JPH09112068A - Vertical direction base isolation method and base isolating device and three dimensional base isolating method and base isolating device - Google Patents

Vertical direction base isolation method and base isolating device and three dimensional base isolating method and base isolating device

Info

Publication number
JPH09112068A
JPH09112068A JP26886595A JP26886595A JPH09112068A JP H09112068 A JPH09112068 A JP H09112068A JP 26886595 A JP26886595 A JP 26886595A JP 26886595 A JP26886595 A JP 26886595A JP H09112068 A JPH09112068 A JP H09112068A
Authority
JP
Japan
Prior art keywords
seismic isolation
vertical
isolation device
damper
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26886595A
Other languages
Japanese (ja)
Other versions
JP3421732B2 (en
Inventor
Masafumi Yamamoto
雅史 山本
Yoshiteru Iwasa
義輝 岩佐
Satoru Aizawa
相沢  覚
Shigeo Minewaki
重雄 嶺脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP26886595A priority Critical patent/JP3421732B2/en
Publication of JPH09112068A publication Critical patent/JPH09112068A/en
Application granted granted Critical
Publication of JP3421732B2 publication Critical patent/JP3421732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vertical direction base isolating method, etc., to be practiced at the lowest part of a structure to protect the structure from a directly downward earthquake in the vertical direction and a three dimensional base isolating method, etc., to be practiced at a lower part outer periphery of the structure to protect the structure even from an earthquake in the horizontal direction. SOLUTION: A structure is supported by a vertical direction base isolating device A, vertical displacement of the structure caused by an earthquake is allowed by derricking motion of a support rod 4 constituting the vertical direction base isolating device A and restoring force of a restoring spring 5 interlocked with it, and earthquake energy in the vertical direction is damped by a damper 6 constituting the vertical direction base isolating device A. A horizontal direction base isolating device B is set between a lower part of the structure and an outer peripheral structural body, and eathquake energy in the horizontal direction is damped by a damper 9 in the horizontal direction constituting the horizontal direction base isolating device B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、大地震、とりわ
け上下方向の直下型地震から構造物(以下、原則として
建物、展示物、OA機器等を総称して云う。)を保護す
るべく構造物の最下部で実施される上下方向免震方法等
と、水平方向の地震からも構造物を保護するべく構造物
の下部外周で実施される3次元免震方法等に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for protecting a structure (generally generically referred to as a building, exhibit, OA equipment, etc.) from a large earthquake, especially an up-down vertical earthquake. Vertical seismic isolation method, etc. implemented at the bottom of the building, and three-dimensional seismic isolation method, etc. implemented on the lower outer periphery of the structure to protect the structure from horizontal earthquakes.

【0002】[0002]

【従来の技術】地震から構造物を保護する免震装置は数
多く開発されてきているが、そのほとんどが水平方向の
地震に対する免震装置である。例えば、積層ゴムの支承
体等を用いた免震装置が開発され広く実施されている。
上下方向の直下型地震に対応可能な3次元免震装置に関
しては、近年注目を集めてきているが、未だ開発段階で
あるのが現状である。
2. Description of the Related Art Many seismic isolation devices for protecting structures from earthquakes have been developed, but most of them are seismic isolation devices for horizontal earthquakes. For example, seismic isolation devices using laminated rubber bearings have been developed and widely implemented.
Although three-dimensional seismic isolation devices that can respond to vertical earthquakes have been attracting attention in recent years, they are still in the development stage.

【0003】[0003]

【本発明が解決しようとする課題】従来の水平方向の地
震に対する免震装置の技術を、上下方向の地震に対する
免震用として適用することはできない。その理由は、構
造物本体の自重が免震装置に常に作用するためであり、
それによって以下の諸問題が発生するからである。 免震装置のバネ等の復元力要素が常に高応力状態で
あり、クリープやリラクゼーションを起こす。
The conventional technology of the seismic isolation device for horizontal earthquakes cannot be applied to seismic isolation for vertical earthquakes. The reason is that the self-weight of the structure body always acts on the seismic isolation device,
This causes the following problems. The restoring force element such as the spring of the seismic isolation device is always in a high stress state, causing creep and relaxation.

【0004】 構造物の自重により前記の復元バネが
大きく変形してしまう。 しかも、地震の際には更に復元バネが変形するた
め、大きな許容変形量が必要となる。 これら〜の問題を解決するためには、復元バネの剛
性を大きくする必要があり、結果として、振動を長周期
化できず免震効果が得られない。単に、上記、の問
題点を解決するだけなら、トリガー機能を設けることも
考えられる。しかし、その場合は、の問題点に加え、
地震後に自動的に復帰しない、という新たな問題が生
じ、やはり不都合である。
The restoring spring is largely deformed due to the weight of the structure. Moreover, since the restoring spring is further deformed in the event of an earthquake, a large allowable deformation amount is required. In order to solve the problems (1) to (3), it is necessary to increase the rigidity of the restoring spring, and as a result, the vibration cannot be lengthened and the seismic isolation effect cannot be obtained. If the above problems are simply solved, a trigger function may be provided. However, in that case, in addition to the problem of
It is also inconvenient because it creates a new problem that it does not recover automatically after the earthquake.

【0005】したがって、本発明の目的は、上記〜
の問題点を一挙に解決することであり、特には構造物の
自重で沈むところまでは剛性を比較的高くし、上下方向
の地震が構造物に負荷され、それから更に沈むときは剛
性を比較的小さくして柔らかく変位するような非線形の
復元力特性を利用し、復元バネの剛性を高くすることな
く、構造物の自重によってあまり沈み込むことなく、自
重載荷時に復元バネにかかる力は小さくし、地震後は元
の位置に自動的に戻って確実に上下方向の地震力及び水
平方向の地震力の低減を図れる、上下方向免震方法と免
震装置及び3次元免震方法と免震装置を提供することに
ある。
Therefore, the objects of the present invention are as follows.
The problem is that the rigidity of the structure is made relatively high until it sinks due to the weight of the structure, and when the structure is subjected to an earthquake in the up and down direction, and when it further sinks, the rigidity becomes relatively high. Utilizing the non-linear restoring force characteristics that makes it smaller and displaces softly, the restoring spring does not sink much due to the weight of the structure without increasing the rigidity of the restoring spring, and the force applied to the restoring spring when loaded by its own weight is reduced, After the earthquake, the vertical seismic isolation method and seismic isolation device and the three-dimensional seismic isolation method and seismic isolation device can be automatically restored to the original position to reliably reduce the vertical seismic force and the horizontal seismic force. To provide.

【0006】[0006]

【課題を解決するための手段】上記従来技術の課題を解
決するための手段として、請求項1に記載した発明に係
る上下方向免震方法は、 a) 構造物を上下方向免震装置Aにより支持せしめ、
地震により生ずる構造物の上下変位は、前記上下方向免
震装置Aを構成する支持ロッド4の起伏動作とそれに連
動する復元バネ5の復元力により許容せしめ、 b) 上下方向の地震エネルギーは、上下方向免震装置
Aを構成するダンパー6又は6’により減衰することを
特徴とする。
As means for solving the above-mentioned problems of the prior art, the vertical seismic isolation method according to the invention described in claim 1 is: a) A structure is mounted by the vertical seismic isolation device A. Support me,
The vertical displacement of the structure caused by the earthquake is allowed by the undulating motion of the support rod 4 which constitutes the vertical seismic isolation device A and the restoring force of the restoring spring 5 which interlocks with it. B) The vertical seismic energy is It is characterized in that it is damped by the damper 6 or 6'constituting the directional seismic isolation device A.

【0007】請求項2に記載した発明に係る上下方向免
震装置は、構造物の下底面10と基礎12との間に設置
して当該構造物を支持せしめ、構造物に負荷される上下
方向の地震エネルギーを減衰する免震装置Aであって、 a) 構造物を水平方向に可動状態に支持する水平な支
承板3が構造物の下底面10に水平に設けられているこ
と、 b) 前記支承板3と基礎12との間を鉛直方向に対し
適度に傾斜せしめた複数の支持ロッド4で連結して形成
した平行リンク機構Pによって構造物が支持され、前記
平行リンク機構Pにダンパー6又は6’が取り付けられ
ていること、 c) 支持ロッド4の傾斜を復元可能な配置とした復元
バネ5の一端が前記平行リンク機構Pの端部に連結さ
れ、当該復元バネ5の他端が外周構造体に連結されてい
ること、 d) 地震により生ずる構造物の上下変位は、前記支持
ロッド4の起伏動作とそれに連動する復元バネ5の復元
力により許容され、上下方向の地震エネルギーは、前記
ダンパー6又は6’により減衰する構成であることを特
徴とする。
The vertical seismic isolation apparatus according to the second aspect of the present invention is installed between the lower bottom surface 10 of the structure and the foundation 12 to support the structure, and the vertical direction is applied to the structure. Seismic isolation device A for attenuating the seismic energy of: a) A horizontal support plate 3 for horizontally movably supporting the structure is horizontally provided on the lower bottom surface 10 of the structure, b). The structure is supported by a parallel link mechanism P formed by connecting a plurality of support rods 4 which are appropriately inclined with respect to the vertical direction between the support plate 3 and the foundation 12, and the damper 6 is attached to the parallel link mechanism P. Or 6'is attached, c) One end of the restoring spring 5 that is arranged to restore the inclination of the support rod 4 is connected to the end of the parallel link mechanism P, and the other end of the restoring spring 5 is Must be connected to the peripheral structure , D) Vertical displacement of the structure caused by the earthquake is allowed by the undulating motion of the support rod 4 and the restoring force of the restoring spring 5 interlocked with it, and the vertical seismic energy is attenuated by the damper 6 or 6 '. It is characterized by being a configuration.

【0008】請求項3に記載した発明に係る3次元免震
方法は、 a) 構造物を上下方向免震装置Aにより支持せしめ、
地震により生ずる構造物の上下変位は、前記上下方向免
震装置Aを構成する支持ロッド4の起伏動作とそれに連
動する復元バネ5の復元力により許容せしめ、 b) 上下方向の地震エネルギーは、上下方向免震装置
Aを構成するダンパー6又は6’により減衰し、 c) 前記構造物の下部と外周構造体との間に水平方向
免震装置Bを設置し、水平方向の地震エネルギーは、水
平方向免震装置Bを構成する水平方向のダンパー9によ
り減衰することを特徴とする。
The three-dimensional seismic isolation method according to the invention described in claim 3 is: a) The structure is supported by the vertical seismic isolation device A,
The vertical displacement of the structure caused by the earthquake is allowed by the undulating motion of the support rod 4 which constitutes the vertical seismic isolation device A and the restoring force of the restoring spring 5 which interlocks with it. B) The vertical seismic energy is Damping by the damper 6 or 6'constituting the direction seismic isolation device A, c) The horizontal seismic isolation device B is installed between the lower part of the structure and the outer peripheral structure, and the horizontal seismic energy is horizontal. It is characterized in that it is damped by a horizontal damper 9 that constitutes the directional seismic isolation device B.

【0009】請求項4に記載した発明に係る3次元免震
装置は、 a) 構造物に負荷される上下方向の地震力を低減する
上下方向免震装置Aと、水平方向の地震力を低減する水
平方向免震装置Bとから成る3次元免震装置であるこ
と、 b) 前記上下方向免震装置Aは、構造物を水平方向に
可動状態に支持する水平な支承板3が構造物の下底面1
0に水平に設けられ、前記支承板3と基礎12との間を
鉛直方向に対し適度に傾斜せしめた複数の支持ロッド4
で連結して形成した平行リンク機構Pによって構造物が
支持され、前記平行リンク機構Pにダンパー6又は6’
が取り付けられ、支持ロッド4の傾斜を復元可能な配置
で前記平行リンク機構Pの端部に復元バネ5の一端が連
結され、当該復元バネ5の他端が外周構造体に連結され
ており、地震により生ずる構造物の上下変位は前記支持
ロッド4の起伏動作とそれに連動する復元バネ5の復元
力により許容され、上下方向の地震エネルギーは前記ダ
ンパー6又は6’により減衰する構成であること、 c) 水平方向免震装置Bは、水平向きの第2復元バネ
8及び第2ダンパー9の各一端が構造物の下部に連結さ
れ、前記第2復元バネ8及び第2ダンパー9の各一端が
外周構造体に連結され、水平方向の地震エネルギーは前
記第2ダンパー9の減衰力により減衰される構成である
ことを特徴とする。
A three-dimensional seismic isolation device according to the invention described in claim 4 is: a) a vertical seismic isolation device A for reducing the vertical seismic force applied to a structure, and a horizontal seismic force for the seismic isolation device. And a horizontal seismic isolation device B. b) The vertical seismic isolation device A has a horizontal support plate 3 for horizontally movably supporting the structure. Bottom surface 1
A plurality of support rods 4 which are provided horizontally at 0 and in which the support plate 3 and the foundation 12 are appropriately inclined with respect to the vertical direction.
The structure is supported by a parallel link mechanism P formed by connecting with each other, and the damper 6 or 6 ′ is attached to the parallel link mechanism P.
Is attached, one end of the restoring spring 5 is connected to the end of the parallel link mechanism P in an arrangement capable of restoring the inclination of the support rod 4, and the other end of the restoring spring 5 is connected to the outer peripheral structure, The vertical displacement of the structure caused by the earthquake is allowed by the undulating motion of the support rod 4 and the restoring force of the restoring spring 5 interlocked therewith, and the vertical seismic energy is damped by the damper 6 or 6 ′. c) In the horizontal seismic isolation device B, one end of each of the horizontally oriented second restoration spring 8 and the second damper 9 is connected to the lower portion of the structure, and each one end of the second restoration spring 8 and the second damper 9 is connected. It is characterized in that it is connected to the outer peripheral structure, and the seismic energy in the horizontal direction is damped by the damping force of the second damper 9.

【0010】[0010]

【発明の実施の形態】本発明は、上下方向免震装置Aと
水平方向免震装置Bとを組合わせた3次元免震装置とし
て好適に実施され、場合によっては、上下方向免震装置
Aのみで実施される。上下方向免震装置Aは、特に、建
物1の下底面10と基礎12との間に設置されて当該建
物1を支持し、建物1に負荷される上下方向の地震力を
低減する。水平方向免震装置Bは、前記建物1の下部と
地下側壁面13との間に設置され、建物1に負荷される
水平方向の地震力を低減する。また、上下方向免震装置
A,水平方向免震装置Bは、展示物やOA機器類を地震
から保護するべく建物の床面上などに設置する態様でも
実施される。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is preferably implemented as a three-dimensional seismic isolation device which is a combination of a vertical seismic isolation device A and a horizontal seismic isolation device B. In some cases, the vertical seismic isolation device A is used. It is carried out only in. The vertical seismic isolation device A is installed especially between the lower bottom surface 10 of the building 1 and the foundation 12 to support the building 1 and reduce the vertical seismic force applied to the building 1. The horizontal seismic isolation device B is installed between the lower portion of the building 1 and the underground side wall surface 13 and reduces the horizontal seismic force applied to the building 1. Further, the vertical seismic isolation device A and the horizontal seismic isolation device B are also implemented in a mode in which they are installed on the floor of a building or the like in order to protect exhibits and OA equipment from an earthquake.

【0011】本発明によれば、建物1を上下方向免震装
置Aにより支持せしめ、地震により生ずる建物1の上下
変位は、前記上下方向免震装置Aを構成する支持ロッド
4の起伏動作とそれに連動する復元バネ5の復元力によ
り許容し、上下方向の地震エネルギーは、上下方向免震
装置Aを構成するダンパー6により減衰する(請求項
1)。前記上下方向免震装置Aは、建物1を水平方向に
可動状態に支持する水平な支承板3が建物1の下底面1
0に水平に設けられており、前記支承板3と基礎12と
の間を鉛直方向に対し適度に傾斜せしめた複数の支持ロ
ッド4で連結して平行リンク機構Pが形成され、当該平
行リンク機構Pによって建物1が支持され、前記平行リ
ンク機構Pの内部に上下方向に配置したダンパー6が取
り付けられている。なお、上下方向免震装置Aは、前記
上下方向のダンパー6の代わりに、平行リンク機構Pの
外部に水平方向のダンパー6’を取り付けた態様でも実
施される。そして、支持ロッド4の傾斜を復元可能な配
置とした復元バネ5の一端が前記平行リンク機構Pの端
部に連結され、当該復元バネ5の他端が外周構造体にピ
ン2等で連結されている(請求項2)。従って、地震に
より上下方向の地震力Fが支承板3に負荷されると、図
3に示したように、角度θに傾斜された外側の支持ロッ
ド4は、その上端を復元バネ5で支持されながら、下端
のピン2を支点として、例えば符号4’で示した角度
θ’の位置まで倒れる(伏せる)動作をする。その際、
平行リンク機構Pを形成する支承板3は、符号3’で示
した下方位置へ水平変位(平行移動)して沈む。次に、
前記の如く、より傾斜された支持ロッド4’は、伸張し
た復元バネ5’の復元力を受けて復元動作をすると共
に、沈んだ支承板3は上方へ浮き上がる動作をし、もっ
て建物1の上下変位が許容される。このとき、上下方向
の地震エネルギーは、平行リンク機構Pに取り付けられ
たダンパー6又はダンパー6’により減衰される。前記
復元バネ5による復元力は非線形であっても弾性である
ため、上下方向の地震力Fに応答して免震した後の支持
ロッド4は、最初の傾斜角度=θの位置状態に復元し安
定(平衡)する。
According to the present invention, the building 1 is supported by the vertical seismic isolation device A, and the vertical displacement of the building 1 caused by an earthquake causes the supporting rod 4 constituting the vertical seismic isolation device A to move up and down. Permitting the restoring force of the interlocking restoring spring 5, the vertical seismic energy is damped by the damper 6 that constitutes the vertical seismic isolation device A (claim 1). In the vertical seismic isolation device A, a horizontal support plate 3 for movably supporting the building 1 in a horizontal direction is provided on the lower bottom surface 1 of the building 1.
0, and the parallel link mechanism P is formed by connecting the support plate 3 and the foundation 12 with a plurality of support rods 4 that are appropriately inclined with respect to the vertical direction. The building 1 is supported by P, and a damper 6 arranged vertically is attached inside the parallel link mechanism P. Note that the vertical seismic isolation device A is also implemented in a mode in which a horizontal damper 6'is attached to the outside of the parallel link mechanism P instead of the vertical damper 6. Then, one end of a restoring spring 5 having an arrangement capable of restoring the inclination of the support rod 4 is connected to an end portion of the parallel link mechanism P, and the other end of the restoring spring 5 is connected to the outer peripheral structure by a pin 2 or the like. (Claim 2). Therefore, when the vertical seismic force F is applied to the support plate 3 due to an earthquake, the outer support rod 4 tilted at the angle θ has its upper end supported by the restoring spring 5 as shown in FIG. On the other hand, the pin 2 at the lower end is used as a fulcrum to tilt (fall down) to the position of the angle θ ′ indicated by reference numeral 4 ′, for example. that time,
The support plate 3 forming the parallel link mechanism P is horizontally displaced (translated) to the lower position indicated by reference numeral 3'and sinks. next,
As described above, the more slanted support rod 4 ′ receives the restoring force of the stretched restoring spring 5 ′ to perform the restoring operation, and the sunk support plate 3 floats upward so that the upper and lower parts of the building 1 are lifted. Displacement is allowed. At this time, the seismic energy in the vertical direction is attenuated by the damper 6 or the damper 6 ′ attached to the parallel link mechanism P. Since the restoring force of the restoring spring 5 is non-linear but elastic, the support rod 4 after being isolated in response to the vertical seismic force F is restored to the initial position of inclination angle = θ. Be stable (equilibrium).

【0012】図5は、復元バネ5の剛性を1.0t/c
mとしたときの上下方向の地震力Fと前記支承板3(建
物1)の上下変位xとの関係を、計算結果に基づいて示
したものである。同図によれば、地震力Fとして、30
tの重量を載荷した場合、支承板3は建物1の自重によ
り約1.4cm沈むことが分かる。このとき、復元バネ
5は約8cm伸びるので、復元バネ5に常時かかる力は
約8tである。自重積載状態で微少な上下振動をする場
合を想定すれば、等化な剛性が同図から約2.9t/c
m(周期は0.65秒)と求められる。一方、この装置
を用いずに、直接バネで上下方向の免震を行う場合は、
この装置と同等にするために、約2.9t/cmの復元
バネが必要であり、自重で10cm以上沈み込むことが
分かる。また、常時30tの力が復元バネに働くことと
なる。すなわち、この上下方向免震装置Aによれば、建
物1の自重の大部分を支持ロッド4で負担することによ
り、復元バネ5に常時作用する力を少なくでき、復元バ
ネ5のリラクゼーションを低減し、自重による沈み込み
量が大幅に低減される。
FIG. 5 shows that the restoring spring 5 has a rigidity of 1.0 t / c.
The relation between the vertical seismic force F and the vertical displacement x of the supporting plate 3 (building 1) when m is shown is shown based on the calculation result. According to the figure, the seismic force F is 30
It can be seen that when a weight of t is loaded, the support plate 3 sinks about 1.4 cm due to the weight of the building 1. At this time, since the restoring spring 5 extends by about 8 cm, the force constantly applied to the restoring spring 5 is about 8 t. Assuming a case where a slight vertical vibration occurs under the condition of own weight loading, the equalized rigidity is about 2.9 t / c from the figure.
m (the cycle is 0.65 seconds). On the other hand, in the case of directly using the spring for vertical seismic isolation without using this device,
It can be seen that a restoring spring of about 2.9 t / cm is required to make it equivalent to this device, and it sinks by 10 cm or more under its own weight. Further, a force of 30t always acts on the restoring spring. In other words, according to the vertical seismic isolation device A, the support rod 4 bears most of the dead weight of the building 1, so that the force constantly acting on the restoring spring 5 can be reduced, and the relaxation of the restoring spring 5 can be reduced. The amount of sinking due to its own weight is greatly reduced.

【0013】以下に、前記上下方向の地震力Fと支承板
3(建物1)の上下変位xの関係を数式により導く。そ
の前提として、図6に示した次の記号を用いる。 F…上下方向の地震力 x…支承板(3)の上下変位量 L…支持ロッド(4)の長さ S…復元バネ(5)の自然長 A…基礎(12)から復元バネ(5)外端までの高さ B…地下壁側面(13)から支持ロッド(4)下端までの距離 C…基礎(12)から支承板(3)までの高さ この条件のとき、復元バネ5の自然長Sは、下記の[数
1]より求められる。
The relationship between the vertical seismic force F and the vertical displacement x of the support plate 3 (building 1) will be derived below from mathematical expressions. As its premise, the following symbols shown in FIG. 6 are used. F ... Vertical seismic force x ... Vertical displacement of support plate (3) L ... Length of support rod (4) S ... Natural length of restoring spring (5) A ... Restoring spring (5) from foundation (12) Height to the outer edge B… Distance from the basement wall side surface (13) to the lower end of the support rod (4) C… Height from the foundation (12) to the support plate (3) Under these conditions, the restoring spring 5 naturally The length S is obtained from the following [Equation 1].

【0014】[0014]

【数1】 ここで、復元バネ5がδだけ伸びたとすれば、次式の
[数2]となる。
(Equation 1) Here, if the restoring spring 5 is extended by δ, the following expression [Formula 2] is obtained.

【0015】[0015]

【数2】 このとき、復元バネ5にかかる力は、バネ定数をKとす
ると、Kδとなる。力の釣合いを考えるために、図6B
に示した三角形の2辺のα、βの長さを求めると、次式
の[数3]の通りとなる。
(Equation 2) At this time, the force applied to the restoring spring 5 is Kδ, where K is the spring constant. To consider the balance of power, see FIG. 6B.
When the lengths of α and β of the two sides of the triangle shown in (3) are obtained, the following equation [Formula 3] is obtained.

【0016】[0016]

【数3】 力の釣合いから、下記の[数4]となる。(Equation 3) From the balance of power, the following [Equation 4] is obtained.

【0017】[0017]

【数4】 ここで、(Equation 4) here,

【0018】[0018]

【数5】 であるから、前記の[数2]式からδを求めれば、[数
4]式からFが算出される。よって、Fとxとの関係式
を示せば、下記の[数6]となる。
(Equation 5) Therefore, if δ is obtained from the equation [2], F can be calculated from the equation [4]. Therefore, if the relational expression between F and x is shown, the following [Equation 6] is obtained.

【0019】[0019]

【数6】 したがって、建物1が自重で沈むところまでは鉛直に近
い姿勢の支持ロッド4の大きな支持力により比較的剛性
が高く、上下方向の地震力Fにより、前記自重で沈む位
置から更に沈む場合は、支持ロッド4の傾きが大きくな
るにつれて剛性が柔らかくなる非線形弾性(ソフトニン
グ)の特性を発揮し、この特性を免震作用に有効に利用
することができる。
(Equation 6) Therefore, the building 1 has a relatively high rigidity up to the point where the building 1 sinks due to its own weight due to the large supporting force of the support rod 4 in a posture close to the vertical, and when the building 1 further sinks due to the vertical seismic force F, it is supported. A non-linear elasticity (softening) characteristic that the rigidity becomes softer as the inclination of the rod 4 becomes larger is exhibited, and this characteristic can be effectively used for seismic isolation.

【0020】また、前記建物1の下部と外周構造体との
間に水平方向免震装置Bを設置することにより、水平方
向の地震エネルギーは、当該免震装置Bのダンパー9に
よって減衰される(請求項3)。前記水平方向免震装置
Bは、水平に配置した第2復元バネ8及び第2ダンパー
9の各一端が建物1の下部にピン2等で連結され、前記
第2復元バネ8及び第2ダンパー9の各他端が外周構造
体に連結されているから(請求項4)、水平方向の地震
エネルギーは第2ダンパー9により減衰される。かくし
て、本発明の3次元免震装置によれば、水平方向の地震
はもとより、直下型の上下方向地震が起きた場合でも効
率よく確実に長周期化することができる。
Further, by installing the horizontal seismic isolation device B between the lower part of the building 1 and the outer peripheral structure, the horizontal seismic energy is attenuated by the damper 9 of the seismic isolation device B ( Claim 3). In the horizontal seismic isolation device B, one end of each of the second restoring spring 8 and the second damper 9 arranged horizontally is connected to the lower portion of the building 1 by a pin 2 or the like, and the second restoring spring 8 and the second damper 9 are connected. Since the other end of each is connected to the outer peripheral structure (claim 4), the seismic energy in the horizontal direction is attenuated by the second damper 9. Thus, according to the three-dimensional seismic isolation apparatus of the present invention, it is possible to efficiently and surely lengthen the period even when a vertical earthquake occurs, as well as a horizontal earthquake.

【0021】[0021]

【実施例】次に、図示した本発明の実施例を説明する。
図1は、本発明の3次元免震装置を建物1に実施する場
合を模式的に示している。この3次元免震装置は、建物
1の最下部で実施される上下方向免震装置Aと、前記建
物1の下部外周で実施される水平方向免震装置Bとで構
成されている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
FIG. 1 schematically shows a case where the three-dimensional seismic isolation device of the present invention is applied to a building 1. This three-dimensional seismic isolation system is composed of a vertical seismic isolation system A implemented at the bottom of the building 1 and a horizontal seismic isolation system B implemented at the outer periphery of the lower part of the building 1.

【0022】上下方向免震装置Aは、建物1の下底面1
0と基礎12との間に4個(但し、個数はこの限りでな
い。)設置されている。この上下方向免震装置Aは、平
行リンク機構Pをなす支承板3及び複数の支持ロッド4
と、前記平行リンク機構Pに復元力を与える復元バネ5
と、地震エネルギーを減衰するダンパー6とで構成され
ている。
The vertical seismic isolation device A includes a lower bottom surface 1 of the building 1.
Four pieces (however, the number is not limited to this) are installed between 0 and the foundation 12. This vertical seismic isolation device A includes a support plate 3 and a plurality of support rods 4 forming a parallel link mechanism P.
And a restoring spring 5 that gives a restoring force to the parallel link mechanism P.
And a damper 6 for damping the seismic energy.

【0023】支承板3は、建物1を水平方向に可動状態
に支持するものであればよく、図1に示したような滑動
板3a(建物1の約半分の幅寸)とその上に設けられた
複数のローラー3b…とから成るものや、図示を省略し
たオイレスプレート等が好適に使用される。当該支承板
3が建物1の下底面10に夫々水平な配置に設けられて
いる。
The support plate 3 may be any one as long as it supports the building 1 in a horizontally movable state, and it is provided on the sliding plate 3a (about half the width of the building 1) and the sliding plate 3a as shown in FIG. A plurality of rollers 3b ... And an oiles plate (not shown) are preferably used. The support plates 3 are provided on the lower bottom surface 10 of the building 1 in a horizontal arrangement.

【0024】支持ロッド4は、長さが50cmの鉄骨部
材で構成され、鉛直方向に対して約20゜の傾斜角度θ
に傾斜され(図3参照)、支承板3と基礎12に夫々ピ
ン2(又はボールジョイント等)で可動状態に連結され
ている。よって、図示例では左右の2本の支持ロッド
4,4と、上下の支承板3と基礎12とがピン連結され
た平行リンク機構Pが形成され、当該平行リンク機構P
によって建物1が支持されている。
The support rod 4 is made of a steel frame member having a length of 50 cm and has an inclination angle θ of about 20 ° with respect to the vertical direction.
(See FIG. 3), and is movably connected to the support plate 3 and the foundation 12 by pins 2 (or ball joints). Therefore, in the illustrated example, a parallel link mechanism P is formed in which the two left and right support rods 4, 4 and the upper and lower support plates 3 and the base 12 are pin-connected, and the parallel link mechanism P is formed.
Building 1 is supported by.

【0025】ダンパー6は、前記平行リンク機構Pの内
部の略中央位置で、上部の支承板3と下部の基礎12と
に鉛直方向にピン2で連結されて取り付けられている。
なお、前記ダンパー6は、図4に示したダンパー6’の
ように、平行リンク機構Pをなす支承板3の外端(又は
図示を省略した外側の支持ロッド4の上端)と地下側壁
面13とに、略水平方向にピン2で連結することも実施
される。
The damper 6 is attached to the upper support plate 3 and the lower base 12 by a pin 2 in the vertical direction at a substantially central position inside the parallel link mechanism P.
It should be noted that, like the damper 6 ′ shown in FIG. 4, the damper 6 has an outer end (or an upper end of the outer support rod 4 (not shown)) of the support plate 3 forming the parallel link mechanism P and the underground wall surface 13. It is also possible to connect with the pin 2 in a substantially horizontal direction.

【0026】復元バネ5は、自然長が70cmでバネ力
が1t/cmに形成され、前記平行リンク機構Pの支持
ロッド4の傾斜を復元可能なように、外側の支持ロッド
4の上端にその内端がピン2で可動状態に連結され、当
該復元バネ5の外端が建物1外周の地下側壁面13にピ
ン連結されている。水平方向免震装置Bは、建物1に負
荷される水平方向の地震力を低減するべく、第2復元バ
ネ8と第2ダンパー9とで構成されている。この水平方
向免震装置Bは、前記建物1の下部側壁部11と地下側
壁面13との間に設置され、平面的にみた図2のよう
に、建物1の外周の各コーナー部にそれぞれ2箇所ず
つ、合計8箇所設置されている。
The restoring spring 5 has a natural length of 70 cm and a spring force of 1 t / cm. The restoring spring 5 is provided at the upper end of the outer supporting rod 4 so that the inclination of the supporting rod 4 of the parallel link mechanism P can be restored. The inner end is movably connected by a pin 2, and the outer end of the restoring spring 5 is pin-connected to the underground side wall surface 13 on the outer periphery of the building 1. The horizontal seismic isolation device B includes a second restoring spring 8 and a second damper 9 in order to reduce the horizontal seismic force applied to the building 1. The horizontal seismic isolation device B is installed between the lower side wall portion 11 and the underground side wall surface 13 of the building 1 and has two corners on the outer periphery of the building 1 as shown in FIG. There are 8 locations in total.

【0027】前記第2復元バネ8は水平に配置され、そ
の内端が建物1の下部側壁部11にピン2で可動状態に
連結され、その外端が建物1外周の地下側壁面13にピ
ン2で可動状態に連結されている。第2ダンパー9も前
記第2復元バネ8と同様に、水平に配置され、各内端が
建物1の下部側壁部11にピン連結され、その外端が建
物1外周の地下側壁面13にピン連結されている。
The second restoring spring 8 is arranged horizontally, the inner end of which is movably connected to the lower side wall portion 11 of the building 1 by a pin 2, and the outer end of which is pinned to the underground side wall surface 13 on the outer periphery of the building 1. It is movably connected at 2. Similarly to the second restoring spring 8, the second damper 9 is also arranged horizontally, each inner end is pin-connected to the lower side wall portion 11 of the building 1, and the outer end thereof is pinned to the underground side wall surface 13 on the outer periphery of the building 1. It is connected.

【0028】[0028]

【本発明が奏する効果】本発明に係る3次元免震方法等
によれば、建物の自重で沈むところまでは剛性を比較的
高くし、地震が建物に負荷され、それから更に沈むとき
は剛性を比較的小さくして柔らかく変形するような非線
形の復元力特性を利用するから、水平方向のほか上下方
向の地震エネルギーを確実に減衰して免震効果を発揮す
る。建物の自重載荷時に復元バネにかかる力は小さく、
復元バネのリラクゼーションが低減され、建物の自重に
よる支承板の沈み込み量が少ないから、従来設計が困難
であった長周期の免震装置が設計される。
According to the three-dimensional seismic isolation method and the like according to the present invention, the rigidity is made relatively high up to the point where the building is sunk by its own weight, and the rigidity is increased when an earthquake is applied to the building and then it is further sunk. Since the nonlinear restoring force characteristic that is relatively small and deforms softly is used, seismic isolation effect is exerted by reliably damping the seismic energy in the horizontal direction as well as in the vertical direction. The force applied to the restoring spring when the building is loaded with its own weight is small
Since the relaxation of the restoring spring is reduced and the amount of subsidence of the supporting plate due to the weight of the building is small, a long period seismic isolation device, which was difficult to design in the past, is designed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】建物への3次元免震装置の設置状態を示した正
面図である。
FIG. 1 is a front view showing a state where a three-dimensional seismic isolation device is installed in a building.

【図2】建物への水平方向免震装置の設置状態を示した
平面図である。
FIG. 2 is a plan view showing a state in which a horizontal seismic isolation device is installed in a building.

【図3】上下方向免震装置の作動状況を示した説明図で
ある。
FIG. 3 is an explanatory diagram showing an operating state of the vertical seismic isolation device.

【図4】上下方向免震装置の異なる構成を示した説明図
である。
FIG. 4 is an explanatory view showing a different configuration of the vertical seismic isolation device.

【図5】上下変位−荷重曲線のグラフである。FIG. 5 is a graph of vertical displacement-load curve.

【図6】A,Bは上下方向地震力と支承板の上下変位の
関係を導くための説明図である。
6A and 6B are explanatory views for leading the relationship between the vertical seismic force and the vertical displacement of the support plate.

【符号の説明】[Explanation of symbols]

A 上下方向免震装置 B 水平方向免震装置 P 平行リンク機構 2 ピン 3 支承板 4 支持ロッド 5 復元バネ 6 ダンパー 8 第2復元バネ 9 第2ダンパー 12 基礎 A Vertical seismic isolation device B Horizontal seismic isolation device P Parallel link mechanism 2 Pins 3 Base plate 4 Support rod 5 Restoring spring 6 Damper 8 Second restoring spring 9 Second damper 12 Foundation

───────────────────────────────────────────────────── フロントページの続き (72)発明者 嶺脇 重雄 千葉県印旛郡印西町大塚一丁目5番 株式 会社竹中工務店技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeo Reiwaki 1-5 Otsuka, Inzai-cho, Inba-gun, Chiba Prefecture Takenaka Corporation Technical Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】a) 構造物を上下方向免震装置により支
持せしめ、地震により生ずる構造物の上下変位は、前記
上下方向免震装置を構成する支持ロッドの起伏動作とそ
れに連動する復元バネの復元力により許容せしめ、 b) 上下方向の地震エネルギーは、上下方向免震装置
を構成するダンパーにより減衰することを特徴とする、
上下方向免震方法。
1. A) A structure is supported by a vertical seismic isolation device, and the vertical displacement of the structure caused by an earthquake is caused by an undulating motion of a support rod that constitutes the vertical seismic isolation device and a restoring spring interlocked with it. B) The vertical seismic energy is attenuated by the damper that constitutes the vertical seismic isolation device.
Vertical seismic isolation method.
【請求項2】構造物の下底面と基礎との間に設置して当
該構造物を支持せしめ、構造物に負荷される上下方向の
地震力を低減する免震装置であって、 a) 構造物を水平方向に可動状態に支持する水平な支
承板が構造物の下底面に水平に設けられていること、 b) 前記支承板と基礎との間を鉛直方向に対し適度に
傾斜せしめた複数の支持ロッドで連結して形成した平行
リンク機構によって構造物が支持され、前記平行リンク
機構にダンパーが取り付けられていること、 c) 支持ロッドの傾斜を復元可能な配置とした復元バ
ネの一端が前記平行リンク機構の端部に連結され、当該
復元バネの他端が外周構造体に連結されていること、 d) 地震により生ずる構造物の上下変位は、前記支持
ロッドの起伏動作とそれに連動する復元バネの復元力に
より許容され、上下方向の地震エネルギーは、前記ダン
パーにより減衰する構成であることを特徴とする、上下
方向免震装置。
2. A seismic isolation device which is installed between a lower bottom surface of a structure and a foundation to support the structure, and which reduces the vertical seismic force applied to the structure, comprising: a) a structure A horizontal support plate for horizontally movably supporting the object is horizontally provided on the lower bottom surface of the structure, and b) a plurality of support plates and the foundation are appropriately inclined with respect to the vertical direction. The structure is supported by the parallel link mechanism formed by connecting with the support rod of, and the damper is attached to the parallel link mechanism, and c) One end of the restoring spring is arranged so that the inclination of the supporting rod can be restored. The structure is connected to the end of the parallel link mechanism, and the other end of the restoring spring is connected to the outer peripheral structure, d) The vertical displacement of the structure caused by the earthquake is linked to the undulating motion of the support rod and it. Restoring force of restoring spring More allowed, seismic energy in the vertical direction, characterized in that it is configured to attenuate by the damper, vertical seismic isolation device.
【請求項3】a) 構造物を上下方向免震装置により支
持せしめ、地震により生ずる構造物の上下変位は、前記
上下方向免震装置を構成する支持ロッドの起伏動作とそ
れに連動する復元バネの復元力により許容せしめ、 b) 上下方向の地震エネルギーは、上下方向免震装置
を構成するダンパーにより減衰し、 c) 前記構造物の下部と外周構造体との間に水平方向
免震装置を設置し、水平方向の地震エネルギーは、水平
方向免震装置を構成する水平方向のダンパーにより減衰
することを特徴とする、3次元免震方法。
3. A) The structure is supported by a vertical seismic isolation device, and the vertical displacement of the structure caused by an earthquake is caused by the undulating motion of a support rod which constitutes the vertical seismic isolation device and the restoring spring interlocking with the motion. Allowed by the restoring force, b) Vertical seismic energy is attenuated by the damper that constitutes the vertical seismic isolation device, and c) Horizontal seismic isolation device is installed between the lower part of the structure and the outer peripheral structure. The three-dimensional seismic isolation method is characterized in that the horizontal seismic energy is attenuated by the horizontal damper that constitutes the horizontal seismic isolation device.
【請求項4】a) 構造物に負荷される上下方向の地震
力を低減する上下方向免震装置と、水平方向の地震力を
低減する水平方向免震装置とから成る3次元免震装置で
あること、 b) 前記上下方向免震装置は、構造物を水平方向に可
動状態に支持する水平な支承板が構造物の下底面に水平
に設けられ、前記支承板と基礎との間を鉛直方向に対し
適度に傾斜せしめた複数の支持ロッドで連結して形成し
たリンク機構によって構造物が支持され、前記平行リン
ク機構にダンパーが取り付けられ、支持ロッドの傾斜を
復元可能な配置で前記平行リンク機構の端部に復元バネ
の一端が連結され、当該復元バネの他端が外周構造体に
連結されており、地震により生ずる構造物の上下変位は
前記支持ロッドの起伏動作とそれに連動する復元バネの
復元力により許容され、上下方向の地震エネルギーは前
記ダンパーにより減衰する構成であること、 c) 前記水平方向免震装置は、水平向きの第2復元バ
ネ及び第2ダンパーの各一端が構造物の下部に連結さ
れ、前記第2復元バネ及び第2ダンパーの各他端が外周
構造体に連結され、水平方向の地震エネルギーは前記第
2ダンパーの減衰力により減衰する構成であることを特
徴とする、3次元免震装置。
4. A three-dimensional seismic isolation device comprising a vertical seismic isolation device that reduces the vertical seismic force applied to a structure and a horizontal seismic isolation device that reduces the horizontal seismic force. B) In the vertical seismic isolation device, a horizontal support plate for horizontally movably supporting the structure is horizontally provided on the lower bottom surface of the structure, and a vertical space is provided between the support plate and the foundation. The structure is supported by a link mechanism formed by connecting a plurality of support rods that are appropriately inclined with respect to the direction, a damper is attached to the parallel link mechanism, and the parallel link is arranged so that the inclination of the support rod can be restored. One end of the restoring spring is connected to the end of the mechanism, and the other end of the restoring spring is connected to the outer peripheral structure. To the resilience of The vertical seismic energy is allowed to be absorbed by the damper, and c) the horizontal seismic isolation device has a horizontally oriented second restoring spring and one end of the second damper at the bottom of the structure. The other ends of the second restoring spring and the second damper are connected to the outer peripheral structure, and the seismic energy in the horizontal direction is attenuated by the damping force of the second damper. Dimensional seismic isolation device.
JP26886595A 1995-10-17 1995-10-17 Vertical seismic isolation device and three-dimensional seismic isolation device Expired - Fee Related JP3421732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26886595A JP3421732B2 (en) 1995-10-17 1995-10-17 Vertical seismic isolation device and three-dimensional seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26886595A JP3421732B2 (en) 1995-10-17 1995-10-17 Vertical seismic isolation device and three-dimensional seismic isolation device

Publications (2)

Publication Number Publication Date
JPH09112068A true JPH09112068A (en) 1997-04-28
JP3421732B2 JP3421732B2 (en) 2003-06-30

Family

ID=17464343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26886595A Expired - Fee Related JP3421732B2 (en) 1995-10-17 1995-10-17 Vertical seismic isolation device and three-dimensional seismic isolation device

Country Status (1)

Country Link
JP (1) JP3421732B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1099876A1 (en) * 1999-11-04 2001-05-16 Gercom Automation GmbH & Co. KG Damping support for an object
JP2008050921A (en) * 2006-08-22 2008-03-06 Kazuhiro Toida Vibration damping, seismic isolation and excitation structure, and vibration damping control system
JP2011038617A (en) * 2009-08-17 2011-02-24 Shimizu Corp Pantograph type base isolation system
CN106948642A (en) * 2017-04-05 2017-07-14 中国人民解放军61489部队 Large-scale frame structure from wall type isolation structure and method in tunnel
CN106948641A (en) * 2017-04-05 2017-07-14 中国人民解放军61489部队 The steel frame shock insulation shielding integrative protection system and method that a kind of band limit resets
CN107269752A (en) * 2017-07-28 2017-10-20 中国地震局工程力学研究所 Three-dimensional isolation pedestal with multiple defence line
JP2018509356A (en) * 2014-12-23 2018-04-05 モドゥラ ソチエタ ペル アツィオニ コン ソチョ ウニコ Seismic support for warehouses and load bearing structures with such support
KR101879153B1 (en) * 2018-01-25 2018-07-16 정정심 Earthquake proof generator
CN108869623A (en) * 2018-08-13 2018-11-23 上海电力学院 A kind of combined type shock isolating pedestal for high voltage electric equipment shock insulation
CN109295996A (en) * 2018-11-05 2019-02-01 中国电力工程顾问集团西北电力设计院有限公司 A kind of combined type steam turbine generator spring foundation
CN110486416A (en) * 2019-09-10 2019-11-22 苏州莱锦机电自动化有限公司 A kind of efficient damping device of mechanical equipment
CN114811434A (en) * 2022-05-10 2022-07-29 北京金海鑫压力容器制造有限公司 LNG gasification pressure regulating sled
KR102561056B1 (en) * 2022-05-13 2023-07-27 (주) 희림종합건축사사무소 Architecture of Seperation Construction

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1099876A1 (en) * 1999-11-04 2001-05-16 Gercom Automation GmbH & Co. KG Damping support for an object
JP2008050921A (en) * 2006-08-22 2008-03-06 Kazuhiro Toida Vibration damping, seismic isolation and excitation structure, and vibration damping control system
JP2011038617A (en) * 2009-08-17 2011-02-24 Shimizu Corp Pantograph type base isolation system
JP2018509356A (en) * 2014-12-23 2018-04-05 モドゥラ ソチエタ ペル アツィオニ コン ソチョ ウニコ Seismic support for warehouses and load bearing structures with such support
CN106948642A (en) * 2017-04-05 2017-07-14 中国人民解放军61489部队 Large-scale frame structure from wall type isolation structure and method in tunnel
CN106948641A (en) * 2017-04-05 2017-07-14 中国人民解放军61489部队 The steel frame shock insulation shielding integrative protection system and method that a kind of band limit resets
CN107269752A (en) * 2017-07-28 2017-10-20 中国地震局工程力学研究所 Three-dimensional isolation pedestal with multiple defence line
KR101879153B1 (en) * 2018-01-25 2018-07-16 정정심 Earthquake proof generator
CN108869623A (en) * 2018-08-13 2018-11-23 上海电力学院 A kind of combined type shock isolating pedestal for high voltage electric equipment shock insulation
CN109295996A (en) * 2018-11-05 2019-02-01 中国电力工程顾问集团西北电力设计院有限公司 A kind of combined type steam turbine generator spring foundation
CN110486416A (en) * 2019-09-10 2019-11-22 苏州莱锦机电自动化有限公司 A kind of efficient damping device of mechanical equipment
CN114811434A (en) * 2022-05-10 2022-07-29 北京金海鑫压力容器制造有限公司 LNG gasification pressure regulating sled
CN114811434B (en) * 2022-05-10 2024-03-12 北京金海鑫压力容器制造有限公司 LNG gasification pressure regulating sled
KR102561056B1 (en) * 2022-05-13 2023-07-27 (주) 희림종합건축사사무소 Architecture of Seperation Construction

Also Published As

Publication number Publication date
JP3421732B2 (en) 2003-06-30

Similar Documents

Publication Publication Date Title
US8511004B2 (en) Seismically stable flooring
JP3421732B2 (en) Vertical seismic isolation device and three-dimensional seismic isolation device
US20140338271A1 (en) Frictional non rocking seismic base isolator for structure seismic protection (fnsi)
US6397528B1 (en) Coupled truss systems with damping for seismic protection of buildings
Ismail et al. An innovative isolation bearing for motion-sensitive equipment
JP3803828B2 (en) Passive type two-stage vibration control device
JP6544185B2 (en) Gas holder, piston support structure and seismic bracket
JP2009214950A (en) Base isolated supporting structure of crane
US6256943B1 (en) Antiseismic device for buildings and works of art
CA2930193C (en) Polygonal seismic isolation systems
JPH08158697A (en) Base isolation method and base isolation device applied to same method
JP3803949B2 (en) Seismic isolation method and seismic isolation structure for buildings with large aspect ratio
Wada et al. Passive controlled slender structures having special devises at column connections
JP2017043988A (en) Vibration control building
JP5721333B2 (en) Sliding foundation structure
JPH01263333A (en) Variable bending rigidity device for structure
JP6889506B1 (en) Vibration control suspension building
Yaghoubian Isolating building contents from earthquake induced floor motions
JP2000054506A (en) Uplift prevention device for base isolated building and base isolated construction for light-weight building provided therewith
Kerileng et al. Base Isolation Systems in Multi-Storey Structures
JP2541871B2 (en) Seismic isolation floor structure
JP2760822B2 (en) Base-isolated floor structure
Abdel-Kareem Moustafa An innovative isolation device for aseismic design
Fuller et al. Rubber-based energy dissipators for earthquake protection of structures
JPH0344920Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080425

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090425

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110425

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120425

LAPS Cancellation because of no payment of annual fees