JPH09115077A - Photoelectric sensor - Google Patents

Photoelectric sensor

Info

Publication number
JPH09115077A
JPH09115077A JP26576895A JP26576895A JPH09115077A JP H09115077 A JPH09115077 A JP H09115077A JP 26576895 A JP26576895 A JP 26576895A JP 26576895 A JP26576895 A JP 26576895A JP H09115077 A JPH09115077 A JP H09115077A
Authority
JP
Japan
Prior art keywords
light
sensor
optical axis
adjustment
smoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26576895A
Other languages
Japanese (ja)
Inventor
Hidenori Miyamoto
英範 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP26576895A priority Critical patent/JPH09115077A/en
Publication of JPH09115077A publication Critical patent/JPH09115077A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To automatically readjust optical axis misalignment and perform the readjustment of a photodetection level by detecting a shock to a sensor, and quitting normal fire monitoring on the basis of the detection output and performing a self-diagnosis. SOLUTION: When the sensor is given acceleration or vibration owing to a shock, etc., an acceleration sensor 63 detects that and acceleration sensor interruption processing is started. And, next acceleration sensor interruption is inhibited until processing of one cycle is completed, and sensitivity is tested as the preprocessing of optical axis adjustment and photodetection level adjustment. At this time, an interruption signal is supplied from an interruption signal generator 64 to a fire judging circuit 59 and a switch 65 is closed. The fire judging circuit 59 once receiving the interruption signal starts testing the sensitivity. After the sensitivity test, it is judged whether or not the sensitivity is normal, and when not, it is considered that the sensor is given the acceleration or vibration owing to the shock and an optical axis, a photodetection level, etc., have gone wrong, and adjusting of the optical axis and photodetection level is carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、光電式感知器に
関し、特に例えば送光部と受光部を分離配置し、送光部
より投光された光、例えば赤外線により煙等の変化を受
光部で検出する光電式分離型感知器に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric sensor, and in particular, for example, a light-transmitting portion and a light-receiving portion are separately arranged, and a light-receiving portion for detecting a change in smoke or the like due to light projected from the light-transmitting portion, for example, infrared rays. The present invention relates to a photoelectric separation type sensor for detecting by.

【0002】[0002]

【従来の技術】一般に、光電式分離型感知器は、光を発
する送光部とその光を受光する受光部を分離し、空間を
挟んで対向して設置し、空間内の煙を受光量が減少する
ことで煙の存在を感知しているが、その設置の際に送光
部と受光部を正しく対向させるための光軸調整と受光量
を適正に調整する受光レベル調整を必要とする。近時こ
れらの調整の全て或いは一部を自動的に調整する感知器
も提案されつつある。しかしながら、これらの調整は、
初め適正に調整されてあっても、後になってずれたり狂
ったりすると正常な火災監視が出来なくなり、失報や非
火災報の原因となる。この感知器の光軸調整や受光レベ
ル調整を狂わせる要因は、例えば飛んで来たボール等の
衝撃、または地震等による建物の振動或いは人為的ない
たずら等の影響が考えられる。
2. Description of the Related Art Generally, a photoelectric separation type sensor separates a light-transmitting part that emits light from a light-receiving part that receives the light and installs them so as to face each other with a space in between to detect the amount of smoke received in the space. The presence of smoke is detected due to the decrease in the light emission, but when installing it, it is necessary to adjust the optical axis so that the light-transmitting part and the light-receiving part correctly face each other and to adjust the light-receiving level to properly adjust the amount of light received. . Recently, sensors that automatically adjust all or some of these adjustments are also being proposed. However, these adjustments
Even if it is properly adjusted at the beginning, if it shifts or goes wrong later, normal fire monitoring will not be possible and it will cause a false alarm or non-fire alarm. Factors that may cause the optical axis adjustment and the light receiving level adjustment of the sensor to be inconsistent are, for example, the impact of a flying ball or the like, the influence of a building vibration due to an earthquake or the like, or the effect of artificial mischief.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の光電
式感知器は、上述のごとき光軸調整や受光レベル調整を
狂わせるような衝撃等を受けても、これを検知して狂っ
た光軸調整や受光レベル調整を補正する手段がないの
で、火災でないのに非火災報を発したり、或いは失報状
態になる等の問題点があった。
However, in the conventional photoelectric sensor, even when the optical axis adjustment or the light receiving level adjustment is impacted as described above, it is detected and the optical axis is adjusted erroneously. Since there is no means for correcting the received light level adjustment, there is a problem that a non-fire alarm is issued even if it is not a fire, or a false alarm occurs.

【0004】この発明はこのような問題点を解決するた
めになされたもので、衝撃等が与えられたときの感知器
に加わる振動等を検知して狂った光軸調整や受光レベル
調整を再調整でき、もし再調整出来ない場合でも少なく
とも火災ではないが感知器が異常であることを知らせる
ことできる光電式感知器を提供することを目的とする。
The present invention has been made in order to solve such a problem, and detects a vibration applied to a sensor when a shock or the like is applied to detect an erroneous optical axis adjustment or a received light level adjustment. It is an object of the present invention to provide a photoelectric sensor that can be adjusted and, if it cannot be readjusted, at least not a fire but informs that the sensor is abnormal.

【0005】[0005]

【課題を解決するための手段】この発明に係る光電式感
知器は、光を所定の間隔で発光する送光部と、検煙空間
を挟んで送光部に対向して設けられ、送光部からの光を
受光する受光部とを有し、受光部の受光量が変化するこ
とで検煙空間の煙の有無を感知する光電式感知器におい
て、感知器またはその近傍に該感知器に対する衝撃を検
知する検知手段を設け、検知手段の出力に基づいて通常
の火災監視を中止して自己診断を行うようにしたもので
ある。
A photoelectric sensor according to the present invention is provided with a light transmitting section for emitting light at a predetermined interval, and a light transmitting section provided so as to face the light transmitting section with a smoke detection space interposed therebetween. A light-receiving part for receiving light from a light-receiving part, and detecting the presence or absence of smoke in the smoke-detecting space by changing the amount of light received by the light-receiving part. A detection means for detecting an impact is provided, and normal fire monitoring is stopped based on the output of the detection means to perform self-diagnosis.

【0006】また、光を所定の間隔で発光する送光部
と、検煙空間を挟んで送光部に対向して設けられ、送光
部からの光を受光する受光部とを有し、受光部の受光量
が変化することで検煙空間の煙の有無を感知する光電式
感知器において、感知器またはその近傍に設けられ、感
知器に対する衝撃を検知する検知手段と、検知手段の出
力に基づいて光軸調整および受光レベル調整の少なくと
も一方を行う調整手段とを備えたものである。また、感
度調整機能を有するものである。
Further, it has a light-transmitting section for emitting light at a predetermined interval, and a light-receiving section provided to face the light-transmitting section with a smoke detection space interposed therebetween and for receiving light from the light-transmitting section. A photoelectric sensor that detects the presence or absence of smoke in the smoke detection space when the amount of light received by the light receiver changes, and is provided in or near the sensor, and is a detection means for detecting an impact on the sensor and the output of the detection means. And adjusting means for performing at least one of optical axis adjustment and light receiving level adjustment based on the above. Further, it has a sensitivity adjusting function.

【0007】また、光を所定の間隔で発光する送光部
と、検煙空間を挟んで送光部に対向して設けられ、送光
部からの光を受光する受光部とを有し、受光部の受光量
が変化することで検煙空間の煙の有無を感知する光電式
感知器において、感知器またはその近傍に設けられ、感
知器に対する衝撃を検知する検知手段と、検知手段の出
力に基づいて感度試験を行う感度試験手段とを備え、感
度試験手段の出力に基づいて光軸調整および受光レベル
調整の少なくとも一方を手動で行うようにしたものであ
る。
Further, it has a light-transmitting section for emitting light at a predetermined interval, and a light-receiving section provided to face the light-transmitting section with a smoke detection space interposed therebetween and for receiving light from the light-transmitting section. A photoelectric sensor that detects the presence or absence of smoke in the smoke detection space when the amount of light received by the light receiver changes, and is provided in or near the sensor, and is a detection means for detecting an impact on the sensor and the output of the detection means. And a sensitivity test means for performing a sensitivity test based on the above, and at least one of the optical axis adjustment and the received light level adjustment is manually performed based on the output of the sensitivity test means.

【0008】また、光を所定の間隔で発光する送光部
と、検煙空間を挟んで送光部に対向して設けられ、送光
部からの光を受光する受光部とを有し、受光部の受光量
が変化することで検煙空間の煙の有無を感知する光電式
感知器において、感知器またはその近傍に設けられ、感
知器に対する衝撃を検知する検知手段と、検知手段の出
力に基づいて受光レベルを測定する受光レベル測定手段
とを備え、受光レベル測定手段の出力に基づいて光軸調
整および受光レベル調整の少なくとも一方を手動で行う
ようにしたものである。さらに、検知手段の出力に関連
して感知器が異常の場合に異常信号を発生する手段を有
するものである。
Further, it has a light-transmitting section for emitting light at a predetermined interval, and a light-receiving section which is provided so as to face the light-transmitting section with a smoke detection space interposed therebetween and which receives light from the light-transmitting section. A photoelectric sensor that detects the presence or absence of smoke in the smoke detection space when the amount of light received by the light receiver changes, and is provided in or near the sensor, and is a detection means for detecting an impact on the sensor and the output of the detection means. And a light-reception level measuring means for measuring the light-reception level on the basis of the light receiving level, and at least one of the optical axis adjustment and the light-reception level adjustment is manually performed based on the output of the light-reception level measuring means. Further, it has means for generating an abnormal signal when the sensor is abnormal in relation to the output of the detecting means.

【0009】[0009]

【発明の実施の形態】以下、この発明の一実施の形態を
図を参照して説明する。 実施の形態1.図1はこの発明の実施の形態1を示す上
面図、図2は図1の線A−Aを一部切断して示す側面図
である。図において、1は例えば金属や樹脂等からなる
筺体、2は筺体1内に設けられた回転板、3はこの回転
板2に取り付けられた光学系支持台、4はこの光学系支
持台3に載置された光学系、5は回転板2に穿設された
光学系位置角度調整用長穴、6は光学系のレンズ、7は
筺体1内に設けられたプリント基板、8はプリント基板
7に取り付けられたコネクタ、9は光学系4の背後に設
けられたフォトダイオードである。10は回転板2に取
り付けられた自動光軸調整用の水平方向モータ、11は
光学系支持台3に取り付けられた同じく自動光軸調整用
の垂直方向モータである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. Embodiment 1 FIG. 1 is a top view showing a first embodiment of the present invention, and FIG. 2 is a side view showing a part of line AA in FIG. In the figure, 1 is a housing made of, for example, metal or resin, 2 is a rotary plate provided in the housing 1, 3 is an optical system support base attached to the rotary plate 2, and 4 is an optical system support base 3. The mounted optical system, 5 is an elongated hole for adjusting the optical system position angle formed in the rotary plate 2, 6 is a lens of the optical system, 7 is a printed board provided in the housing 1, and 8 is a printed board 7 The connector 9 is attached to the photodiode 9, and the photodiode 9 is provided behind the optical system 4. Reference numeral 10 is a horizontal motor for automatic optical axis adjustment mounted on the rotary plate 2, and 11 is a vertical motor for automatic optical axis adjustment, also mounted on the optical system support 3.

【0010】12は一端が水平方向モータ10の回転軸
に連結され、他端(ネジ頭12a)が回転板2の折り曲
げ部分2aに固定されたおすネジ、13は光学系支持台
3の折り曲げ部分3aに形成され、おすネジ12と螺合
して光学系支持台3と共に移動可能なめすネジ、14は
光学系支持台3の折り曲げ部分3aとネジ頭12aの間
のおすネジ12の部分に介挿されたスプリングである。
15は一端が垂直方向モータ11の回転軸に連結され、
他端(ネジ頭15a)が光学系4の一部に固定された移
動可能なおすネジであって、このネジ頭15aが動くと
光学系4が動くようになされている。16は光学系4の
折り曲げ部分に形成され、おすネジ15と螺合するめす
ネジ、17は光学系4の折り曲げ部分とネジ頭15aの
間のおすネジ15の部分に介挿されたスプリングであ
る。18はプリント基板7に取り付けられ、その内部の
回路と電気的に接続された検知手段としての加速度セン
サである。この加速度センサ18は感知器に外部より或
る衝撃等が加えられたときにその振動を検出するもので
ある。なお、この加速度センサ18の取り付け位置は、
これのみに限定されず、感知器の他の内部、表面或いは
感知器外部の近傍であってもよい。
Reference numeral 12 denotes a male screw whose one end is connected to the rotary shaft of the horizontal motor 10 and the other end (screw head 12a) is fixed to the bent portion 2a of the rotary plate 2, and 13 denotes the bent portion 3a of the optical system support 3. The female screw 14 is formed on the male screw 12 and is movable together with the optical system support base 3 by screwing the male screw 12, and the male screw 12 is interposed between the bent portion 3a of the optical system support base 3 and the screw head 12a. It is a spring.
One end of 15 is connected to the rotary shaft of the vertical motor 11,
The other end (screw head 15a) is a movable male screw fixed to a part of the optical system 4, and the optical system 4 moves when the screw head 15a moves. Reference numeral 16 denotes a female screw which is formed in the bent portion of the optical system 4 and is screwed into the male screw 15, and 17 denotes a spring which is inserted in the male screw 15 between the bent portion of the optical system 4 and the screw head 15a. . Reference numeral 18 denotes an acceleration sensor that is attached to the printed board 7 and is electrically connected to a circuit inside the printed board 7. The acceleration sensor 18 detects the vibration of the sensor when an external shock or the like is applied to the sensor. The mounting position of the acceleration sensor 18 is
The present invention is not limited to this, and may be inside the sensor, near the surface, or outside the sensor.

【0011】なお、図1および図2の全体構造は、光電
式分離型感知器における送光部と受光部では実質的に同
じであり、両者の異なる点は、発光素子と受光素子(図
示せず)が異なること、送光部に対して受光部の場合は
信号処理量の分だけプリント基板7の面積が大きくなる
ぐらいである。なお、図1および図2は、代表的に受光
部の場合を示している。
The entire structure of FIGS. 1 and 2 is substantially the same in the light transmitting section and the light receiving section in the photoelectric separation type sensor, and the difference between them is that the light emitting element and the light receiving element (not shown). The difference is that the area of the printed circuit board 7 is increased by the amount of signal processing in the case of the light receiving portion with respect to the light transmitting portion. 1 and 2 typically show the case of a light receiving unit.

【0012】図3は加速度センサ18の一例を示す斜視
図である。この加速度センサは、各部を支持する任意の
形状の不導体からなる支持台20と、加速度を検知する
ために慣性を持たせるように設けられた重り21と、重
り21と一体化され支持台20が可動するが通常は自立
するように弾力性を持たせて支持台20に固定された導
体からなる電極22と、この電極22の周囲を取り囲む
ように支持台20に固定された導体からなる電極23と
で構成される。いま、通常の加速度や振動がないときに
は電極22は支持台20の固定部分の復帰力で自立する
ため、電極22と電極23の間の電気抵抗は実質的に不
導体からなる支持台20の抵抗値となる。
FIG. 3 is a perspective view showing an example of the acceleration sensor 18. This acceleration sensor includes a support base 20 made of a non-conductor having an arbitrary shape for supporting each part, a weight 21 provided with inertia to detect acceleration, and a support base 20 integrated with the weight 21. An electrode 22 made of a conductor fixed to the support base 20 so as to be self-supporting so that it is movable, and an electrode made of a conductor fixed to the support base 20 so as to surround the electrode 22. 23 and. Now, when there is no normal acceleration or vibration, the electrode 22 becomes self-supporting due to the restoring force of the fixed portion of the support base 20, so the electrical resistance between the electrode 22 and the electrode 23 is substantially the resistance of the support base 20 made of a non-conductor. It becomes a value.

【0013】一方、感知器が衝撃等の要因で加速度や振
動を受けると、重り21が慣性を持つために他の部分よ
りも動きが鈍く、感知器の他の構成部分とは相対的に加
速度を受けると、加速度を受けた方向と反対方向に動く
ことになる。すると、重り21と一体になった電極22
と電極23が接触するため、電極22と電極23の間の
電気抵抗が支持台20自身の抵抗値より大幅に低下す
る。従って、電極22と電極23に導線を取り付けて電
圧をかけておけば、その間の電流変化を検出することで
加速度の有無を検知できる。また、電極22と電極23
の間の間隙の大きさや電極22の自立力の弾性力を調整
することで検知する加速度や振動の大きさを調整するこ
とができる。
On the other hand, when the sensor is subjected to acceleration or vibration due to a shock or the like, the weight 21 has inertia so that the motion is slower than other parts, and the acceleration is relatively relative to other parts of the sensor. When receiving the acceleration, it will move in the direction opposite to the direction in which the acceleration was received. Then, the electrode 22 integrated with the weight 21
Since the electrode 23 is in contact with the electrode 23, the electric resistance between the electrode 22 and the electrode 23 is significantly lower than the resistance value of the support 20 itself. Therefore, if a conductive wire is attached to the electrodes 22 and 23 and a voltage is applied, the presence or absence of acceleration can be detected by detecting the current change between them. In addition, the electrodes 22 and 23
By adjusting the size of the gap between them and the elastic force of the self-supporting force of the electrode 22, it is possible to adjust the magnitude of acceleration or vibration to be detected.

【0014】図4は加速度センサ18の他の例を示す構
成図であって、図4(a)はその平面図、図4(b)は
図4(a)におけるA−A′間を切断して示す断面図で
ある。この加速度センサ18、凹部を有する不導体から
なる支持台30と、この支持台30の凹部の上部と底部
にそれぞれ接触しないように所定の間隙を持って設けら
れた導体からなる電極31および32と、その液面が加
速度や振動を受けていないときは電極31まで達しない
量だけ支持台30の凹部に注入された例えば水銀等の導
電性液体33とで構成される。なお、電極32と導電性
液体33は常に接触し、導電性液体33は、所定の電位
を有している。
FIG. 4 is a constitutional view showing another example of the acceleration sensor 18, FIG. 4 (a) is a plan view thereof, and FIG. 4 (b) is a sectional view taken along the line A--A 'in FIG. 4 (a). FIG. The acceleration sensor 18, a support base 30 made of a non-conductor having a recess, and electrodes 31 and 32 made of a conductor provided with a predetermined gap so as not to come into contact with the top and bottom of the recess of the support base 30, respectively. When the liquid surface is not subjected to acceleration or vibration, the conductive liquid 33 such as mercury is injected into the concave portion of the support base 30 in an amount that does not reach the electrode 31. The electrode 32 and the conductive liquid 33 are always in contact with each other, and the conductive liquid 33 has a predetermined potential.

【0015】いま、加速度や振動がない場合には、導電
性液体33の液面は電極31に触れないため、電極31
と電極32の間の電気抵抗は、実質的に不導体からなる
支持台30の有する高い抵抗値となる。一方、感知器が
衝撃等の要因で加速度や振動を受けると導電性液体33
の液面が波立ち、液面が電極31に触れるため、電極3
1と電極32の間は導通し、その電気抵抗は実質的に導
電性液体33の有する低い抵抗値となる。従って、電極
31と電極32の間に電圧をかけて流れる電流を監視し
ていれば、加速度や振動の有無を検知できることにな
る。なお、図4の例では、支持台30の凹部に導電性液
体33を入れる場合について説明したが、導電性液体3
3を入れる空間は、閉空間としてもよい。
When there is no acceleration or vibration, the liquid surface of the conductive liquid 33 does not touch the electrode 31.
The electrical resistance between the electrode 32 and the electrode 32 has a high resistance value of the support base 30 substantially made of a non-conductor. On the other hand, when the sensor is subjected to acceleration or vibration due to a shock or the like, the conductive liquid 33
Since the liquid surface of the electrode is wavy and the liquid surface touches the electrode 31, the electrode 3
1 and the electrode 32 are electrically connected, and the electric resistance thereof is substantially the low resistance value of the conductive liquid 33. Therefore, the presence or absence of acceleration or vibration can be detected by monitoring the current flowing through the voltage applied between the electrodes 31 and 32. In addition, in the example of FIG. 4, the case where the conductive liquid 33 is put into the concave portion of the support base 30 has been described.
The space for storing 3 may be a closed space.

【0016】図5はこの発明の一実施の形態の電気回路
の一例を示す回路図である。図において、40は光を発
する送光部、41は発光素子用電源、42は発光素子と
しての発光ダイオードであって、この発光ダイオード4
2は電源41の両端に発光制御用スイッチ43および電
流制限用抵抗器44を介して接続される。45は発光ダ
イオード42の前面に設けられた集光レンズである。
FIG. 5 is a circuit diagram showing an example of an electric circuit according to an embodiment of the present invention. In the figure, reference numeral 40 is a light transmitting section that emits light, 41 is a light source for a light emitting element, and 42 is a light emitting diode as a light emitting element.
2 is connected to both ends of the power supply 41 via a light emission control switch 43 and a current limiting resistor 44. Reference numeral 45 denotes a condenser lens provided on the front surface of the light emitting diode 42.

【0017】50は検煙空間を挟んで送光部40に対向
して設置され、送光部40からの光を受光する受光部、
51は上述のフォトダイオード9に相当する受光素子と
してのフォトダイオード、52はフォトダイオード51
の前面に設けられた上述の光学系レンズ6の一部である
集光レンズ、53はフォトダイオード51の両端に接続
され、後段の各種の回路の処理電圧が適切な値(適性レ
ベル)になるように入力レベルを調整するための入力調
整抵抗器である。この入力調整抵抗器53は、本実施の
形態では、手動調整または自動調整できるようになされ
ており、自動調整の場合は、例えばモータ駆動の可変抵
抗器、或いは直列接続された複数の抵抗器と、これら複
数の抵抗器にそれぞれ並列接続されたトランジスタ等の
スイッチング素子とからなるディジタル制御式のポテン
ショメータ等が用いられ、後述の火災判断回路からの制
御信号で調整される。54は演算増幅器であって、この
演算増幅器54の反転入力端子は抵抗器55を介してフ
ォトダイオード51のアノードに接続され、その非反転
入力端子は直接フォトダイオード51のカソードに接続
される。また、演算増幅器54の反転入力端子と出力端
子の間に抵抗器56が接続される。
Reference numeral 50 designates a light receiving section which is installed so as to face the light transmitting section 40 with the smoke detecting space interposed therebetween and which receives light from the light transmitting section 40.
Reference numeral 51 is a photodiode as a light receiving element corresponding to the above-mentioned photodiode 9, and 52 is a photodiode 51.
A condenser lens 53, which is a part of the above-mentioned optical system lens 6 provided on the front surface of the, is connected to both ends of the photodiode 51, and the processing voltage of various circuits in the subsequent stage becomes appropriate values (appropriate level). Is an input adjustment resistor for adjusting the input level. In the present embodiment, the input adjustment resistor 53 is adapted to be manually adjusted or automatically adjusted. In the case of automatic adjustment, for example, a motor-driven variable resistor or a plurality of resistors connected in series is used. A digitally controlled potentiometer or the like including switching elements such as transistors connected in parallel to the plurality of resistors is used, and is adjusted by a control signal from a fire determination circuit described later. Reference numeral 54 denotes an operational amplifier. The inverting input terminal of the operational amplifier 54 is connected to the anode of the photodiode 51 via the resistor 55, and the non-inverting input terminal is directly connected to the cathode of the photodiode 51. A resistor 56 is connected between the inverting input terminal and the output terminal of the operational amplifier 54.

【0018】57は演算増幅器54の出力をサンプリン
グしてホールドするサンプルホールド回路、58はサン
プルホールド回路57の出力をアナログ信号からディジ
タル信号に変換するA/D変換回路、59はA/D変換
回路58の出力に基づいて火災の有無を判断する例えば
マイクロコンピュータでなる火災判断回路、60は電源
投入後の受光量を火災判断の基準値として記憶すると共
に、受光レベル調整等の際の適性レベルを予め記憶する
記憶回路である。火災判断回路59はこの記憶回路60
に記憶されている基準値とA/D変換回路58からの出
力値を比較して火災を判断する。また、火災判断回路5
9は、図示せずも光軸調整時に駆動信号を送光部40側
および受光部50側の水平方向モータ10および垂直方
向モータ11にそれぞれ供給するようになされている。
この駆動信号の伝送は、特に送光部40へは図示しない
電源ラインに重畳させたり、或いは専用の信号ラインを
用いることが考えられる。
Reference numeral 57 is a sample hold circuit for sampling and holding the output of the operational amplifier 54, 58 is an A / D conversion circuit for converting the output of the sample hold circuit 57 from an analog signal to a digital signal, and 59 is an A / D conversion circuit. A fire determination circuit, such as a microcomputer, for determining the presence or absence of a fire based on the output of 58, stores the amount of light received after power-on as a reference value for fire determination, and at the same time sets an appropriate level for adjusting the light receiving level. This is a memory circuit that is stored in advance. The fire determination circuit 59 uses this storage circuit 60.
The fire is judged by comparing the reference value stored in (4) with the output value from the A / D conversion circuit 58. Also, the fire judgment circuit 5
Although not shown, the reference numeral 9 supplies a drive signal to the horizontal direction motor 10 and the vertical direction motor 11 on the light transmitting unit 40 side and the light receiving unit 50 side, respectively, when adjusting the optical axis.
For transmission of this drive signal, it is conceivable to superimpose it on a power supply line (not shown), or to use a dedicated signal line, especially for the light transmitting unit 40.

【0019】61は火災判断回路59からの火災信号等
を外部の受信機等に伝送したり、或いは受信機等からの
情報を電源回路62等の内部回路に伝達する情報伝達回
路である。63は感知器の内部や表面或いは近傍に設け
られた上述の加速度センサ18に相当する加速度セン
サ、64は加速度センサ63の出力に応答して割り込み
信号を発生する割込信号発生器、65は抵抗器66を介
して抵抗器56の両端に接続され、割込信号発生器64
からの割り込み信号によりその開閉を制御される例えば
トランジスタ或いはリレー接点等でなるスイッチであ
る。なお、図5では、送光部40に発光素子用電源を設
けたが、実際には受光部50の電源回路62から電源回
路62から電源ラインによって供給される。
Reference numeral 61 is an information transmission circuit for transmitting a fire signal or the like from the fire determination circuit 59 to an external receiver or the like, or for transmitting information from the receiver or the like to an internal circuit such as a power supply circuit 62. 63 is an acceleration sensor corresponding to the above-described acceleration sensor 18 provided inside or on the surface of or in the vicinity of the sensor, 64 is an interrupt signal generator that generates an interrupt signal in response to the output of the acceleration sensor 63, and 65 is a resistor. Is connected to both ends of the resistor 56 via a resistor 66, and an interrupt signal generator 64
It is a switch whose opening and closing is controlled by an interrupt signal from, for example, a transistor or a relay contact. In FIG. 5, the light-transmitting unit 40 is provided with a light-emitting element power source, but in reality, the light-emitting unit 50 is powered by the power source circuit 62 to the power source circuit 62.

【0020】次に、動作について図6を参照して説明す
る。いま、電源が投入されると(ステップS1)、加速
度センサ割り込み処理の禁止を行い(ステップS2)、
ステップS3において、先ず、光軸調整を行う。この光
軸調整では、送光部40側および受光部50側の水平方
向モータ10および垂直方向モータ11を動かし、光学
系支持台3を受光部50側は水平方向および垂直方向共
に回転可能範囲の中心に、送光部40側は水平方向およ
び垂直方向共に回転可能範囲のいずれか片方一杯に向け
る。そして、火災判断回路59からの制御信号に基づい
て入力調整抵抗器53を調整して受光部50側の演算増
幅器54のゲインを徐々に上げ、送光部40からの光を
適正レベルの半分ぐらいまで受光できるゲインに調整す
る。もし、受光できなかった場合は最大ゲインに調整す
る。
Next, the operation will be described with reference to FIG. Now, when the power is turned on (step S1), the acceleration sensor interrupt process is prohibited (step S2),
In step S3, first, the optical axis is adjusted. In this optical axis adjustment, the horizontal direction motor 10 and the vertical direction motor 11 on the side of the light transmitting unit 40 and the side of the light receiving unit 50 are moved to move the optical system support 3 on the side of the light receiving unit 50 in a range in which the optical system support base 3 can be rotated in the horizontal direction and the vertical direction. At the center, the light transmitting unit 40 side is directed to one of the rotatable ranges in both the horizontal and vertical directions. Then, the input adjustment resistor 53 is adjusted based on the control signal from the fire determination circuit 59 to gradually increase the gain of the operational amplifier 54 on the light receiving unit 50 side, and the light from the light transmitting unit 40 is halved to an appropriate level. Adjust to a gain that can receive up to. If the light cannot be received, adjust to the maximum gain.

【0021】次に、送光部40側の水平方向モータ10
を回し切った側から反対に徐々に動かして行く。もし、
直ぐに受光レベルが動かす前に比較して下がる場合に
は、回し切った側に向きを戻して回転を停止する。受光
レベルが変わらないか、或いは上昇する場合にはさらに
同じ方へ徐々に回して受光レベルの変化を図示しない表
示器により観測し、減少するまで回す。もし、回してい
る途中で受光レベルが適正レベルを越えた場合には、演
算増幅器54のゲインを減少させる。水平方向モータ1
0を回し続けて受光レベルが減少し始めたら、水平方向
モータ10の回転方向を逆転させ最も受光レベルが高い
点で回転を停止する。もし、同じ方向に回し続けて減少
し始める点が見つからず、そのまま反対側の回転可能範
囲一杯まで達した場合はそこで停止する。
Next, the horizontal motor 10 on the side of the light transmitting section 40.
Gradually move from the side you turned to the opposite. if,
Immediately, if the light-receiving level drops compared to before moving, turn the direction to the fully rotated side and stop the rotation. When the received light level does not change or rises, it is further gradually turned to the same direction, the change in the received light level is observed by a display (not shown), and turned until it decreases. If the light receiving level exceeds the appropriate level during the rotation, the gain of the operational amplifier 54 is reduced. Horizontal motor 1
When the light receiving level starts to decrease by continuing to turn 0, the rotation direction of the horizontal motor 10 is reversed and the rotation is stopped at the point where the light receiving level is the highest. If the point where it continues to rotate in the same direction and begins to decrease is not found, and reaches the full rotatable range on the opposite side, stop there.

【0022】次に、垂直方向に付いても同様に垂直方向
モータ11を回転させて受光レベルの変化を観測し、最
も受光レベルが高くなる点で垂直方向モータ11の回転
を停止する。そして、送光部40側の向きが決まったら
受光部50側に付いても同様に水平方向モータ10と垂
直方向モータ11を回して、最も受光レベルが高くなる
点でモータを停止する。
Next, in the vertical direction as well, the vertical motor 11 is similarly rotated to observe the change in the light receiving level, and the rotation of the vertical motor 11 is stopped at the point where the light receiving level becomes the highest. When the orientation of the light-transmitting unit 40 is determined, the horizontal motor 10 and the vertical motor 11 are similarly rotated even if the light-receiving unit 50 is attached to the light-receiving unit 50 side, and the motor is stopped at the point where the light-receiving level becomes highest.

【0023】このようにして、ステップS3における光
軸調整が終了したら、正しく光軸は合ったか否かを判断
し(ステップS4)、合っていれば、次に、ステップS
5において、受光レベルの調整を行う。この受光レベル
調整は、演算増幅器54の出力(ゲイン)をサンプルホ
ールド回路57およびA/D変換回路58を通して火災
判断回路59に取り込み、この取り込んだゲインを記憶
回路60より読み出した適正レベルと比較し、ゲインが
適正レベルより低い場合は受光レベルを観測しながら、
火災判断回路59からの制御信号に基づいて入力調整抵
抗器53を自動で、例えば抵抗器53の図示しないモー
タを回転させるなどして調整して演算増幅器54のゲイ
ンを適正レベルになるまで増加させる。そして、演算増
幅器54のゲイン、つまり、受光量が適正レベルになっ
たら、受光レベルの調整を終了する。
In this way, when the optical axis adjustment in step S3 is completed, it is judged whether or not the optical axes are correctly aligned (step S4). If they are aligned, then step S3 is performed.
In 5, the light receiving level is adjusted. In this light reception level adjustment, the output (gain) of the operational amplifier 54 is taken into the fire judgment circuit 59 through the sample hold circuit 57 and the A / D conversion circuit 58, and this taken-in gain is compared with the proper level read from the memory circuit 60. , If the gain is lower than the proper level, observing the received light level,
The input adjusting resistor 53 is automatically adjusted based on a control signal from the fire judging circuit 59, for example, by rotating a motor (not shown) of the resistor 53 to increase the gain of the operational amplifier 54 to an appropriate level. . Then, when the gain of the operational amplifier 54, that is, the amount of received light reaches an appropriate level, the adjustment of the received light level ends.

【0024】このようにして、ステップS5における受
光レベルの調整が終了したら、受光レベルは適正レベル
の範囲内であるか否かを判断し(ステップS6)、適正
レベルの範囲内であれば、加速センサ割り込み処理の禁
止を解除し(ステップS7)、ステップS8において、
通常の火災監視状態に入る。この火災監視状態におい
て、送光部40側では、電源41より抵抗器44および
スイッチ43を介して発光ダイオード42に間欠に電流
が流れて間欠発光(例えば3秒毎)し、この発光ダイオ
ード42からの光エネルギーは集光レンズ45でビーム
状に形成されて検煙空間に照射される。受光部50側で
は、送光部40側から発せられ、検煙空間(監視距離5
〜100m)を通過して来たビーム状の光を集光レンズ
52でフォトダイオード51に集光させる。フォトダイ
オード51の出力電流は入力調整抵抗器53に流れて戻
って来るので、この入力調整抵抗器53の両端にはその
電流に比例した電圧が発生する。従って、上述の受光レ
ベル調整等においては、この入力調整抵抗器53の抵抗
値を変えることにより後段の各回路における処理に都合
のよい適切な電圧値が得られることになる。
In this way, when the adjustment of the light receiving level in step S5 is completed, it is judged whether or not the light receiving level is within the proper level range (step S6). If it is within the proper level range, acceleration is performed. The prohibition of sensor interrupt processing is released (step S7), and in step S8,
Enter the normal fire monitoring state. In this fire monitoring state, on the side of the light transmitting unit 40, an electric current intermittently flows from the power source 41 to the light emitting diode 42 through the resistor 44 and the switch 43 to intermittently emit light (every 3 seconds, for example). The light energy of is formed into a beam shape by the condenser lens 45 and is applied to the smoke detection space. On the side of the light receiving unit 50, the light is emitted from the side of the light transmitting unit 40, and the smoke detection space (monitoring distance 5
The beam-shaped light that has passed through 100 m) is condensed on the photodiode 51 by the condenser lens 52. The output current of the photodiode 51 flows through the input adjustment resistor 53 and returns, so that a voltage proportional to the current is generated across the input adjustment resistor 53. Therefore, in the above-mentioned light reception level adjustment and the like, by changing the resistance value of the input adjustment resistor 53, an appropriate voltage value convenient for the processing in each circuit in the subsequent stage can be obtained.

【0025】入力調整抵抗器53の両端に発生した電圧
は、演算増幅器54に供給されて増幅される。この通常
の火災監視状態では、スイッチ65は開放状態としてお
く。演算増幅器54の出力はサンプルホールド回路57
に供給され、ここで一定時間保持されたアナログ電圧が
A/D変換回路58でA/D変換されて火災判断回路5
9に供給される。火災判断回路59は、先ず、電源投入
後の受光量を基準値として記憶回路60に記憶させ、そ
の後はA/D変換回路58からデータが送られて来るた
びに記憶回路60より基準値を読み出し、減光率を計算
してその減光率が規定値(例えば10%/m)より大き
ければ、後段の情報伝達回路61に火災信号を送る。
The voltage generated across the input adjustment resistor 53 is supplied to the operational amplifier 54 and amplified. In this normal fire monitoring state, the switch 65 is kept open. The output of the operational amplifier 54 is the sample hold circuit 57.
Is supplied to the fire judging circuit 5 and the analog voltage held there for a certain period of time is A / D converted by the A / D converting circuit 58.
9. The fire determination circuit 59 first stores the amount of light received after the power is turned on as a reference value in the storage circuit 60, and thereafter, every time data is sent from the A / D conversion circuit 58, the reference value is read from the storage circuit 60. If the extinction rate is calculated and the extinction rate is larger than a specified value (for example, 10% / m), a fire signal is sent to the information transmission circuit 61 in the subsequent stage.

【0026】情報伝達回路61は、通常は受信機やその
他の基地局から送られて来る電圧を高いインピーダンス
で受けて電源回路62に送っているが、火災判断回路5
9より火災信号が送られて来ると、受信機からの電圧を
低いインピーダンスで受けて電流を流し、受信機に火災
である旨を伝達する。また、この場合、減光率等の情報
をディジタル信号で直接受信機に送るような方式として
もよい。
The information transmission circuit 61 normally receives a voltage sent from a receiver or other base station with high impedance and sends it to the power supply circuit 62.
When a fire signal is sent from 9, the voltage from the receiver is received with a low impedance, and a current is passed to inform the receiver that there is a fire. Further, in this case, a method of directly transmitting information such as the extinction ratio as a digital signal to the receiver may be adopted.

【0027】一方、ステップS4で光軸が合っていない
場合、例えば水平方向モータ10および垂直方向モータ
11のいずれか一方または両方が回転可能範囲の一方に
回り切っている場合は、光軸調整不可能(ステップS
4)として表示器に“異常”を表示すると共に受信機へ
異常信号を送る(ステップS9)。同様に、ステップS
6で受光レベルが適正レベルの範囲内でない場合も、受
光レベル調整不可能として表示器に“異常”を表示する
と共に受信機へ異常信号を送る(ステップS9)。そし
て、火災監視機能を停止する(ステップS10)。
On the other hand, if the optical axes are not aligned in step S4, for example, if one or both of the horizontal direction motor 10 and the vertical direction motor 11 are fully rotated to one of the rotatable ranges, the optical axis adjustment is not performed. Possible (step S
As 4), "abnormal" is displayed on the display and an abnormal signal is sent to the receiver (step S9). Similarly, step S
Even when the light receiving level is not within the range of the appropriate level at 6, the light receiving level cannot be adjusted, "abnormal" is displayed on the display, and an abnormal signal is sent to the receiver (step S9). Then, the fire monitoring function is stopped (step S10).

【0028】このような火災監視状態において、感知器
が衝撃等の要因で加速度や振動を受けると、加速度セン
サ63がこれを検知し、加速度センサ割り込み処理に入
る(ステップS11)。そして、1サイクルの処理が終
わるまで次の加速度センサ割り込みを禁止し(ステップ
S12)、光軸調整および受光レベル調整の前処理とし
て、先ず、感度試験を行う(ステップS13)。このと
き、割込信号発生器64より割り込み信号を火災判断回
路59へ供給すると共にスイッチ65に供給してこれを
閉成状態とする。火災判断回路59は割り込み信号を受
けると、割り込み信号が止まるまでの間、仮に入力信号
が低下しても火災としては認識せず、感度試験中として
信号を認識するようにして感度試験を開始する。
In such a fire monitoring state, when the sensor receives acceleration or vibration due to a shock or the like, the acceleration sensor 63 detects the acceleration or vibration, and the acceleration sensor interrupt process starts (step S11). Then, the next acceleration sensor interruption is prohibited until one cycle of processing is completed (step S12), and a sensitivity test is first carried out as a preprocessing of the optical axis adjustment and the light reception level adjustment (step S13). At this time, the interrupt signal generator 64 supplies an interrupt signal to the fire judging circuit 59 and also supplies it to the switch 65 to close it. When the fire determination circuit 59 receives the interrupt signal, it does not recognize it as a fire even if the input signal drops until the interrupt signal stops, and recognizes the signal as being in the sensitivity test and starts the sensitivity test. .

【0029】感度試験においては、スイッチ65が閉成
されると、演算増幅器54の抵抗器56に抵抗器66が
並列接続され、演算増幅器54の反転入力端子および出
力端子間の抵抗値が両方の抵抗器の合成抵抗値まで低下
する。即ち、抵抗器56および66の抵抗値をそれぞれ
Rf1,Rf2、合成抵抗値をRfとすると、合成抵抗値Rf
はRf=(Rf1・Rf2)/(Rf1+Rf2)で表される
が、この合成抵抗値Rfにまで演算増幅器54の反転入
力端子および出力端子間の抵抗値が低下する。この結
果、演算増幅器54のゲインがその分だけ低下し、その
出力値がRf/Rf1に低下することになる。
In the sensitivity test, when the switch 65 is closed, the resistor 56 of the operational amplifier 54 is connected in parallel with the resistor 66, and the resistance value between the inverting input terminal and the output terminal of the operational amplifier 54 becomes both. It decreases to the combined resistance value of the resistor. That is, assuming that the resistance values of the resistors 56 and 66 are Rf1 and Rf2, respectively, and the combined resistance value is Rf, the combined resistance value Rf
Is represented by Rf = (Rf1.Rf2) / (Rf1 + Rf2), and the resistance value between the inverting input terminal and the output terminal of the operational amplifier 54 decreases to this combined resistance value Rf. As a result, the gain of the operational amplifier 54 is reduced by that amount, and its output value is reduced to Rf / Rf1.

【0030】これは、等価的に検煙空間に透過率がRf
/Rf1{減光率では(Rf−Rf1)/Rf}分の煙が存在
することになり、後段の回路が、減光率で(Rf−Rf
1)/Rf}分の煙が実際に存在するのと同様な動作をす
るか否かで感知器の動作を試験することが出来ることに
なる。また、減光率をディジタル信号で受信機に知らせ
る方式の場合は、正しい濃度が送られているか否かを確
認することで、感知器の減光率計算機能や火災判断機能
を有する火災判断回路59や情報伝達回路61が正しい
動作をしているか否かを確認することができる。さら
に、抵抗器66の抵抗値を適当に可変することで、何通
りかの減光率での感度試験を行えるようにしてもよい。
Equivalently, the transmittance is Rf in the smoke detection space.
/ Rf1 {at the extinction rate, (Rf-Rf1) / Rf} smoke will be present, and the circuit at the subsequent stage will become (Rf-Rf) at the extinction rate.
1) It will be possible to test the operation of the sensor based on whether or not the smoke equivalent to / Rf} actually behaves. Also, in the case of the method of notifying the receiver of the extinction rate with a digital signal, by confirming whether or not the correct concentration is sent, the fire judgment circuit having the function of calculating the extinction ratio of the sensor and the fire judgment function. It is possible to confirm whether 59 or the information transmission circuit 61 is operating correctly. Furthermore, by appropriately changing the resistance value of the resistor 66, it is possible to perform a sensitivity test at several extinction rates.

【0031】このようにして、ステップS13における
感度試験が終了したら、感度が正常か否かを判断し(ス
テップS14)、正常でなければ、上述の衝撃等の要因
で感知器が加速度や振動を受け、光軸や受光レベル等が
狂ったものと見做し、上述と同様の方法で光軸調整と受
光レベル調整を行う(ステップS15,16)。そし
て、再度感度が正常か否かを判断し(ステップS1
7)、正常でなければ、光軸調整不可能および受光レベ
ル調整不能として表示器に“異常”を表示すると共に受
信機へ異常信号を送り(ステップS9)、しかる後、火
災監視機能を停止する(ステップS10)。一方、ステ
ップS14およびS17で共に感度が正常であれば、加
速度センサ割り込み処理の禁止を解除し(ステップS1
8)、通常の火災監視状態に復帰する(ステップS1
9)。このようして、この実施の形態では、加速度セン
サの出力に基づいて、衝撃等の要因で狂った感知器の光
軸調整や受光レベル調整を自動的に行うことができる。
In this way, when the sensitivity test in step S13 is completed, it is judged whether or not the sensitivity is normal (step S14). If the sensitivity is not normal, the sensor causes acceleration or vibration due to the above-mentioned shock or the like. It is considered that the receiving, the optical axis, the light receiving level, and the like are out of order, and the optical axis adjustment and the light receiving level adjustment are performed by the same method as described above (steps S15 and S16). Then, it is again determined whether the sensitivity is normal (step S1
7) If it is not normal, the optical axis cannot be adjusted and the light receiving level cannot be adjusted, "abnormal" is displayed on the display and an abnormal signal is sent to the receiver (step S9), and then the fire monitoring function is stopped. (Step S10). On the other hand, if the sensitivity is normal in both steps S14 and S17, the prohibition of the acceleration sensor interrupt process is released (step S1).
8) Return to the normal fire monitoring state (step S1)
9). In this way, in this embodiment, it is possible to automatically adjust the optical axis of the sensor or the light-receiving level that is incorrect due to a shock or the like, based on the output of the acceleration sensor.

【0032】実施の形態2.図7はこの発明の実施の形
態2を示す回路図である。図において、図5と対応する
部分には同一符号を付し、その詳細説明を省略する。感
度試験を行うのに、実施の形態1では、受光部50の演
算増幅器54のゲインを制御する場合であったが、本実
施の形態では、送光部40Aの発光強度を制御する場合
である。そこで、本実施の形態では、演算増幅器54に
抵抗器56に並列接続されていたスイッチ65と抵抗器
66を省いて受光部50Aを構成し、一方、スイッチ4
3と抵抗器44の間に抵抗器67を挿入し、これにスイ
ッチ65を並列接続して送光部40Aを構成する。な
お、スイッチ65は通常は閉成状態にしておく。その他
の構成は、図5と同様である。
Embodiment 2 FIG. FIG. 7 is a circuit diagram showing a second embodiment of the present invention. In the figure, parts corresponding to those in FIG. 5 are designated by the same reference numerals, and detailed description thereof will be omitted. In the first embodiment, in order to perform the sensitivity test, the gain of the operational amplifier 54 of the light receiving unit 50 is controlled, but in the present embodiment, the light emission intensity of the light transmitting unit 40A is controlled. . Therefore, in the present embodiment, the light receiving unit 50A is configured by omitting the switch 65 and the resistor 66 which are connected in parallel to the resistor 56 in the operational amplifier 54, while the switch 4
A resistor 67 is inserted between the resistor 3 and the resistor 44, and a switch 65 is connected in parallel to the resistor 67 to form the light transmitting section 40A. The switch 65 is normally kept closed. Other configurations are the same as those in FIG.

【0033】次に、動作について図6を参照して説明す
る。この動作における光軸調整、受光レベル調整および
通常の火災監視状態の動作については、実質的に図5の
場合と同じであるのでその説明を省略する。上述のごと
き火災監視状態において、感知器が衝撃等の要因で加速
度や振動を受けると、加速度センサ63がこれを検知
し、加速度センサ割り込み処理に入る(ステップS1
1)。そして、1サイクルの処理が終わるまで次の加速
度センサ割り込みを禁止し(ステップS12)、光軸調
整および受光レベル調整の前処理として、先ず、感度試
験を行う(ステップS13)。このとき、割込信号発生
器64より割り込み信号を火災判断回路59へ供給する
と共に送光部40A側のスイッチ65に供給してこれを
開放状態とする。火災判断回路59は割り込み信号を受
けると、割り込み信号が止まるまでの間、仮に入力信号
が低下しても火災としては認識せず、感度試験中として
信号を認識するようにして感度試験を開始する。
Next, the operation will be described with reference to FIG. The optical axis adjustment, the received light level adjustment, and the operation in the normal fire monitoring state in this operation are substantially the same as those in the case of FIG. When the sensor receives acceleration or vibration due to a shock or the like in the fire monitoring state as described above, the acceleration sensor 63 detects the acceleration or vibration, and the acceleration sensor interrupt process is started (step S1).
1). Then, the next acceleration sensor interruption is prohibited until one cycle of processing is completed (step S12), and a sensitivity test is first carried out as a preprocessing of the optical axis adjustment and the light reception level adjustment (step S13). At this time, an interrupt signal is supplied from the interrupt signal generator 64 to the fire determination circuit 59 and also to the switch 65 on the side of the light transmitting unit 40A to open it. When the fire determination circuit 59 receives the interrupt signal, it does not recognize it as a fire even if the input signal drops until the interrupt signal stops, and recognizes the signal as being in the sensitivity test and starts the sensitivity test. .

【0034】感度試験においては、スイッチ65が開放
されると、抵抗器44と発光ダイオード42の間に抵抗
器67が挿入され、その合成抵抗値が増加する。即ち、
抵抗器44および67の抵抗値をそれぞれRd1,Rd2、
合成抵抗値をRdとすると、合成抵抗値RdはRd=Rd1
+Rd2で表されるが、この合成抵抗値Rdにまで電源4
1および発光ダイオード42間の抵抗値が増加する。こ
の結果、発光ダイオード42の発光強度がその分だけ低
下し、実質的に検煙空間に煙が存在しなくても受光部5
0Aの受光量がRd1/Rdに低下することになる。
In the sensitivity test, when the switch 65 is opened, the resistor 67 is inserted between the resistor 44 and the light emitting diode 42, and the combined resistance value increases. That is,
The resistance values of the resistors 44 and 67 are Rd1, Rd2,
If the combined resistance value is Rd, the combined resistance value Rd is Rd = Rd1
It is represented by + Rd2, but the power source 4 is up to this combined resistance value Rd.
1 and the resistance value between the light emitting diode 42 increase. As a result, the light emission intensity of the light emitting diode 42 is reduced by that amount, and the light receiving portion 5 is substantially even if there is no smoke in the smoke detection space.
The amount of light received at 0 A is reduced to Rd1 / Rd.

【0035】これは、等価的に検煙空間に透過率がRd1
/Rd{減光率では(Rd-Rd1)/Rd}分の煙が存在す
ることになり、この出力を受けた後段の回路が、減光率
で(Rd−Rd1)/Rd}分の煙が実際に存在するのと同
様な動作をするか否かで感知器の動作を試験することが
出来ることになる。また、減光率をディジタル信号で受
信機に知らせる方式の場合は、正しい濃度が送られてい
るか否かを確認することで、感知器の減光率計算機能や
火災判断機能を有する火災判断回路59や情報伝達回路
61が正しい動作をしているか否かを確認することがで
きる。さらに、抵抗器67の抵抗値を適当に可変するこ
とで、何通りかの減光率での感度試験を行えるようにし
てもよい。
Equivalently, the transmittance is Rd1 in the smoke detection space.
/ Rd {at the extinction rate, there will be (Rd-Rd1) / Rd} smoke, and the circuit at the subsequent stage that receives this output will produce (Rd-Rd1) / Rd} smoke at the extinction rate. It will be possible to test the operation of the sensor by whether it behaves as if it actually exists. Also, in the case of the method of notifying the receiver of the extinction rate with a digital signal, by confirming whether or not the correct concentration is sent, the fire judgment circuit having the function of calculating the extinction ratio of the sensor and the fire judgment function. It is possible to confirm whether 59 or the information transmission circuit 61 is operating correctly. Further, by appropriately changing the resistance value of the resistor 67, it is possible to perform a sensitivity test at several dimming rates.

【0036】このようにして、ステップS13における
感度試験が終了したら、感度が正常か否かを判断し(ス
テップS14)、正常でなければ、上述の衝撃等の要因
で感知器が加速度や振動を受け、光軸や受光レベル等が
狂ったものと見做し、上述と同様の方法で光軸調整と受
光レベル調整を行う(ステップS15,16)。そし
て、再度感度が正常か否かを判断し(ステップS1
7)、正常でなければ、光軸調整不可能および受光レベ
ル調整不能として表示器に“異常”を表示すると共に受
信機へ異常信号を送り(ステップS9)、しかる後、火
災監視機能を停止する(ステップS10)。一方、ステ
ップS14およびS17で共に感度が正常であれば、加
速度センサ割り込み処理の禁止を解除し(ステップS1
8)、通常の火災監視状態に復帰する(ステップS1
9)。このようして、この実施の形態でも、加速度セン
サの出力に基づいて、衝撃等の要因で狂った感知器の光
軸調整や受光レベル調整を自動的に行うことができる。
In this way, when the sensitivity test in step S13 is completed, it is judged whether or not the sensitivity is normal (step S14), and if not normal, the sensor causes acceleration or vibration due to the above-mentioned shock or the like. It is considered that the receiving, the optical axis, the light receiving level, and the like are out of order, and the optical axis adjustment and the light receiving level adjustment are performed by the same method as described above (steps S15 and S16). Then, it is again determined whether the sensitivity is normal (step S1
7) If it is not normal, it is judged that the optical axis cannot be adjusted and the light receiving level cannot be adjusted, "abnormal" is displayed on the display and an abnormal signal is sent to the receiver (step S9), and then the fire monitoring function is stopped. (Step S10). On the other hand, if the sensitivity is normal in both steps S14 and S17, the prohibition of the acceleration sensor interrupt process is released (step S1).
8) Return to the normal fire monitoring state (step S1)
9). In this way, also in this embodiment, the optical axis adjustment and the light-receiving level adjustment of the sensor that has gone wrong due to a shock or the like can be automatically performed based on the output of the acceleration sensor.

【0037】実施の形態3.図8はこの発明の実施の形
態3を示すフローチャートである。実施の形態1および
2では、感度調整機能を有し、光軸調整および受光レベ
ル調整が自動の場合であったが、本実施の形態では、光
軸調整および受光レベル調整は手動で、感度調整機能の
みを有する場合である。従って、回路構成は、水平方向
モータ10および垂直方向モータ11が省略され、入力
調整抵抗器53が手動である以外は、実質的に図5また
は図7の場合と同様であるので、ここでは、その図示を
省略している。
Embodiment 3 FIG. 8 is a flow chart showing the third embodiment of the present invention. In the first and second embodiments, the sensitivity adjustment function is provided, and the optical axis adjustment and the light receiving level adjustment are automatic. However, in the present embodiment, the optical axis adjustment and the light receiving level adjustment are performed manually, and the sensitivity adjustment is performed. This is the case of having only the function. Therefore, the circuit configuration is substantially the same as that of FIG. 5 or FIG. 7 except that the horizontal motor 10 and the vertical motor 11 are omitted, and the input adjustment resistor 53 is manually operated. The illustration is omitted.

【0038】次に、動作について図8を参照して説明す
る。なお、図8において、図6と対応するステップには
同一符号を付して説明する。いま、電源が投入されると
(ステップS1)、加速度センサ割り込み処理の禁止を
行い(ステップS2)、動作モードが調整モードか監視
モードかを感知器に設けられた図示しないモード切換ス
イッチの状態により判断し(ステップS21)、調整モ
ードであれば、入力調整抵抗器53を手動で調整して受
光レベル調整を行い、また、光軸調整は上述のモータの
代わりに手で光学系支持台30を動かし、上述と同様に
行う(ステップS22)。この手動による光軸調整およ
び受光レベル調整が終わると、一旦電源を切り、そし
て、再度ステップS1に戻って電源の投入を行う(ステ
ップS23)。
Next, the operation will be described with reference to FIG. In FIG. 8, steps corresponding to those in FIG. 6 will be described with the same reference numerals. Now, when the power is turned on (step S1), the acceleration sensor interrupt process is prohibited (step S2), and whether the operation mode is the adjustment mode or the monitoring mode is determined by the state of a mode change switch (not shown) provided in the sensor. Judgment (step S21), if it is in the adjustment mode, the input adjustment resistor 53 is manually adjusted to adjust the light receiving level, and the optical axis adjustment is performed manually by using the optical system support base 30 instead of the above-mentioned motor. It is moved and is performed in the same manner as described above (step S22). When the manual adjustment of the optical axis and the manual adjustment of the light receiving level are completed, the power is once turned off, and then the process returns to step S1 to turn on the power (step S23).

【0039】ステップS21で監視モードであれば、上
述と同様にして感度試験を行い(ステップS24)、ス
テップS25において、感度が正常か否かを判断する。
感度が正常であれば、加速センサ割り込み処理の禁止を
解除し(ステップS7)、ステップS8において、上述
したような通常の火災監視状態に入る。一方、ステップ
S25で感度が正常でなければ、感度調整不可能として
表示器に“異常”を表示すると共に受信機へ異常信号を
送る(ステップS9)。そして、火災監視機能を停止す
る(ステップS10)。
If the monitor mode is selected in step S21, a sensitivity test is performed in the same manner as described above (step S24), and in step S25, it is determined whether or not the sensitivity is normal.
If the sensitivity is normal, the prohibition of the acceleration sensor interrupt process is released (step S7), and the normal fire monitoring state as described above is entered in step S8. On the other hand, if the sensitivity is not normal in step S25, the sensitivity cannot be adjusted, "abnormal" is displayed on the display, and an abnormal signal is sent to the receiver (step S9). Then, the fire monitoring function is stopped (step S10).

【0040】このような火災監視状態において、感知器
が衝撃等の要因で加速度や振動を受けると、加速度セン
サ63がこれを検知し、加速度センサ割り込み処理に入
る(ステップS11)。そして、1サイクルの処理が終
わるまで次の加速度センサ割り込みを禁止し(ステップ
S12)、上述と同様にして感度試験を行う(ステップ
S13)。そして、ステップS17において、感度が正
常か否かを判断し、正常でなければ、上述の衝撃等の要
因で感知器が加速度や振動を受け、光軸や受光レベル等
が狂ったものと見做し、感度調整不能として表示器に
“異常”を表示すると共に受信機へ異常信号を送り(ス
テップS9)、しかる後、火災監視機能を停止する(ス
テップS10)。
In such a fire monitoring state, when the sensor receives acceleration or vibration due to a shock or the like, the acceleration sensor 63 detects this and the acceleration sensor interrupt process is started (step S11). Then, the next acceleration sensor interrupt is prohibited until one cycle of processing is completed (step S12), and the sensitivity test is performed in the same manner as described above (step S13). Then, in step S17, it is judged whether or not the sensitivity is normal, and if not normal, it is considered that the sensor receives acceleration or vibration due to the factors such as the above-mentioned impact and the optical axis, the light receiving level and the like are deviated. Then, the sensitivity cannot be adjusted, "abnormal" is displayed on the display, and an abnormal signal is sent to the receiver (step S9). Thereafter, the fire monitoring function is stopped (step S10).

【0041】その後、ステップS1に戻って、加速度セ
ンサ割り込みを禁止した状態で、入力調整抵抗器53を
手動で調整して光軸調整および受光レベル調整を行う
(ステップS22)。一方、ステップS17で感度が正
常であれば、加速度センサ割り込み処理の禁止を解除し
(ステップS18)、通常の火災監視状態に復帰する
(ステップS19)。このようして、この実施の形態で
は、感度調整機能付きのみの感知器の場合でも、加速度
センサの出力に基づいて、衝撃等の要因で狂った感知器
の光軸調整や受光レベル調整を手動で行うことができ
る。
Then, returning to step S1, the input axis adjustment resistor 53 is manually adjusted to adjust the optical axis and the light receiving level while the acceleration sensor interruption is prohibited (step S22). On the other hand, if the sensitivity is normal in step S17, the prohibition of the acceleration sensor interrupt process is released (step S18), and the normal fire monitoring state is restored (step S19). In this way, in this embodiment, even in the case of the sensor only with the sensitivity adjustment function, the optical axis adjustment or the light reception level adjustment of the sensor which is deviated due to a shock or the like is manually performed based on the output of the acceleration sensor. Can be done at.

【0042】実施の形態4.図9はこの発明の実施の形
態4を示す回路図である。図において、図5および図7
と対応する部分には同一符号を付し、その詳細説明を省
略する。実施の形態1および2では、感度調整機能を有
し、光軸調整および受光レベル調整が自動の場合、実施
の形態3では、光軸調整および受光レベル調整は手動
で、感度調整機能のみを有する場合であったが、本実施
の形態では、光軸調整および受光レベル調整は手動で、
感度調整機能も有しない場合ある。
Embodiment 4 9 is a circuit diagram showing a fourth embodiment of the present invention. In the figures, FIG. 5 and FIG.
The same reference numerals are given to the portions corresponding to and the detailed description will be omitted. In the first and second embodiments, the sensitivity adjustment function is provided, and when the optical axis adjustment and the light reception level adjustment are automatic, in the third embodiment, the optical axis adjustment and the light reception level adjustment are manually performed, and only the sensitivity adjustment function is provided. However, in the present embodiment, the optical axis adjustment and the light receiving level adjustment are manually performed.
It may not have a sensitivity adjustment function.

【0043】従って、回路構成は、水平方向モータ1
0,垂直方向モータ11,スイッチ65,抵抗器66お
よび67が省略され、入力調整抵抗器53が手動である
以外は、実質的に図5または図7の場合と同様である
が、さらに、本実施の形態では、A/D変換回路58と
火災判断回路59の間に設けられ、調整モードと監視モ
ードを切り換えるスイッチ71と、入力側が割込信号発
生器64とスイッチ71の固定端子(火災判断回路59
側)に接続され、出力側が情報伝達回路61に接続され
て受光レベルを判断する受光レベル判断回路72と、受
光レベル判断回路72に接続され、予め適正レベルを記
憶している適正レベル記憶回路73と、スイッチ71の
可動端子(A/D変換回路58側)に接続され、受光レ
ベルを表示する受光レベル表示回路74とを備える。
Therefore, the circuit configuration is the horizontal motor 1
0, the vertical direction motor 11, the switch 65, the resistors 66 and 67 are omitted, and the input adjusting resistor 53 is manually operated, which is substantially the same as the case of FIG. 5 or FIG. In the embodiment, the switch 71 provided between the A / D conversion circuit 58 and the fire determination circuit 59 for switching between the adjustment mode and the monitoring mode, the input side is the interrupt signal generator 64, and the fixed terminal of the switch 71 (the fire determination circuit). Circuit 59
Side) and the output side is connected to the information transmission circuit 61 to determine the light receiving level and the light receiving level determining circuit 72 is connected to the light receiving level determining circuit 72 and the appropriate level storage circuit 73 stores the appropriate level in advance. And a light-reception level display circuit 74 that is connected to the movable terminal of the switch 71 (on the A / D conversion circuit 58 side) and displays the light-reception level.

【0044】次に、動作について図10を参照して説明
する。なお、図10において、図8と対応するステップ
には同一符号を付して説明する。いま、電源が投入され
ると(ステップS1)、加速度センサ割り込み処理の禁
止を行い(ステップS2)、動作モードが調整モードか
監視モードかを感知器に設けられた図示しないモード切
換スイッチの状態により判断し(ステップS21)、調
整モードであれば、スイッチ71を開放状態となし、後
段の回路に調整中の受光レベルの変動が火災情報として
受信機等へ発生されないようにした後入力調整抵抗器5
3を手動で調整して受光レベル調整を行い、また、光軸
調整は上述のモータの代わりに手で光学系支持台30を
動かし、上述と同様に行う(ステップS22)。この手
動による光軸調整および受光レベル調整が終わると、一
旦電源を切り、そして、再度ステップS1に戻って電源
の投入を行う(ステップS23)。
Next, the operation will be described with reference to FIG. In FIG. 10, steps corresponding to those in FIG. 8 will be described with the same reference numerals. Now, when the power is turned on (step S1), the acceleration sensor interrupt process is prohibited (step S2), and whether the operation mode is the adjustment mode or the monitoring mode is determined by the state of a mode change switch (not shown) provided in the sensor. If it is determined (step S21) and the adjustment mode is set, the switch 71 is opened to prevent the fluctuation of the light receiving level during adjustment in the circuit in the subsequent stage from being generated as fire information to the receiver or the like. 5
3 is manually adjusted to adjust the light receiving level, and the optical axis is adjusted by moving the optical system support 30 by hand instead of the above-mentioned motor (step S22). When the manual adjustment of the optical axis and the manual adjustment of the light receiving level are completed, the power is once turned off, and then the process returns to step S1 to turn on the power (step S23).

【0045】ステップS21で監視モードであれば、ス
イッチ71を閉成状態となし、受光レベルを測定し(ス
テップS31)、受光レベル判断回路72で測定した受
光レベルと適正レベル記憶回路73に記憶されている適
正レベルとを比較して受光レベルが適正レベルの範囲内
か否かを判断し(ステップS6)、適正レベルの範囲内
であれば、加速度センサ割り込み処理の禁止を解除し
(ステップS7)、ステップS8において、上述したよ
うな通常の火災監視状態に入る。一方、ステップS6で
受光レベルが適正レベルの範囲内でなければ、つまり、
受光レベルが最初に合わせた値よりずれていれば、感知
器の機能は正常でないとして受光レベル表示回路74に
“異常”を表示すると共に受信機へ情報伝達回路61を
介して異常信号を送る(ステップS9)。そして、火災
監視機能を停止する(ステップS10)。
If the monitor mode is set in step S21, the switch 71 is closed, the light receiving level is measured (step S31), and the light receiving level measured by the light receiving level determination circuit 72 and the appropriate level storage circuit 73 are stored. It is determined whether the received light level is within the proper level range by comparing it with the appropriate level (step S6). If it is within the proper level range, the inhibition of the acceleration sensor interrupt process is released (step S7). In step S8, the normal fire monitoring state as described above is entered. On the other hand, if the light receiving level is not within the proper level range in step S6, that is,
If the received light level deviates from the initially adjusted value, it is determined that the function of the sensor is not normal, "abnormal" is displayed on the received light level display circuit 74, and an abnormal signal is sent to the receiver via the information transmission circuit 61 ( Step S9). Then, the fire monitoring function is stopped (step S10).

【0046】このような火災監視状態において、感知器
が衝撃等の要因で加速度や振動を受けると、加速度セン
サ63がこれを検知し、加速度センサ割り込み処理に入
る(ステップS11)。そして、1サイクルの処理が終
わるまで次の加速度センサ割り込みを禁止し(ステップ
S12)、上述と同様にして受光レベルの測定を行う
(ステップS32)。そして、受光レベル判断回路72
で測定した受光レベルと適正レベル記憶回路73に記憶
されている適正レベルとを比較して受光レベルが適正レ
ベルの範囲内か否かを判断し(ステップS33)、適正
レベルの範囲内でなければ、上述の衝撃等の要因で感知
器が加速度や振動を受け、光軸や受光レベル等が狂った
ものと見做し、感知器の機能は正常でないとして受光レ
ベル表示回路74に“異常”を表示すると共に情報伝達
回路61を介して受信機へ異常信号を送り(ステップS
9)、しかる後、火災監視機能を停止する(ステップS
10)。
In such a fire monitoring state, when the sensor receives acceleration or vibration due to a shock or the like, the acceleration sensor 63 detects this and the acceleration sensor interrupt process is started (step S11). Then, the next acceleration sensor interruption is prohibited until one cycle of processing is completed (step S12), and the light receiving level is measured in the same manner as described above (step S32). Then, the light receiving level determination circuit 72
The light-reception level measured in step 3 is compared with the proper level stored in the proper-level storage circuit 73 to determine whether the light-reception level is within the proper level range (step S33). If it is not within the proper level range. However, it is considered that the sensor receives acceleration or vibration due to the above-mentioned shock or the like, and the optical axis or the light receiving level is deviated, and the function of the sensor is not normal, and “abnormal” is given to the light receiving level display circuit 74. While displaying, an abnormal signal is sent to the receiver through the information transmission circuit 61 (step S
9) Then, the fire monitoring function is stopped (step S).
10).

【0047】一方、ステップS33で受光レベルが適正
レベルの範囲内であれば、加速度センサ割り込み処理の
禁止を解除し(ステップS18)、通常の火災監視状態
に復帰する(ステップS19)。このようして、この実
施の形態では、自動光軸調整,自動受光レベル調整およ
び感度試験機能がない感知器の場合でも、加速度センサ
の出力に基づいて、受光レベルが最初に合わせた値より
著しくずれていないかを最低限確認して衝撃等の要因で
狂った感知器の光軸調整や受光レベル調整を手動で行う
ことができる。
On the other hand, if the light receiving level is within the proper level range in step S33, the prohibition of the acceleration sensor interrupt processing is released (step S18), and the normal fire monitoring state is restored (step S19). Thus, in this embodiment, even in the case of a sensor without the automatic optical axis adjustment, the automatic light receiving level adjustment and the sensitivity test function, the light receiving level is significantly higher than the initially adjusted value based on the output of the acceleration sensor. It is possible to manually check if there is any deviation and manually adjust the optical axis or the light receiving level of the sensor that has gone wrong due to shock or other factors.

【0048】[0048]

【発明の効果】以上のようにこの発明によれば、光を所
定の間隔で発光する送光部と、検煙空間を挟んで送光部
に対向して設けられ、送光部からの光を受光する受光部
とを有し、受光部の受光量が変化することで検煙空間の
煙の有無を感知する光電式感知器において、感知器また
はその近傍に該感知器に対する衝撃を検知する検知手段
を設け、検知手段の出力に基づいて通常の火災監視を中
止して自己診断を行うようにしたので、火災でないのに
非火災報を発したり、或いは失報状態になることを未然
に防止でき、感知器の信頼性が向上し、特に分離型の光
電式感知器に有用であるという効果がある。
As described above, according to the present invention, the light-transmitting portion for emitting light at a predetermined interval and the light-transmitting portion provided so as to face the light-transmitting portion with the smoke detection space interposed therebetween. In a photoelectric sensor for detecting the presence or absence of smoke in the smoke detection space by changing the amount of light received by the light receiving unit, a shock to the sensor or in the vicinity thereof is detected. Since the detection means is provided and normal fire monitoring is stopped based on the output of the detection means to perform self-diagnosis, a non-fire alarm may be issued even if it is not a fire, or a false alarm may occur. This has the effect of preventing it, improving the reliability of the sensor, and being particularly useful for a separation type photoelectric sensor.

【0049】また、光を所定の間隔で発光する送光部
と、検煙空間を挟んで送光部に対向して設けられ、送光
部からの光を受光する受光部とを有し、受光部の受光量
が変化することで検煙空間の煙の有無を感知する光電式
感知器において、感知器またはその近傍に設けられ、感
知器に対する衝撃を検知する検知手段と、検知手段の出
力に基づいて光軸調整および受光レベル調整の少なくと
も一方を行う調整手段とを備えたので、衝撃等が与えら
れたときの感知器に加わる振動等を検知して狂った光軸
調整や受光レベル調整を自動的に再調整でき、非火災報
の発生や失報が防止され、感知器の信頼性を向上できる
という効果がある。
Further, it has a light-transmitting section for emitting light at a predetermined interval, and a light-receiving section provided opposite to the light-transmitting section with a smoke detecting space interposed therebetween, for receiving light from the light-transmitting section. A photoelectric sensor that detects the presence or absence of smoke in the smoke detection space when the amount of light received by the light receiver changes, and is provided in or near the sensor, and is a detection means for detecting an impact on the sensor and the output of the detection means. Since the adjustment means for performing at least one of the optical axis adjustment and the light receiving level adjustment based on the Can be automatically readjusted, the occurrence of non-fire alarms and loss of alarms can be prevented, and the reliability of the sensor can be improved.

【0050】また、光を所定の間隔で発光する送光部
と、検煙空間を挟んで送光部に対向して設けられ、送光
部からの光を受光する受光部とを有し、受光部の受光量
が変化することで検煙空間の煙の有無を感知する光電式
感知器において、感知器またはその近傍に設けられ、感
知器に対する衝撃を検知する検知手段と、検知手段の出
力に基づいて感度試験を行う感度試験手段とを備え、感
度試験手段の出力に基づいて光軸調整および受光レベル
調整の少なくとも一方を手動で行うようにしたので、衝
撃等が与えられたときの感知器に加わる振動等を検知し
て狂った光軸調整や受光レベル調整を手動で再調整で
き、非火災報の発生や失報が防止され、感知器の信頼性
を向上できるという効果がある。
Further, it has a light-transmitting section for emitting light at a predetermined interval, and a light-receiving section provided opposite to the light-transmitting section with a smoke detection space interposed therebetween, for receiving light from the light-transmitting section. A photoelectric sensor that detects the presence or absence of smoke in the smoke detection space when the amount of light received by the light receiver changes, and is provided in or near the sensor, and is a detection means for detecting an impact on the sensor and the output of the detection means. Since a sensitivity test means for performing a sensitivity test based on the above is provided, and at least one of the optical axis adjustment and the received light level adjustment is manually performed based on the output of the sensitivity test means, it is possible to detect when a shock or the like is given. It is possible to readjust the misaligned optical axis adjustment and received light level adjustment by detecting vibration applied to the detector, prevent non-fire alarms from being generated or lost, and improve the reliability of the detector.

【0051】また、光を所定の間隔で発光する送光部
と、検煙空間を挟んで送光部に対向して設けられ、送光
部からの光を受光する受光部とを有し、受光部の受光量
が変化することで検煙空間の煙の有無を感知する光電式
感知器において、感知器またはその近傍に設けられ、感
知器に対する衝撃を検知する検知手段と、検知手段の出
力に基づいて受光レベルを測定する受光レベル測定手段
とを備え、受光レベル測定手段の出力に基づいて光軸調
整および受光レベル調整の少なくとも一方を手動で行う
ようにしたので、たとえ、調整機能がない感知器の場合
でも衝撃等が与えられたときの感知器に加わる振動等を
検知して狂った光軸調整や受光レベル調整を手動で再調
整でき、非火災報の発生や失報が防止され、感知器の信
頼性を向上できるという効果がある。
Further, it has a light-transmitting section for emitting light at a predetermined interval, and a light-receiving section provided to face the light-transmitting section with a smoke detection space interposed therebetween and for receiving light from the light-transmitting section. A photoelectric sensor that detects the presence or absence of smoke in the smoke detection space when the amount of light received by the light receiver changes, and is provided in or near the sensor, and is a detection means for detecting an impact on the sensor and the output of the detection means. Since the light receiving level measuring means for measuring the light receiving level based on the light receiving level measuring means is provided and at least one of the optical axis adjustment and the light receiving level adjustment is manually performed based on the output of the light receiving level measuring means, there is no adjustment function. Even in the case of a sensor, it is possible to manually readjust the incorrect optical axis adjustment and received light level adjustment by detecting the vibration applied to the sensor when a shock etc. is given, preventing the occurrence of non-fire alarms and loss of alarms. Can improve the reliability of the sensor There is a cormorant effect.

【0052】さらに、検知手段の出力に関連して感知器
が異常の場合に異常信号を発生する手段を有するので、
もし再調整できない場合でも少なくとも火災ではないが
感知器が異常であることを知らせることできるという効
果がある。
Further, since it has means for generating an abnormal signal when the sensor is abnormal in relation to the output of the detecting means,
Even if the readjustment is not possible, there is an effect that at least it is not a fire but it can inform that the sensor is abnormal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る光電式感知器の一実施の形態を
示す上面図である。
FIG. 1 is a top view showing an embodiment of a photoelectric sensor according to the present invention.

【図2】この発明に係る光電式感知器の一実施の形態を
一部切断して示す側面図である。
FIG. 2 is a side view showing an embodiment of the photoelectric sensor according to the present invention with a part cut away.

【図3】この発明に係る光電式感知器の一実施の形態の
要部を示す斜視図である。
FIG. 3 is a perspective view showing a main part of an embodiment of a photoelectric sensor according to the present invention.

【図4】この発明に係る光電式感知器の一実施の形態の
要部の他の例を示す平面図および断面図である。
FIG. 4 is a plan view and a cross-sectional view showing another example of the main part of an embodiment of the photoelectric sensor according to the present invention.

【図5】この発明に係る光電式感知器の一実施の形態を
示す回路図である。
FIG. 5 is a circuit diagram showing an embodiment of a photoelectric sensor according to the present invention.

【図6】この発明に係る光電式感知器の一実施の形態の
動作説明に供するためのフローチャートである。
FIG. 6 is a flowchart for explaining the operation of the embodiment of the photoelectric sensor according to the present invention.

【図7】この発明に係る光電式感知器の他の実施の形態
を示す回路図である。
FIG. 7 is a circuit diagram showing another embodiment of the photoelectric sensor according to the present invention.

【図8】この発明に係る光電式感知器の他の実施の動作
説明に供するためのフローチャートである。
FIG. 8 is a flowchart for explaining the operation of another embodiment of the photoelectric sensor according to the present invention.

【図9】この発明に係る光電式感知器の他の実施の形態
を示す回路図である。
FIG. 9 is a circuit diagram showing another embodiment of the photoelectric sensor according to the present invention.

【図10】この発明に係る光電式感知器の他の実施の形
態の動作説明に供するためのフローチャートである。
FIG. 10 is a flowchart for explaining the operation of another embodiment of the photoelectric sensor according to the present invention.

【符号の説明】[Explanation of symbols]

3 光学系支持台 4 光学系 10 水平方向モータ 11 垂直方向モータ 18,63 加速度センサ 40、40A 送光部 42 発光ダイオード 50,50A,50B 受光部 51 フォトダイオード 53 入力調整抵抗器 54 演算増幅器 57 サンプル・ホールド回路 58 A/D変換回路 59 火災判断回路 60 記憶回路 61 情報伝達回路 63 加速度センサ 64 割込信号発生器 65,71 スイッチ 72 受光レベル判断回路 73 適正レベル記憶回路 74 受光レベル表示回路 3 Optical System Support 4 Optical System 10 Horizontal Motor 11 Vertical Motor 18,63 Acceleration Sensor 40, 40A Light Transmitter 42 Light Emitting Diode 50, 50A, 50B Light Receiver 51 Photodiode 53 Input Adjustment Resistor 54 Operational Amplifier 57 Sample・ Hold circuit 58 A / D conversion circuit 59 Fire judgment circuit 60 Memory circuit 61 Information transmission circuit 63 Accelerometer 64 Interrupt signal generator 65,71 Switch 72 Light reception level judgment circuit 73 Appropriate level memory circuit 74 Light reception level display circuit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光を所定の間隔で発光する送光部と、検
煙空間を挟んで上記送光部に対向して設けられ、該送光
部からの光を受光する受光部とを有し、上記受光部の受
光量が変化することで検煙空間の煙の有無を感知する光
電式感知器において、 上記感知器またはその近傍に該感知器に対する衝撃を検
知する検知手段を設け、 該検知手段の出力に基づいて通常の火災監視を中止して
自己診断を行うようにしたことを特徴とする光電式感知
器。
1. A light-transmitting portion that emits light at a predetermined interval, and a light-receiving portion that is provided to face the light-transmitting portion with a smoke detection space interposed therebetween and that receives light from the light-transmitting portion. In the photoelectric sensor that senses the presence or absence of smoke in the smoke detection space by changing the amount of light received by the light receiving unit, detection means for detecting an impact on the sensor is provided at or near the sensor, A photoelectric sensor characterized in that normal fire monitoring is stopped based on the output of the detection means to perform self-diagnosis.
【請求項2】 光を所定の間隔で発光する送光部と、検
煙空間を挟んで上記送光部に対向して設けられ、該送光
部からの光を受光する受光部とを有し、上記受光部の受
光量が変化することで検煙空間の煙の有無を感知する光
電式感知器において、 上記感知器またはその近傍に設けられ、該感知器に対す
る衝撃を検知する検知手段と、 該検知手段の出力に基づいて光軸調整および受光レベル
調整の少なくとも一方を行う調整手段とを備えたことを
特徴とする光電式感知器。
2. A light-transmitting portion that emits light at a predetermined interval, and a light-receiving portion that is provided to face the light-transmitting portion with a smoke detection space interposed therebetween and that receives light from the light-transmitting portion. However, in a photoelectric sensor that detects the presence or absence of smoke in the smoke detection space by changing the amount of light received by the light receiving unit, a detector that is provided in the sensor or in the vicinity thereof and that detects impact on the sensor, A photoelectric sensor, which comprises at least one of an optical axis adjustment and a light receiving level adjustment based on the output of the detecting means.
【請求項3】 感度調整機能を有する請求項2に記載の
光電式感知器。
3. The photoelectric sensor according to claim 2, which has a sensitivity adjusting function.
【請求項4】 光を所定の間隔で発光する送光部と、検
煙空間を挟んで上記送光部に対向して設けられ、該送光
部からの光を受光する受光部とを有し、上記受光部の受
光量が変化することで検煙空間の煙の有無を感知する光
電式感知器において、 上記感知器またはその近傍に設けられ、該感知器に対す
る衝撃を検知する検知手段と、 該検知手段の出力に基づいて感度試験を行う感度試験手
段とを備え、該感度試験手段の出力に基づいて光軸調整
および受光レベル調整の少なくとも一方を手動で行うよ
うにしたことを特徴とする光電式感知器。
4. A light-transmitting portion that emits light at a predetermined interval, and a light-receiving portion that is provided to face the light-transmitting portion with a smoke detection space interposed therebetween and that receives light from the light-transmitting portion. However, in a photoelectric sensor that detects the presence or absence of smoke in the smoke detection space by changing the amount of light received by the light receiving unit, a detector that is provided in the sensor or in the vicinity thereof and that detects impact on the sensor, A sensitivity test means for performing a sensitivity test based on the output of the detection means, and at least one of optical axis adjustment and light reception level adjustment is manually performed based on the output of the sensitivity test means. Photoelectric sensor that does.
【請求項5】 光を所定の間隔で発光する送光部と、検
煙空間を挟んで上記送光部に対向して設けられ、該送光
部からの光を受光する受光部とを有し、上記受光部の受
光量が変化することで検煙空間の煙の有無を感知する光
電式感知器において、 上記感知器またはその近傍に設けられ、該感知器に対す
る衝撃を検知する検知手段と、 該検知手段の出力に基づいて受光レベルを測定する受光
レベル測定手段とを備え、該受光レベル測定手段の出力
に基づいて光軸調整および受光レベル調整の少なくとも
一方を手動で行うようにしたことを特徴とする光電式感
知器。
5. A light-transmitting portion that emits light at a predetermined interval, and a light-receiving portion that is provided to face the light-transmitting portion with a smoke detection space interposed therebetween and that receives light from the light-transmitting portion. However, in a photoelectric sensor that detects the presence or absence of smoke in the smoke detection space by changing the amount of light received by the light receiving unit, a detector that is provided in the sensor or in the vicinity thereof and that detects impact on the sensor, A light receiving level measuring means for measuring a light receiving level based on the output of the detecting means, and at least one of the optical axis adjustment and the light receiving level adjustment is manually performed based on the output of the light receiving level measuring means. Photoelectric sensor characterized by.
【請求項6】上記検知手段の出力に関連して上記感知器
が異常の場合に異常信号を発生する手段を有する請求項
1〜5のいずれかに記載の光電式感知器。
6. The photoelectric sensor according to claim 1, further comprising means for generating an abnormal signal when the sensor is abnormal in relation to the output of the detecting means.
JP26576895A 1995-10-13 1995-10-13 Photoelectric sensor Pending JPH09115077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26576895A JPH09115077A (en) 1995-10-13 1995-10-13 Photoelectric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26576895A JPH09115077A (en) 1995-10-13 1995-10-13 Photoelectric sensor

Publications (1)

Publication Number Publication Date
JPH09115077A true JPH09115077A (en) 1997-05-02

Family

ID=17421765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26576895A Pending JPH09115077A (en) 1995-10-13 1995-10-13 Photoelectric sensor

Country Status (1)

Country Link
JP (1) JPH09115077A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2414549B (en) * 2004-05-27 2006-10-11 Fire Beam Company Ltd A light beam alarm
GB2426323A (en) * 2005-05-16 2006-11-22 Fire Fighting Entpr Ltd Infra-red beam smoke detection system
JP2007265254A (en) * 2006-03-29 2007-10-11 Nohmi Bosai Ltd Photoelectric separable sensor
JP2009245224A (en) * 2008-03-31 2009-10-22 Nohmi Bosai Ltd Photoelectric separation type smoke sensor
JP2019096270A (en) * 2017-11-28 2019-06-20 ホーチキ株式会社 Smoke detector and optical axis alignment method for the same
JP2019220004A (en) * 2018-06-21 2019-12-26 ホーチキ株式会社 Flame detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2414549B (en) * 2004-05-27 2006-10-11 Fire Beam Company Ltd A light beam alarm
GB2426323A (en) * 2005-05-16 2006-11-22 Fire Fighting Entpr Ltd Infra-red beam smoke detection system
JP2007265254A (en) * 2006-03-29 2007-10-11 Nohmi Bosai Ltd Photoelectric separable sensor
JP2009245224A (en) * 2008-03-31 2009-10-22 Nohmi Bosai Ltd Photoelectric separation type smoke sensor
JP2019096270A (en) * 2017-11-28 2019-06-20 ホーチキ株式会社 Smoke detector and optical axis alignment method for the same
JP2019220004A (en) * 2018-06-21 2019-12-26 ホーチキ株式会社 Flame detector

Similar Documents

Publication Publication Date Title
US6195901B1 (en) Laser beam projector power and communication system
US5859706A (en) Photoelectric smoke detector and disaster monitoring system using the photoelectric smoke detector
JPH09115077A (en) Photoelectric sensor
US10718147B2 (en) Optical displacement detector with adjustable pattern direction
JP4286118B2 (en) Air conditioner equipped with human body detection sensor and human body detection method of air conditioner equipped with human body detection sensor
KR102301227B1 (en) The vibration detection device of the Enclosure
JP3184403B2 (en) Photoelectric separated smoke detector
US4552022A (en) Sound discriminator tester
JPH11224387A (en) Extinction type smoke sensor
US5623253A (en) Projected beam-type smoke detector
JP7060944B2 (en) Smoke detector and its optical axis alignment method
JPH0816951A (en) Photoelectric separation type smoke sensor
JP3425226B2 (en) Vibration sensing device
JPH0877473A (en) Photoelectric separation type smoke sensor
CN110033580A (en) Novel tension feeler and its control system
JPH05325065A (en) Photoelectric smoke sensor
KR102483664B1 (en) Infrared detection system
CN213123315U (en) Server cabinet installation detection alarm device
JP2513536B2 (en) Fan
JP3184397B2 (en) Photoelectric separated smoke detector
JP2980923B2 (en) Reception level adjusting device for spatial transmission signal in fire alarm equipment
JP4546205B2 (en) Alarm output detector
JPH06119855A (en) Vibration sensitive switch and vibration sensor
KR200216976Y1 (en) Presence Induction Sensor
JP2804127B2 (en) Transmission and reception method of optical transmission signal in fire alarm system

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050317

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A02 Decision of refusal

Effective date: 20050802

Free format text: JAPANESE INTERMEDIATE CODE: A02