kawasaki Heavy Industries Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Kawasaki Heavy Industries Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Kawasaki Heavy Industries Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP7294554A priority Critical patent/JP2853829B2/en
Publication of JPH09137450A publication Critical patent/JPH09137450A/en
Application granted granted Critical
Publication of JP2853829B2 publication Critical patent/JP2853829B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce frictional resistance and adhesive resistance between a bar-shaped body and an object when the bar-shaped body is penetrated. SOLUTION: A detecting section 2 of a vibrating penetration device 1 is mounted to a truck 4 through a robot arm 3. An oscillating probe 10 is fixed to a first housing of the detecting section 2, and a receiving probe 11 is fixed to a second housing. Penetrating vibrators 58 are respectively mounted to the probes 10 and 11 as the bar-shaped bodies, and when they are penetrated, vibration is applied to the probes 10 and 11. The housings are housed in a casing 37 in a slidable manner. The central part of an oscillation member 46 is connected to the casing 37, one end of the oscillation member 46 is connected to the first housing through a first joint member 47, and the other end is connected to the second housing through a second joint member 48.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、壁や地面などの物
体に棒状体を貫入させるための貫入装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a penetrating device for penetrating a rod-shaped body into an object such as a wall or the ground.

【0002】[0002]

【従来の技術】建築工事の際、基礎を支持する地盤が軟
弱な場合には一般に地盤にくいを打ち込む。くい打ち
は、一般にくい打ちやぐらにドロップハンマまたはディ
ーゼルハンマを装着し、くいを地中にたたき込むことに
よって行われる。
2. Description of the Related Art In the construction work, when the ground supporting the foundation is soft, it is generally hard to drive the ground. Pile driving is generally performed by mounting a drop hammer or a diesel hammer on a difficult-to-use hammer and hammering the pile into the ground.

【0003】また、屋内の建築工事においても、壁や床
に釘などを貫入させる際には、一般にハンマなどで衝撃
を与えて打ち込む。
Also, in indoor construction work, when a nail or the like is to be penetrated into a wall or floor, a hammer or the like is generally given a shock to drive it.

【0004】また、土質の硬軟などを調べるときには探
り(サウンディング)を行う。探りは地盤調査の1種
で、鋼棒を地中に貫入させ、硬い地層を探る方法であ
る。この方法では、鋼棒を軸線まわりに回転、または打
ち下げながら貫入させる。
In addition, when investigating the hardness and softness of the soil, sounding is performed. Exploration is a type of ground investigation, which is a method of penetrating a steel rod into the ground to explore a hard stratum. In this method, a steel rod is inserted while rotating around the axis or being depressed.

【0005】また、地中に埋設された物質を探針によっ
て調査する方法があり、この方法では、操作者が探針を
埋設物に当接するまで貫入し、この探針を打針したとき
の感触や滑り具合、音などによって操作者が埋設物の種
類、形状、状態などを判断する。操作者が探針を貫入す
る代りにロボットによって貫入し、たとえばコンピュー
タによって識別する方法もある。
Further, there is a method of investigating a substance buried in the ground with a probe. In this method, an operator penetrates the probe until it abuts on the buried object, and feels when the probe is struck. The operator determines the type, shape, state, etc. of the buried object based on the sliding condition, sound condition, and the like. There is also a method in which the operator penetrates the probe instead of penetrating the probe, and for example, it is identified by a computer.

【0006】また、地中にパイルなどを貫入させる方法
としては、特開昭55−98527号公報に、延長方向
に振動するパイルの先端に土質破壊貫入用振動をさらに
与えてパイルを打ち込む方法が開示されている。また、
地中に埋設管を埋設する方法としては、特開昭58−8
0095号公報に、埋設管の先頭位置に設けられたヘッ
ドに横振動を与えつつ、軸方向の荷重を検出することに
よって、ヘッドに作用する土の抵抗力を検出する装置が
開示されている。
Further, as a method for penetrating a pile or the like into the ground, Japanese Patent Laid-Open Publication No. Sho 55-98527 discloses a method in which the tip of the pile vibrating in the extension direction is further imparted with a vibration for soil penetration penetration to drive the pile. It is disclosed. Also,
A method of burying a buried pipe in the ground is disclosed in Japanese Patent Application Laid-Open No. 58-8 / 1983.
Japanese Patent Application Publication No. 0095 discloses a device for detecting the resistive force of soil acting on the head by applying a lateral vibration to the head provided at the head position of the buried pipe and detecting the axial load.

【0007】[0007]

【発明が解決しようとする課題】上述のように、ハンマ
でくいや釘などの棒状体を打ち込む際には非常に大きな
騒音が発生するという問題が生じる。
As described above, when hammering a rod-shaped body such as a pile or a nail, there is a problem that a very large noise is generated.

【0008】また、人間の手によって棒状体の貫入方向
に力をかけるか、または棒状体をこねりながら貫入させ
たとしても貫入できる深さは非常に小さい。また、人間
の代りにロボットまたは油圧式ジャッキやウインチを用
いて強制的に押し込み、騒音を少なくすることもできる
が、圧入時に大きな反力を要するため貫入できる深さは
ハンマなどの衝撃によって貫入させる場合に比べると小
さくなる。これらの問題は、貫入するくいや釘などの棒
状体とそれに対する土や壁との間に摩擦抵抗および粘着
抵抗が介在するために生じる。もしこれらの摩擦抵抗お
よび粘着抵抗を少なくすることができれば貫入させる
際、貫入力が小さくてすむため、ハンマで衝撃を与える
場合にはより少ない衝撃で貫入でき、またはハンマの代
わりに油圧式ジャッキやウインチによって貫入させるこ
とができ、ハンマの衝撃による騒音および振動を格段に
減少させることができる。
Further, even if a force is applied by a human hand in the penetrating direction of the rod-shaped body or the rod-shaped body is penetrated while being kneaded, the depth that can be penetrated is very small. It is also possible to use a robot or a hydraulic jack or winch instead of a human to forcibly push it in to reduce noise, but since a large reaction force is required at the time of press fitting, the depth of penetration can be made by impacting with a hammer or the like. It will be smaller than the case. These problems occur because of frictional and adhesive resistances that intervene between the penetrating rods such as nails and nails and the soil and walls against them. If it is possible to reduce these frictional and adhesive resistances, the penetration force will be small when penetrating, so it is possible to penetrate with less impact when impacting with a hammer, or instead of a hammer, a hydraulic jack or It can be penetrated by winch, and noise and vibration due to impact of hammer can be significantly reduced.

【0009】したがって本発明の目的は、棒状体と物体
との間の摩擦抵抗および粘着抵抗を軽減させることがで
きる振動貫入装置を提供することである。
Therefore, an object of the present invention is to provide a vibration penetrating device capable of reducing frictional resistance and adhesive resistance between a rod-shaped body and an object.

【0010】[0010]

【課題を解決するための手段】本発明は、軸線方向に物
体内に貫入される棒状体と、軸線方向に沿って、棒状体
に力を加えて貫入させる貫入手段と、前記棒状体に振動
を与えるための貫入用加振器とを含むことを特徴とする
振動貫入装置である。 本発明に従えば、棒状体は貫入用加振器によって振動が
与えられるため、物体と棒状体との間の粘着抵抗および
摩擦抵抗が減少する。したがって貫入力が小さくても貫
入することができる。
DISCLOSURE OF THE INVENTION The present invention is directed to a rod-shaped body which is axially penetrated into an object, a penetration means for applying force to the rod-shaped body to penetrate the body along the axial direction, and vibration of the rod-shaped body. A vibrating penetrating device, comprising: a vibrating vibrator for penetrating. According to the present invention, since the rod-shaped body is vibrated by the penetrating vibrator, the adhesion resistance and the friction resistance between the object and the rod-shaped body are reduced. Therefore, it is possible to penetrate even if the penetration force is small.

【0011】また本発明は、前記貫入用加振器は、前記
棒状体の軸線方向に垂直な平面において、前記棒状体の
先端が円運動するように振動を与えることを特徴とす
る。 本発明に従えば、棒状体の軸線方向に垂直な平面におい
て、前記棒状体の先端が円運動するように振動を与える
ことによって、物体と棒状体との間の瞬間的な接触面積
を小さくし、粘着抵抗および摩擦抵抗を効果的に減少さ
せることができ、貫入力をさらに減少させることができ
る。
Further, the present invention is characterized in that the penetrating vibrator applies vibration so that a tip end of the rod-shaped body makes a circular motion in a plane perpendicular to the axial direction of the rod-shaped body. According to the present invention, in a plane perpendicular to the axial direction of the rod-shaped body, the momentary contact area between the object and the rod-shaped body is reduced by applying vibration so that the tip of the rod-shaped body makes a circular motion. The adhesive resistance and the frictional resistance can be effectively reduced, and the penetration force can be further reduced.

【0012】[0012]

【発明の実施の形態】図1は、本発明の実施の一形態で
ある振動貫入装置1を示す正面図である。振動貫入装置
1は、ロボットアーム3が移動自在の台車4に搭載さ
れ、ロボットアーム3の先端には探知部2が装着されて
構成される。ロボットアーム3は、台車4に対して軸線
L1まわりに回転自在に連結される基部5と、基部5に
対して軸線L2まわりに角変位自在に連結されるアーム
6と、アーム6に対して軸線L3まわりに角変位自在に
連結されるアーム7と、アーム7に対して軸線L4まわ
りに角変位自在に連結され、探知部2を軸線L5まわり
に回転自在に連結する回転部材8とから構成され、この
回転部材8にはロボットアーム3に印加される力を検出
する6軸力センサ14が設けられる。振動貫入装置1
は、台車4によって所望の地点まで移動し、探知部2の
貫入する位置決めをロボットアーム3によって行う。ロ
ボットアーム3は、6軸力センサ14の出力に基づいて
ロボット制御装置9によって制御され、探知部2を所望
の位置に所望の角度に位置決めする。探知部2は、発振
用探針10と、受振用探針11と、各探針10,11を
支持するケーシング37とリンク手段57と貫入用加振
器58とを含んで構成され、受振用探針11からのデー
タはデータ処理装置13によって処理される。
1 is a front view showing a vibration penetrating device 1 according to an embodiment of the present invention. The vibration penetrating device 1 is configured such that a robot arm 3 is mounted on a movable carriage 4 and a detection unit 2 is attached to the tip of the robot arm 3. The robot arm 3 includes a base 5 rotatably connected to the carriage 4 about the axis L1, an arm 6 connected to the base 5 so as to be angularly displaceable about the axis L2, and an axis relative to the arm 6. An arm 7 is connected to the arm 7 so as to be angularly displaceable about the axis L3, and a rotating member 8 is connected to the arm 7 so as to be angularly displaceable about the axis L4, and connects the detection unit 2 rotatably about the axis L5. The rotary member 8 is provided with a six-axis force sensor 14 for detecting a force applied to the robot arm 3. Vibration penetration device 1
Is moved by the carriage 4 to a desired point, and the robot arm 3 performs positioning for the detection unit 2 to penetrate. The robot arm 3 is controlled by the robot controller 9 based on the output of the six-axis force sensor 14, and positions the detection unit 2 at a desired position at a desired angle. The detection unit 2 is configured to include an oscillation probe 10, a vibration-receiving probe 11, a casing 37 that supports each probe 10, 11, a link means 57, and a penetration vibrator 58. The data from the probe 11 is processed by the data processing device 13.

【0013】図2は、データ処理装置13を示すブロッ
ク図である。データ処理装置13は、信号処理回路1
6、識別回路17、表示処理回路18、表示装置19お
よびデータベース回路20を含んで構成され、受振用探
針11に連結される。
FIG. 2 is a block diagram showing the data processing device 13. The data processing device 13 includes the signal processing circuit 1
6. It includes an identification circuit 17, a display processing circuit 18, a display device 19, and a database circuit 20, and is connected to the vibration receiving probe 11.

【0014】第1ハウジング35内に設けられた発振用
探針10の一方端部側には、埋設物25に衝撃を与える
ための衝撃発生器21が設けられる。この衝撃発生器2
1は制御装置15によって制御される。発振用探針10
の他方端部は、埋設物25に当接するまで地中26に貫
入され、衝撃発生器21によって加えられた衝撃は、発
振用探針10を伝播して埋設物25に伝わって、埋設物
25から物質に固有の弾性波が発生する。発振用探針1
0は、たとえば地表面に対して30°〜45°の角度で
挿入され、また0.1kg重〜0.3kg重の衝撃が加
振される。
On one end side of the oscillation probe 10 provided in the first housing 35, an impact generator 21 for impacting the embedded object 25 is provided. This shock generator 2
1 is controlled by the control device 15. Oscillation probe 10
Is penetrated into the ground 26 until it abuts against the buried object 25, and the impact applied by the shock generator 21 propagates through the oscillation probe 10 to the buried object 25, and Generates an elastic wave unique to the substance. Oscillation probe 1
For example, 0 is inserted at an angle of 30 ° to 45 ° with respect to the ground surface, and an impact of 0.1 kg to 0.3 kg is applied.

【0015】第2ハウジング36に設けられた受振用探
針11の一方端部側にはセンサ27が取付けられる。受
振用探針11の他方端部は、埋設物25に当接するまで
地中26に貫入される。埋設物25で発生した弾性波は
受振用探針11で受振され、この受振用探針11を伝播
してセンサ27で弾性波信号に変換される。この弾性波
信号は、信号処理回路16の信号増幅器28、データベ
ース回路20および表示処理回路18に入力される。
A sensor 27 is attached to one end of the vibration receiving probe 11 provided in the second housing 36. The other end of the vibration receiving probe 11 penetrates into the underground 26 until it comes into contact with the buried object 25. The elastic wave generated in the embedded object 25 is received by the vibration receiving probe 11, propagates through the vibration receiving probe 11, and is converted into an elastic wave signal by the sensor 27. This elastic wave signal is input to the signal amplifier 28 of the signal processing circuit 16, the database circuit 20, and the display processing circuit 18.

【0016】信号処理回路16は、信号増幅器28、A
/D(アナログ/デジタル)変換器29、波形記憶回路
30、FFT(高速フーリエ変換)演算回路31および
入力ベクトル生成回路32を含んで構成される。信号処
理回路16では、受振した弾性波から地中埋設物を識別
するための識別信号が作成される。すなわち、センサ2
7で変換された弾性波信号は、信号増幅器28に入力さ
れて増幅される。また、必要に応じて、信号増幅器28
が備えるフィルタを用いて不要な信号が取除かれる。信
号増幅器28で処理された信号はA/D変換器29によ
ってデジタル信号に変換され、されに波形記憶回路30
に入力されて時間軸応答信号として記憶される。
The signal processing circuit 16 includes a signal amplifier 28, A
It includes an / D (analog / digital) converter 29, a waveform storage circuit 30, an FFT (fast Fourier transform) operation circuit 31, and an input vector generation circuit 32. In the signal processing circuit 16, an identification signal for identifying an underground object is created from the received elastic waves. That is, the sensor 2
The elastic wave signal converted in 7 is input to the signal amplifier 28 and amplified. Also, if necessary, the signal amplifier 28
Unwanted signals are removed by using a filter provided in. The signal processed by the signal amplifier 28 is converted into a digital signal by the A / D converter 29, and then the waveform storage circuit 30.
And is stored as a time axis response signal.

【0017】波形記憶回路30に記憶された時間軸応答
信号は、FFT演算回路31でフーリエ変換されて周波
数応答信号が作成される。作成された周波数応答信号
は、入力ベクトル生成回路32で複数の周波数帯域毎に
分割された分割応答信号が作成される。たとえば、20
Hz〜5kHzの周波数帯域の信号が、10〜100の
範囲に分割される。たとえば50に分割される。これら
の分割信号は、予め学習し、データベース回路20に記
憶されるデータ中の各成分の最大値で割算され、0〜1
の値に正規化される。このようにして作成された分割応
答信号が前記識別信号である。
The time axis response signal stored in the waveform storage circuit 30 is Fourier transformed by the FFT calculation circuit 31 to create a frequency response signal. From the created frequency response signal, the input vector generation circuit 32 creates a divided response signal divided for each of a plurality of frequency bands. For example, 20
A signal in a frequency band of Hz to 5 kHz is divided into a range of 10 to 100. For example, it is divided into 50. These divided signals are learned in advance, divided by the maximum value of each component in the data stored in the database circuit 20, and 0 to 1
Is normalized to the value of. The divided response signal thus created is the identification signal.

【0018】識別回路27は、ニューラルネットワーク
33および出力ベクトル判定回路34を含んで構成され
る。ニューラルネットワーク33としては、たとえばB
PNNが使用される。ニューラルネットワーク33に
は、入力ベクトル生成回路32からの分割応答信号が入
力され、この分割応答信号に基づく地中埋設物の種類毎
の出力信号を作成して出力ベクトル判定回路34に与え
る。出力ベクトル判定回路34を、ニューラルネットワ
ーク33からの出力信号レベルに基づいて、地中埋設物
の種類を判定する。波形記憶回路30、FFT演算回路
31、入力ベクトル生成回路32、ニューラルネットワ
ーク33および出力ベクトル判定回路34からの出力信
号は、表示処理回路18で画像処理され、たとえば液晶
表示装置で実現される表示装置19に表示される。
The discrimination circuit 27 comprises a neural network 33 and an output vector judgment circuit 34. As the neural network 33, for example, B
PNN is used. The divided response signal from the input vector generation circuit 32 is input to the neural network 33, an output signal for each type of underground buried object is created based on the divided response signal, and is provided to the output vector determination circuit 34. The output vector determination circuit 34 determines the type of the underground object based on the output signal level from the neural network 33. Output signals from the waveform storage circuit 30, the FFT operation circuit 31, the input vector generation circuit 32, the neural network 33, and the output vector determination circuit 34 are subjected to image processing by the display processing circuit 18, and are implemented, for example, by a liquid crystal display device. 19 is displayed.

【0019】図3は発振用探針10と受振用探針11の
連結状態を示す簡略化した正面図であり、図4は探知部
2の断面図である。探知部2はケーシング37と発振用
探針10と受振用探針11とリンク機構57とを含んで
構成される。ケーシング37は第1ハウジング35と第
2ハウジング36を摺動自在に収納する。第1ハウジン
グ35内には衝撃発生器21からの衝撃を埋設物25に
伝達する発振用探針10が取付けられる。発振用探針1
0の中間部は約30度屈曲し、先端部は軸線L5に平行
な軸線L6を有する。
FIG. 3 is a simplified front view showing the connected state of the oscillation probe 10 and the vibration-receiving probe 11, and FIG. 4 is a sectional view of the detection unit 2. The detection unit 2 includes a casing 37, an oscillation probe 10, a vibration receiving probe 11, and a link mechanism 57. The casing 37 houses the first housing 35 and the second housing 36 slidably. In the first housing 35, the oscillation probe 10 that transmits the impact from the impact generator 21 to the embedded object 25 is attached. Oscillation probe 1
The middle part of 0 bends about 30 degrees, and the tip part has an axis L6 parallel to the axis L5.

【0020】第2ハウジング36内には、センサ27が
固定された受振用探針11が取付けられる。この受振用
探針11は軸線L5と平行な軸線L7を有する。第1、
第2ハウジング35,36は中空の略直方体状に形成さ
れ、互いに隣接し、下方に開口する中空のケーシング3
7内に軸線L5方向に互いに独立して摺動自在に収納さ
れる。こうして発振用探針10と受振用探針11とは互
いに平行に直線方向に案内される。第1、第2ハウジン
グ35,36の一端部38,39には探針10,11が
それぞれ固定され、第1、第2ハウジング35,36の
他端部40,41とケーシング37の底部42との間に
は、ばね43,44がそれぞれ設けられる。
In the second housing 36, the vibration-receiving probe 11 to which the sensor 27 is fixed is mounted. The vibration receiving probe 11 has an axis L7 parallel to the axis L5. First,
The second housings 35, 36 are formed in a hollow, substantially rectangular parallelepiped shape, are adjacent to each other, and are hollow casings 3 that open downward.
7 are slidably housed independently of each other in the direction of the axis L5. In this manner, the oscillation probe 10 and the vibration receiving probe 11 are guided in a linear direction parallel to each other. Probes 10 and 11 are fixed to one end portions 38 and 39 of the first and second housings 35 and 36, respectively, and the other end portions 40 and 41 of the first and second housings 35 and 36 and the bottom portion 42 of the casing 37. Between them, springs 43 and 44 are provided, respectively.

【0021】第1、第2ハウジング35,36およびケ
ーシング37はリンク機構57によって連結され、この
リンク機構57は一対の揺動部材46と一対の第1連結
部材47と一対の第2連結部材48とによって構成され
る。第1ハウジング35の一端部38には発振用探針1
0を挟んで下方に突出する一対の突部52が設けられ、
同様に第2ハウジング36にも受振用探針11を挟んで
突出する一対の突部54が設けられる。リンク機構57
は探針10,11を挟んで複数の部材が対称に構成され
ており、図3および図4では正面から見た構成を示して
いるが、背面側にも同様の構成が設けられる。突部52
にはピン53を介して第1連結部材47の一端が角変位
自在に連結され、突部54にも同様にピン55を介して
第2連結部材48が連結される。第1連結部材47の他
端は、ピン51によって角変位自在に揺動部材46の一
端が連結され、同様に第2連結部材58はピン53を介
して揺動部材46の他端に連結される。揺動部材46の
中央部は、ケーシング37の開口端から下方に突出する
一対の突部50の一端にピン49によって角変位自在に
連結される。
The first and second housings 35 and 36 and the casing 37 are connected by a link mechanism 57, and the link mechanism 57 includes a pair of rocking members 46, a pair of first connecting members 47, and a pair of second connecting members 48. Composed of and. The oscillation probe 1 is provided at one end 38 of the first housing 35.
A pair of protrusions 52 protruding downward with respect to 0 are provided,
Similarly, the second housing 36 is provided with a pair of protrusions 54 protruding with the vibration receiving probe 11 interposed therebetween. Link mechanism 57
In FIG. 3, a plurality of members are configured symmetrically with the probes 10 and 11 interposed therebetween. FIGS. 3 and 4 show the configuration viewed from the front, but the same configuration is provided on the back side. Projection 52
One end of a first connecting member 47 is connected via a pin 53 so as to be freely angularly displaceable, and the second connecting member 48 is also connected to the projection 54 via a pin 55. The other end of the first connecting member 47 is connected to one end of the swinging member 46 so as to be angularly displaceable by a pin 51, and similarly, the second connecting member 58 is connected to the other end of the swinging member 46 via a pin 53. You. The center of the swing member 46 is connected to one end of a pair of protrusions 50 projecting downward from the open end of the casing 37 by a pin 49 so as to be angularly displaceable.

【0022】第2ハウジング36に固定される受振用探
針11は軸線L5に平行な軸線L7を有する。第1ハウ
ジング35に固定される発振用探針10は、図4に示す
ように受振用探針11に近接する側へ屈曲し、受振用探
針11と距離Aをなす部位でさらに屈曲し、軸線L6を
有し受振用探針11の軸線L7と平行をなす方向に延び
る。したがって、受振用探針11と発振用探針10とは
互いに近接し平行に延びているため埋設物25の大きさ
や形の制限をあまり受けることはなく各探針10,11
の先端を埋設物25に当接させることができる。本実施
の形態では、たとえば距離Aは25mm程度に選ばれ、
第1、第2ハウジング35,36の下端から探針10,
11の先端までの距離Bは本実施の形態では、たとえば
400mmに選ばれる。ケーシング37の底部はロボッ
トアーム3の回転部材8に軸線L5まわりに回転自在に
連結される。探針10,11の中央部付近には後述する
貫入用加振器58が設けられる。
The vibration-receiving probe 11 fixed to the second housing 36 has an axis L7 parallel to the axis L5. The oscillation probe 10 fixed to the first housing 35 is bent toward the side close to the vibration receiving probe 11 as shown in FIG. 4, and further bent at a portion forming a distance A with the vibration receiving probe 11. It has an axis L6 and extends in a direction parallel to the axis L7 of the vibration receiving probe 11. Therefore, since the vibration-sensing probe 11 and the oscillation probe 10 extend in close proximity to each other and extend in parallel, the size and shape of the embedded object 25 are not so limited and the probes 10, 11 are not restricted.
Can be brought into contact with the embedded object 25. In the present embodiment, the distance A is selected to be about 25 mm,
From the lower ends of the first and second housings 35, 36 to the probe 10,
In this embodiment, the distance B to the tip of 11 is selected to be 400 mm, for example. The bottom of the casing 37 is rotatably connected to the rotating member 8 of the robot arm 3 about the axis L5. A penetrating vibrator 58 described below is provided near the center of the probes 10 and 11.

【0023】次に探知部2の動作について説明する。図
3に示すように、ロボットアーム3は各探針10,11
を所望の地点に所望の角度に配置し、ケーシング3を介
して各探針の軸線L6,L7方向に貫入力を加え貫入さ
せる。先に受振用探針25の先端が埋設物25に当接し
た場合は、まず受振用探針11の貫入が止まり、ケーシ
ング37を介して揺動部材46に伝えられるロボットア
ーム3の貫入力は、貫入の止まった受振用探針11に連
結される第2連結部材48のピン53を支点とし、ピン
49を介して揺動部材46の中央部とピン51とを押し
下げる。ピン51は第1連結部材47を介して発振用探
針10をさらに押下げ、発振用探針10の先端を埋設物
25に当接させる。こうして探針10,11の各先端が
埋設物に当接すると反力が急に大きくなり、この反力を
6軸力センサ14で検知することによって、各探針1
0,11の先端が埋設物25に当接したと判断し、ロボ
ットアーム3は貫入を止める。発振用探針10が先に埋
設物25に当接した時も同様の作用により両方の探針1
0,11が埋設物に当接し、貫入が止まる。その後、前
述のように発振用探針10を介して埋設物25に衝撃を
加え、埋設物25で発生した弾性波を受振用探針11で
受振し、センサ33を介してデータ処理装置13へ送ら
れ地中埋設物の種類を判定する。
Next, the operation of the detection section 2 will be described. As shown in FIG. 3, the robot arm 3
Is arranged at a desired point at a desired angle, and a penetration force is applied through the casing 3 in the direction of the axis L6, L7 of each probe to penetrate. When the tip of the vibration receiving probe 25 first contacts the embedded object 25, the penetration of the vibration receiving probe 11 stops first, and the penetration force of the robot arm 3 transmitted to the swinging member 46 via the casing 37 is The center of the swinging member 46 and the pin 51 are pushed down via the pin 49 with the pin 53 of the second connecting member 48 connected to the penetrated vibration receiving probe 11 as a fulcrum. The pin 51 further pushes down the oscillation probe 10 via the first connecting member 47 to bring the tip of the oscillation probe 10 into contact with the embedded object 25. When the tips of the probes 10 and 11 come into contact with the object to be buried, the reaction force suddenly increases.
When it is determined that the tips of 0 and 11 have contacted the embedded object 25, the robot arm 3 stops the penetration. When the oscillating probe 10 first comes into contact with the buried object 25, both probes 1
0 and 11 abut against the buried object, and the penetration stops. Thereafter, as described above, an impact is applied to the embedded object 25 via the oscillation probe 10, the elastic wave generated by the embedded object 25 is received by the vibration receiving probe 11, and transmitted to the data processing device 13 via the sensor 33. The type of the sent underground object is determined.

【0024】第1、第2ハウジング35,36とケーシ
ング37の底部42とをそれぞれ連結するばね43,4
4は、探針10,11のうちの一方の探針が埋設物25
に当接したとき、この一方の探針側のばねは弾性力によ
って貫入力を吸収し埋設物25に過大な力をかけること
を防ぐ。また、ばね35,36は各探針10,11の貫
入量の差dを制限し、たとえば埋設物25の端部に一方
の探針のみ当接し、他方の探針が埋設物25を外れて貫
入することによって、リンク機構57を破損することを
防ぐ。
Springs 43, 4 for connecting the first and second housings 35, 36 and the bottom 42 of the casing 37, respectively.
4 indicates that one of the probes 10 and 11 has an embedded object 25.
, The spring on the one probe side absorbs the penetrating force by the elastic force, and prevents applying excessive force to the buried object 25. Further, the springs 35 and 36 limit the difference d between the penetration amounts of the respective probes 10 and 11. For example, only one probe comes into contact with the end of the buried object 25 and the other probe comes off the buried object 25. The penetration prevents the link mechanism 57 from being damaged.

【0025】図5は、探針10,11にそれぞれ取付け
られる貫入用加振器58の各例を示す断面図であり、図
5(a)は探針10,11の各軸線L6,L7を含む平
面内で各探針10,11を振動させる貫入用加振器58
であり、図5(b)は各軸線L6,L7に垂直な平面内
で各探針10,11が円運動するように振動を与える貫
入用加振器58である。
FIG. 5 is a cross-sectional view showing each example of the penetrating vibrator 58 attached to the probes 10 and 11, and FIG. 5A shows the axes L6 and L7 of the probes 10 and 11, respectively. Penetration vibrator 58 for vibrating each probe 10, 11 in a plane including
FIG. 5B shows a penetrating vibrator 58 that applies vibrations so that the probes 10 and 11 make a circular motion in a plane perpendicular to the axes L6 and L7.

【0026】図5(a)で示す貫入用加振器58は、各
探針10,11が互いに平行をなす部位の上方に取付け
られ、中空のケーシング62内に固定され回転軸線L8
まわりに回転自在の回転軸63を有するモータ64と、
回転軸63から偏心した位置に重心を有し、回転軸63
に取付けられる発振錘65とを含んで構成される。回転
軸線L8は各探針10,11の各軸線L6,L7に対し
て垂直に交わる。発振錘65は回転軸63に偏心して取
付けられているため、発振錘65の回転によって回転軸
63の軸線L8に垂直な平面内で円運動するようにモー
タ64は振動し、さらにケーシング62を介して各探針
10,11を軸線L6,L7を含む平面内で振動させ
る。
The penetrating vibrator 58 shown in FIG. 5 (a) is mounted above the portion where the probes 10 and 11 are parallel to each other, and is fixed in the hollow casing 62 and the rotation axis L8.
A motor 64 having a rotating shaft 63 rotatable therearound;
It has a center of gravity at a position eccentric from the rotation shaft 63,
And an oscillating weight 65 attached to the oscillating member. The rotation axis L8 intersects perpendicularly with the axes L6, L7 of the probes 10, 11, respectively. Since the oscillating weight 65 is eccentrically attached to the rotary shaft 63, the motor 64 vibrates so as to make a circular motion in a plane perpendicular to the axis L <b> 8 of the rotary shaft 63 by the rotation of the oscillating weight 65, and further via the casing 62. Then, each of the probes 10 and 11 is vibrated in a plane including the axes L6 and L7.

【0027】図5(b)で示す貫入用加振器58は、ケ
ーシング62とモータ64と回転軸63と発振錘65と
によって構成され、回転軸63の回転軸線L9は各探針
10,11の各軸線L6,L7に平行に設けられる。し
たがって発振錘65の回転によってモータ64は、回転
軸線L9に垂直な平面内で円運動するように振動し、こ
の振動をケーシング62を介して各探針10,11を回
転軸線L9に垂直な平面、すなわち各探針10,11の
軸線L6,L7に垂直な平面内で円運動するように振動
させる。
The penetrating vibrator 58 shown in FIG. 5 (b) is composed of a casing 62, a motor 64, a rotary shaft 63 and an oscillating weight 65, and the rotary axis L9 of the rotary shaft 63 is the probe 10, 11. Are provided in parallel with the respective axis lines L6, L7. Accordingly, the rotation of the oscillating weight 65 causes the motor 64 to vibrate so as to make a circular motion in a plane perpendicular to the rotation axis L9. That is, the probe is vibrated so as to make a circular motion in a plane perpendicular to the axis L6, L7 of each of the probes 10, 11.

【0028】探針10,11が地中に貫入する際、それ
ぞれ貫入用加振器58によって振動が与えられるため、
探針10,11が接する土粒子に振動を与えることによ
り、探針10,11と土との粘着抵抗および摩擦抵抗を
軽減させ、探針10,11を貫入さすのに必要な貫入力
を減少させることができる。また、図5(b)の貫入用
加振器58は各探針10,11が円運動するように振動
を与えるため、土と各探針10,11との瞬間的な接触
面積が小さくなり、さらに粘着抵抗および摩擦抵抗を軽
減させることができる。
When the probes 10 and 11 penetrate into the ground, vibrations are applied by the penetration exciter 58, respectively.
Vibration is applied to the soil particles contacted by the probes 10 and 11, thereby reducing the adhesion resistance and frictional resistance between the probes 10 and 11 and the soil, and reducing the penetration force required to penetrate the probes 10 and 11. Can be done. Further, since the penetrating vibrator 58 shown in FIG. 5 (b) gives vibration so that each probe 10 and 11 makes a circular motion, the momentary contact area between the soil and each probe 10 and 11 becomes small. Further, it is possible to further reduce the adhesion resistance and the friction resistance.

【0029】探針10,11を貫入させる際、各探針1
0,11に振動を与える場合と与えない場合との違いを
比較するために実験を行った。
When inserting the probes 10 and 11, each probe 1
An experiment was performed to compare the difference between the case where vibration was applied to 0 and 11 and the case where vibration was not provided.

【0030】実験で使用した土壌は乾燥したローム土で
あり、地表から深さ12cmの位置に埋設物25を埋め
た。各探針10,11の貫入角度を45°とし、各探針
10,11の送り速度を毎秒2.5mmとして、各探針
10,11の先端の地表からの垂直深さHと、その時に
必要な貫入力Wとを調べた。各探針10,11の先端が
埋設物25に当接したか否かの判断は垂直深さH=12
cm以上になった時点を当接したと判断する。
The soil used in the experiment was dry loamy soil, and the buried object 25 was buried at a depth of 12 cm from the ground surface. The penetration angle of each of the probes 10, 11 is 45 °, the feed speed of each of the probes 10, 11 is 2.5 mm per second, the vertical depth H of the tip of each of the probes 10, 11 from the ground surface, The necessary penetration force W was examined. The determination as to whether or not the tips of the probes 10, 11 have contacted the buried object 25 is made by determining the vertical depth H = 12.
It is determined that the contact has been made when the distance has reached cm or more.

【0031】この実験では比較するため4種類の貫入方
法A,B,C,Dの実験を行った。貫入方法Aは、各探
針10,11に振動を与えずに貫入を行う方法である。
貫入方法Bは、各探針10,11の先端を中心とし基端
部側をゆっくりとこじりながら力を加え、貫入を行う方
法である。貫入方法Cは、図5(a)の貫入用加振器5
8を用いて、軸線L6,L7を含む平面内で各探針1
0,11を振動させながら貫入を行う方法である。貫入
方法Dは、図5(b)の貫入用加振器58を用いて、各
探針10,11が軸線L6,L7に垂直な平面内で円運
動するように振動しながら貫入を行う方法である。貫入
方法Cおよび貫入方法Dにおいて、各貫入用加振器58
の振動数は122Hzに設定した。図6は、上述の実験
の結果を示すグラフである。縦軸は各探針10,11を
貫入さすのに必要な貫入力Wであり、横軸は各探針1
0,11の先端の地表からの深さを示す垂直深さHであ
る。
In this experiment, four types of penetration methods A, B, C and D were tested for comparison. The penetrating method A is a method of penetrating without giving vibration to each of the probes 10 and 11.
Penetration method B is a method in which a force is applied while slowly prying the base end side around the tip of each of the probes 10 and 11 to perform the penetration. The penetrating method C is shown in FIG.
8, each probe 1 in a plane including the axes L6 and L7.
This is a method of penetrating while vibrating 0 and 11. The penetration method D is a method in which penetration is performed by using the penetration exciter 58 of FIG. 5B while vibrating so that each of the probes 10 and 11 makes circular motion in a plane perpendicular to the axes L6 and L7. Is. In the penetration method C and the penetration method D, each of the vibration exciters 58 for penetration is used.
Was set to 122 Hz. FIG. 6 is a graph showing the results of the above-described experiment. The vertical axis is the penetration force W required to penetrate each of the probes 10 and 11, and the horizontal axis is each probe 1
The vertical depth H indicates the depth of the tip of 0, 11 from the ground surface.

【0032】グラフからわかるように、貫入方法Aでは
垂直深さH=3cm付近から貫入力Wが上下に変動しつ
つ徐々に増加し、埋設物25が埋め込まれる垂直深さH
=12cmに近付くにつれて傾きが増し、貫入力Wが5
kgを超えてもH=12cmに達しない。貫入方法Bで
は、垂直深さH=3cmの辺りから貫入力Wはほぼ直線
状に上昇し、H=11.5cmの辺りから急に上昇し、
最終的に埋設物25に当接するのに約4.5kgの力が
必要である。貫入方法Cでは垂直深さH=6cmの辺り
まで貫入力はほぼ0kgであり、そこから上昇し、垂直
深さH=9cm、貫入力W=1kgの辺りで一旦下降し
た後、埋設物25に当接するまで貫入力Wは上昇し、最
終的に貫入力W=約4.5kgで埋設物25に当接す
る。貫入方法Dでは、垂直深さH=9cm辺りで一旦貫
入力Wが若干上昇するものの、垂直深さH=11.5c
mまで貫入力Wはほぼ0kgであり、そこから急激に上
昇し、埋設物25に当接するときの貫入力Wは1.75
kgである。したがって貫入方法Dの埋設物25に当接
するときの貫入力は他の貫入方法A,B,Cに比べて半
分以下の力である。さらに、埋設物25が埋まる手前5
mmまで貫入力Wはほぼ0kgであり、そこから急激に
上昇するため、他の貫入方法A,B,Cに比べて埋設物
25に当接したか否かの判断が非常に容易である。
As can be seen from the graph, in the penetration method A, the penetration depth W gradually increases from around the vertical depth H = 3 cm while fluctuating up and down, and the vertical depth H at which the buried object 25 is embedded.
= 12 cm, the slope increases and the penetration force W becomes 5
Even if it exceeds kg, H does not reach 12 cm. In the penetration method B, the penetration force W rises almost linearly from around the vertical depth H = 3 cm, and rises sharply from around H = 11.5 cm,
About 4.5 kg of force is required to finally contact the buried object 25. In the penetration method C, the penetration force is approximately 0 kg up to the vertical depth H = 6 cm, and then rises, descends once at the vertical depth H = 9 cm, and the penetration force W = 1 kg. Until it comes into contact, the penetration force W rises and finally comes into contact with the buried object 25 at a penetration force W of about 4.5 kg. In the penetration method D, although the penetration force W slightly rises once at the vertical depth H = 9 cm, the vertical depth H = 11.5c
The penetration force W is almost 0 kg up to m, from which it rises rapidly, and the penetration force W when contacting the buried object 25 is 1.75.
kg. Therefore, the penetration force when abutting against the buried object 25 of the penetration method D is less than half the force of the other penetration methods A, B and C. Furthermore, before the buried object 25 is buried 5
mm, the penetration force W is almost 0 kg, and rises sharply from there. Therefore, it is very easy to determine whether or not it has contacted the buried object 25 as compared with the other penetration methods A, B, and C.

【0033】以上、本発明を埋設物の識別システムに適
用した形態を説明したが、他の形態としてくい打ちなど
の建築工事、土質の調査、および釘打ちなどにも適用で
きる。たとえば、貫入用加振器によってくいに上下振
動、または軸線に垂直な平面においてくいの先端が円運
動するような振動などを与えて、土とくいとの摩擦力を
減らし、ドロップハンマもしくはディーゼルハンマによ
る打撃、または油圧式ジャッキやウインチによる強制的
なくいの押し込み、または自重によってくいを貫入させ
る。また、前記くいの代りに鋼棒に貫入用加振器を取付
け、硬い地層を探る探り(サウンディング)などに利用
してもよい。
Although the form in which the present invention is applied to the buried object identification system has been described above, the present invention can be applied to other forms such as construction work such as pile driving, soil investigation, and nailing. For example, the penetration exciter gives vertical vibration to the pile, or vibration such that the tip of the pile moves circularly in a plane perpendicular to the axis to reduce the frictional force between the soil and the pile, and to reduce the friction with the drop hammer or diesel hammer. Strike it by hitting it, forcing it into place with a hydraulic jack or winch, or by its own weight. Further, instead of the pile, a vibration exciter for penetration may be attached to a steel rod and used for searching for a hard stratum (sounding).

【0034】また釘などを打ち込む場合、たとえば貫入
用加振器によって釘に上下振動、または釘の軸線に垂直
な平面において釘の先端が円運動するような振動などを
与え、強制的に押し込むか、またはハンマによって打撃
を与えながら貫入させる。
When a nail or the like is driven in, whether it is forcibly pushed in, for example, by vibrating the penetrating vibrator to give vertical vibration to the nail, or to give vibration such that the tip of the nail moves circularly in a plane perpendicular to the axis of the nail. , Or hit it with a hammer to make it penetrate.

【0035】[0035]

【発明の効果】以上のように本発明によれば、棒状体は
貫入用加振器によって振動が与えられるため、物体と棒
状体との間の粘着抵抗および摩擦抵抗が減少する。した
がって、貫入力が小さくても容易に棒状体を貫入させる
ことができる。
As described above, according to the present invention, since the rod-shaped body is vibrated by the vibrator for penetration, the adhesive resistance and frictional resistance between the object and the rod-shaped body are reduced. Therefore, even if the penetration force is small, the rod-shaped body can be easily penetrated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態である振動貫入装置1を
示す正面図である。
FIG. 1 is a front view showing a vibration penetrating device 1 according to an embodiment of the present invention.

【図2】データ処理装置13のブロック図である。FIG. 2 is a block diagram of a data processing device 13;

【図3】発振用探針10と受振用探針11の連結状態を
示す簡略化した正面図である。
FIG. 3 is a simplified front view showing a connected state of an oscillation probe 10 and a vibration receiving probe 11;

【図4】探知部2の断面図である。FIG. 4 is a cross-sectional view of the detection unit 2.

【図5】貫入用加振器58の各例を示す断面図である。FIG. 5 is a cross-sectional view showing each example of a vibration exciter 58 for penetration.

【図6】各探針10,11の貫入力Wと垂直深さHの関
係を示すグラフである。
FIG. 6 is a graph showing the relationship between the penetration input W of each of the probes 10 and 11 and the vertical depth H.

【符号の説明】[Explanation of symbols]

1 振動貫入装置 2 探知部 3 ロボットアーム 4 台車 9 ロボット制御装置 10 発振用探針 11 受振用探針 13 データ処理装置 25 埋設物 37 ケーシング 46 揺動部材 47 第1連結部材 48 第2連結部材 57 リンク機構 58 貫入用加振器 DESCRIPTION OF SYMBOLS 1 Vibration penetration device 2 Detection part 3 Robot arm 4 Bogie 9 Robot control device 10 Oscillation probe 11 Vibration receiving probe 13 Data processing device 25 Embedded object 37 Casing 46 Oscillating member 47 First connecting member 48 Second connecting member 57 Link mechanism 58 Penetration shaker

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯高 不二男 神奈川県相模原市青葉1−14−4 (72)発明者 中山 章弘 岐阜県各務原市川崎町1番地 川崎重工業 株式会社岐阜工場内 (72)発明者 木村 智納 岐阜県各務原市川崎町1番地 川崎重工業 株式会社岐阜工場内 (72)発明者 宇野 昌嘉 岐阜県各務原市川崎町1番地 川崎重工業 株式会社岐阜工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fujio Iitaka 1-14-4 Aoba, Sagamihara City, Kanagawa Prefecture (72) Inventor Akihiro Nakayama 1 Kawasaki-cho, Kakamigahara City, Gifu Prefecture Kawasaki Heavy Industries, Ltd. Gifu Factory (72) Invention Person Tomo Kimura 1 Kawasaki-cho, Kakamigahara-shi, Gifu Prefecture Kawasaki Heavy Industries Ltd., Gifu Factory (72) Inventor Masayoshi Uno 1 Kawasaki-cho, Kakamigahara City, Gifu Prefecture Kawasaki Heavy Industries Gifu Factory Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 軸線方向に物体内に貫入される棒状体
と、 軸線方向に沿って、棒状体に力を加えて貫入させる貫入
手段と、 前記棒状体に振動を与えるための貫入用加振器とを含む
ことを特徴とする振動貫入装置。
1. A rod-shaped body penetrating an object in the axial direction, a penetrating means for applying a force to the bar-shaped body to penetrate the body along the axial direction, and an exciting vibration for penetrating the bar-shaped body. And a vibrating device.
【請求項2】 前記貫入用加振器は、前記棒状体の軸線
方向に垂直な平面において、前記棒状体の先端が円運動
するように振動を与えることを特徴とする請求項1記載
の振動貫入装置。
2. The vibration according to claim 1, wherein the penetrating vibrator gives vibration such that a tip end of the rod-shaped body makes a circular motion in a plane perpendicular to an axial direction of the rod-shaped body. Penetration device.
JP7294554A 1995-11-13 1995-11-13 Vibration penetration device Expired - Lifetime JP2853829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7294554A JP2853829B2 (en) 1995-11-13 1995-11-13 Vibration penetration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7294554A JP2853829B2 (en) 1995-11-13 1995-11-13 Vibration penetration device

Publications (2)

Publication Number Publication Date
JPH09137450A true JPH09137450A (en) 1997-05-27
JP2853829B2 JP2853829B2 (en) 1999-02-03

Family

ID=17809299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7294554A Expired - Lifetime JP2853829B2 (en) 1995-11-13 1995-11-13 Vibration penetration device

Country Status (1)

Country Link
JP (1) JP2853829B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016086764A (en) * 2014-11-07 2016-05-23 博 小野寺 Tree root processing attachment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06336719A (en) * 1993-05-28 1994-12-06 Kiso Jiban Consultants Kk Resistant-penetration type ground tester inspection by use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06336719A (en) * 1993-05-28 1994-12-06 Kiso Jiban Consultants Kk Resistant-penetration type ground tester inspection by use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016086764A (en) * 2014-11-07 2016-05-23 博 小野寺 Tree root processing attachment

Also Published As

Publication number Publication date
JP2853829B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
US7617908B2 (en) Downhole seismic source
US8189426B2 (en) Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture
US8804463B2 (en) Seismic source/receiver probe for shallow seismic surveying
JPH1090234A (en) Method of detecting internal defect of structure
EP1471350A3 (en) Apparatus for in-situ nondestructive acoustic measurement of young&#39;s modulus of plate structures
JP2853829B2 (en) Vibration penetration device
US8006539B2 (en) Actuation system
JP2742035B2 (en) Tip penetration device
JP3510835B2 (en) Deterioration measurement device for concrete structures.
JPH0980033A (en) Judgment method for exfoliation of wall tile from building
US5665917A (en) Method for constructing supersonic shock-wave vibrator devices for applying vibratory force for measuring purposes or testing purposes by using cavitating space
JP2008185425A (en) Elastic wave transmitting device and reflected elastic wave measuring device
JP2004301792A (en) Structure for diagnosing integrity of structure
JP3136000B2 (en) Control Method of Sweep Source in Ground Exploration
JPH076879B2 (en) Vehicle inspection method and vibration device used therefor
JP2001221697A (en) Residual stress measuring method and apparatus
Omata New type transducer for measuring contact compliances of a soft body
US6799465B2 (en) Shock wave vibration generator for measuring or testing or imaging purposes
JP2002131294A (en) Nondestructive compression test method and device for concrete
US10042063B2 (en) Method and apparatus of generating shear waves for seismic exploration
JP2001296214A (en) Deterioration measuring device for concrete structure, and its measuring method
JP3802200B2 (en) Fruit ripeness measuring method and ripeness measuring device
JP4216543B2 (en) Device for generating mechanical vibrations in hard materials
JPH0538549U (en) Excitation device for experimental modal analysis
Karl et al. Measurement of material damping with bender elements in triaxial cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111120

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111120

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111120

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term