JPH09110421A - Lithium aluminate and its production - Google Patents

Lithium aluminate and its production

Info

Publication number
JPH09110421A
JPH09110421A JP7296062A JP29606295A JPH09110421A JP H09110421 A JPH09110421 A JP H09110421A JP 7296062 A JP7296062 A JP 7296062A JP 29606295 A JP29606295 A JP 29606295A JP H09110421 A JPH09110421 A JP H09110421A
Authority
JP
Japan
Prior art keywords
lithium aluminate
lithium
surface area
specific surface
bet specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7296062A
Other languages
Japanese (ja)
Other versions
JP3786456B2 (en
Inventor
Kazuyo Takahashi
一世 高橋
Nobuyuki Yamazaki
信幸 山崎
Takenori Watabe
武憲 渡部
Katsumi Suzuki
勝美 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Nippon Chemical Industrial Co Ltd
Original Assignee
IHI Corp
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Nippon Chemical Industrial Co Ltd filed Critical IHI Corp
Priority to JP29606295A priority Critical patent/JP3786456B2/en
Publication of JPH09110421A publication Critical patent/JPH09110421A/en
Application granted granted Critical
Publication of JP3786456B2 publication Critical patent/JP3786456B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To industrially produce lithium aluminate based on γ-aluminate, suitable for use as stock especially for the electrolyte holding plate of a molten carbonate cell (MCFC) and having superior thermal and chemical stabilities in the molten carbonate. SOLUTION: This lithium aluminate has 1-15m<2> /g BET specific surface area and >=80% degree (P) of synthesis calculated by the equation P=I2 /I1 ×100 (where I1 and I2 are diffraction intensities in the X-ray diffraction spectrum analysis of lithium aluminate, I1 is the height of the highest peak and I2 is the height of the 2nd peak) as principal properties. It is produced by dry-mixing clustery particles of α-alumina obtd. by firing a fine aluminum compd. with a lithium compd. in a weight ratio close to the stoichiometric ratio and firing the resultant mixture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、特に溶融炭酸塩型
電池(MCFC)の電解質保持板用として有用なアルミ
ン酸リチウムとその工業的な製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to lithium aluminate particularly useful as an electrolyte holding plate for a molten carbonate type battery (MCFC) and an industrial production method thereof.

【0002】[0002]

【従来の技術】MCFCの電解質保持板は、650℃付
近の高温域においてLi2 CO3 およびK3 CO3 など
の混合溶融炭酸塩を保持する目的で使用されるため、溶
融炭酸塩に対する高い保持性や、耐アルカリ性、耐熱性
などの特性が要求される。このような要求特性を満たす
材料として、現在、電解質保持板の構成材料にはアルミ
ン酸リチウムが賞用されており、とくに電解質保持力の
優れる比較的比表面積の大きい微細なγ型アルミン酸リ
チウムが好適に用いられている。
2. Description of the Related Art An MCFC electrolyte holding plate is used for the purpose of holding a mixed molten carbonate such as Li 2 CO 3 and K 3 CO 3 in a high temperature region near 650 ° C. Properties, such as alkali resistance and heat resistance are required. As a material satisfying such required characteristics, lithium aluminate is currently favored as a constituent material of the electrolyte holding plate, and in particular, fine γ-type lithium aluminate having a relatively large specific surface area and excellent electrolyte holding power is used. It is preferably used.

【0003】このような高比表面積を備えるアルミン酸
リチウムの製造技術については、例えば特開昭60−6
5719号公報、特開昭60−151975号公報、特
開昭61−295227号公報、特開昭61−2952
28号公報、特開昭63−270311号公報、特開平
1−252522号公報、特開平2−80319号公報
など多くの提案がなされている。これら公知の方法は、
アルミナと水酸化リチウムまたは炭酸リチウムの混合物
を600〜1000℃の温度範囲で焼成して組織の緻密
化を抑制したり、二次的な多孔質化や水和処理などを施
して比表面積を高める点に製造の要点がある。
A technique for producing lithium aluminate having such a high specific surface area is described in, for example, JP-A-60-6.
5719, JP-A-60-151975, JP-A-61-295227, and JP-A-61-2952.
No. 28, JP-A-63-270311, JP-A-1-252522, and JP-A-2-80319 have been proposed. These known methods are
A mixture of alumina and lithium hydroxide or lithium carbonate is fired in the temperature range of 600 to 1000 ° C. to suppress the densification of the structure, or secondary porosification or hydration treatment is performed to increase the specific surface area. The point is the manufacturing point.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
従来技術で製造されるγ型アルミン酸リチウムは、溶融
状態にある電解質中で長時間に亘り高温下に曝される
と、γ型構造が一部α型に変態したり、粒子が成長して
比表面積が小さくなる等の現象が生じる。したがって、
MCFCの電解質保持板として形成した場合、使用中に
電解質の保持能力が急激に低下して電池寿命を悪化させ
る欠点がある。
However, when the γ-type lithium aluminate produced by the above-mentioned prior art is exposed to high temperature in the molten electrolyte for a long time, the γ-type structure becomes There are phenomena such as partial α-type transformation and particles growing to reduce the specific surface area. Therefore,
When it is formed as an electrolyte holding plate for MCFC, there is a drawback that the electrolyte holding capacity is drastically lowered during use and the battery life is deteriorated.

【0005】このようなことから、従来のγ型多孔質ア
ルミン酸リチウムの製造技術では、MCFCの長寿命化
を向上させる目的で益々要求が厳しくなる溶融炭酸塩に
対する高度の保持性、耐アルカリ性、耐熱性の付与に十
分に対応することができず、また工業的な生産手段とし
ても改善すべき課題が残されている。
From the above, in the conventional production technology of γ-type porous lithium aluminate, there is a high demand for molten carbonate, which is increasingly demanded for the purpose of improving the longevity of MCFC, alkali resistance, It is not possible to sufficiently deal with imparting heat resistance, and there remains a problem to be improved as an industrial production means.

【0006】本発明者らは、上記の問題点の解消を図る
ために鋭意研究を重ねた結果、アルミン酸リチウムを製
造する際に、アルミナ源として微細なアルミニウム化合
物を焼成して得られるα−アルミナのクラスター粒子を
用いると、得られるアルミン酸リチウムは溶融炭酸塩中
で長時間高温に曝されても粒子構造が変化せず、優れた
耐アルカリ性、耐熱性ならびに高水準の保持能を発揮す
る事実を確認した。そして、とくに特定のBET比表面
積を有し、かつアルミン酸リチウムのX線回折(X-RD)ス
ペクトル分析における回折強度比が特定の範囲にある場
合にMCFCの電解質保持板用素材として優れた性能を
発揮することを見出した。
The present inventors have conducted extensive studies to solve the above problems, and as a result, when producing lithium aluminate, α-obtained by firing a fine aluminum compound as an alumina source. When alumina cluster particles are used, the resulting lithium aluminate does not change its particle structure even when exposed to high temperatures in molten carbonate for a long time, and exhibits excellent alkali resistance, heat resistance and high level retention capacity. I confirmed the facts. And, especially when it has a specific BET specific surface area and the diffraction intensity ratio in the X-ray diffraction (X-RD) spectrum analysis of lithium aluminate is in a specific range, it has excellent performance as a material for the electrolyte holding plate of MCFC. It has been found to exert.

【0007】本発明は前記の知見に基づいて完成された
もので、その目的とする解決課題は、とくにMCFCの
電解質保持板に適用して溶融炭酸塩中における優れた熱
安定性ならびに化学的安定性が保証されるアルミン酸リ
チウムと、その工業的な製造方法を提供することにあ
る。
The present invention has been completed on the basis of the above findings, and its object to be solved is to obtain excellent thermal stability and chemical stability in molten carbonate by applying it to an electrolyte holding plate of MCFC. The object is to provide lithium aluminate whose properties are guaranteed and an industrial production method thereof.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
めの本発明によるアルミン酸リチウムは、BET比表面
積(N2SA)が1〜15m2/gの範囲にあるアルミン酸リチウ
ム粒子であって、下記(1)式で算出される合成化度
(P)が80%以上であることを構成上の特徴とする。 但し、 (1)式において、I1 およびI2 はアルミン酸リ
チウムのX線回析(X-RD) スペクトル分析における回析
強度で、I1 は最強強度ピークの高さ、I2 は第2強度
ピーク高さを表す。
The lithium aluminate according to the present invention for solving the above-mentioned problems is a lithium aluminate particle having a BET specific surface area (N 2 SA) in the range of 1 to 15 m 2 / g. The compositional feature is that the degree of synthesis (P) calculated by the following equation (1) is 80% or more. However, in the formula (1), I 1 and I 2 are diffraction intensities in the X-ray diffraction (X-RD) spectrum analysis of lithium aluminate, I 1 is the height of the strongest intensity peak, and I 2 is the second It represents the intensity peak height.

【0009】また、本発明に係るアルミン酸リチウムの
製造方法は、微細なアルミニウム化合物を焼成して得ら
れるα−アルミナのクラスター粒子とリチウム化合物と
を化学量論比近傍の量比で乾式混合し、該混合物を焼成
処理することを構成上の特徴とする。
Further, in the method for producing lithium aluminate according to the present invention, α-alumina cluster particles obtained by firing a fine aluminum compound and a lithium compound are dry-mixed in a stoichiometric ratio close to the stoichiometric ratio. The structural feature is that the mixture is baked.

【0010】[0010]

【発明の実施の形態】本発明に係るアルミン酸リチウム
は、BET比表面積が1〜15m2/gの範囲にあることが
基本的要件となる。BET比表面積が1m2/g未満である
と、これを電解質保持板用の素材として場合に溶融炭酸
塩の保持能力が不十分となって所期の機能が発揮され
ず、他方、15m2/gを越えると電解質中での変質が大き
くなって耐久性(安定性)を損ねる傾向を与える。特に
好ましいBET比表面積の範囲は3〜12m2/gである。
BEST MODE FOR CARRYING OUT THE INVENTION The lithium aluminate according to the present invention basically has a BET specific surface area of 1 to 15 m 2 / g. When the BET specific surface area is less than 1 m 2 / g, which intended function can not be exerted retention capacity of molten carbonate becomes insufficient when the material for the electrolyte retaining plate, the other, 15 m 2 / If it exceeds g, the deterioration in the electrolyte becomes large and the durability (stability) tends to be impaired. A particularly preferred range of BET specific surface area is 3 to 12 m 2 / g.

【0011】上記の基本特性に加え、アルミン酸リチウ
ムをX線回析(X-RD) スペクトル分析した際に現出する
最強強度ピーク (I1)と第2強度ピーク (I2)の回析強
度比率 (I2 /I1 ×100)で表される上記 (1)式の
合成化度(P)が、80%以上であることが本発明の重
要な要件となる。この合成化度(P)が80%を下回る
と、溶融炭酸塩下でアルミン酸リチウムの粒子成長が進
むため、電解質保持板として使用した際に経時変化を起
こして電解液が粒子間から流失する現象を生じ、電池性
能を著しく損ねる結果を招く。
In addition to the above basic characteristics, the diffraction of the strongest intensity peak (I 1 ) and the second intensity peak (I 2 ) that appears when X-ray diffraction (X-RD) spectrum analysis of lithium aluminate is performed. It is an important requirement of the present invention that the degree of synthesis (P) in the above formula (1) represented by the intensity ratio (I 2 / I 1 × 100) is 80% or more. If the degree of synthesis (P) is less than 80%, the particle growth of lithium aluminate proceeds in the molten carbonate, so that when it is used as an electrolyte holding plate, it changes over time and the electrolytic solution is washed away from between the particles. This causes a phenomenon, resulting in a significant deterioration in battery performance.

【0012】更に、上記の性状特性を満たしたうえで、
成分組成比がLi2 CO3 :K2 CO3 =62:38 m
ol%の電解質を1:3の重量比で混合したのち、空気/
CO2 が70/30の雰囲気に保持された電気炉中で7
00℃の温度に200時間加熱する条件でアルミン酸リ
チウムを処理した際に、加熱前のBET比表面積(S1)
に対する加熱前後のBET比表面積の差(S2 −S1)で
あるBET非表面積変化率(R)が25%以下である
と、一層熱的および化学的安定性に優れたアルミン酸リ
チウムとなる。該BET比表面積変化率(R)が25%
を越えると、上述した合成化度(P)が80%を越える
場合と同様に溶融炭酸塩中でのアルミン酸リチウムの粒
子成長が進み、材質の経時変化に伴う電池性能の劣化が
助長され易くなる。
Further, after satisfying the above property characteristics,
The composition ratio of the components is Li 2 CO 3 : K 2 CO 3 = 62: 38 m
After mixing ol% electrolyte in a weight ratio of 1: 3, air /
CO 2 in an electric furnace maintained at 70/30
When the lithium aluminate was treated under the condition of heating at a temperature of 00 ° C. for 200 hours, the BET specific surface area (S 1 ) before heating
When the BET non-surface area change rate (R), which is the difference in BET specific surface area before and after heating (S 2 −S 1 ), is 25% or less, lithium aluminate is more excellent in thermal and chemical stability. . The BET specific surface area change rate (R) is 25%
If it exceeds, the particle growth of lithium aluminate in the molten carbonate will proceed in the same manner as in the case where the degree of synthesis (P) exceeds 80%, and the deterioration of the battery performance due to the aging of the material tends to be promoted. Become.

【0013】上記の本発明に係るアルミン酸リチウム
は、一次粒子が適度に凝集した粒子性状を呈しており、
物性として熱的・化学的安定性に極めて優れたものであ
る。なお、該アルミン酸リチウムの結晶構造はγ型が主
体であるが、若干のα型結晶が混在しても特に電解質中
での安定性能に影響を受けないので、10重量%以下の
α型結晶を含むγ型主体の結晶系も許容される。これら
の物性は、BET比表面積(N2SA)測定法およびX線回折
分析法により容易に確認することができる。
The lithium aluminate according to the present invention has a particle property in which primary particles are appropriately aggregated,
It has extremely excellent physical and thermal stability. The crystal structure of the lithium aluminate is mainly γ-type, but even if some α-type crystals are mixed, the stability performance in the electrolyte is not particularly affected. A crystal system mainly containing a γ type is also acceptable. These physical properties can be easily confirmed by a BET specific surface area (N 2 SA) measurement method and an X-ray diffraction analysis method.

【0014】かかるアルミン酸リチウムを工業的に製造
するには、微細なアルミニウム化合物を焼成して得られ
るα−アルミナのクラスター粒子とリチウム化合物とを
化学量論比近傍の量比で乾式混合し、該混合物を焼成処
理するプロセスからなる本発明の方法が適用される。
In order to industrially produce such lithium aluminate, α-alumina cluster particles obtained by firing a fine aluminum compound and a lithium compound are dry-mixed in a stoichiometric ratio close to each other, The method of the invention is applied which comprises a process of calcining the mixture.

【0015】アルミナ源となる微細なアルミニウム化合
物としては、γ−アルミナおよび水酸化アルミナ、アン
モニウムドーサナイト、ミョウバンなどが挙げられる
が、好ましくはγ−アルミナである。α−アルミナのク
ラスター粒子とは、平均粒子径が0.1〜3μm の微細
な前記アルミニウム化合物粒子を1200℃以上の高温
度域で焼成処理することによって得られるものであっ
て、X線回析でα−アルミナを主成分とするクラスター
性状として確認される粒子である。アルミナは焼成温度
により結晶構造が異なるが、1200℃付近の温度域で
は、γ型の結晶化度が低く、一次粒子が凝集した強固な
クラスター状のα−アルミナに転化する。なお、かかる
α−アルミナは、結晶型としてα−アルミナを主体とし
たアルミナであるが、他にθ、δ、φ等の結晶構造を僅
かに含む結晶系のアルミナであってもよい。また、α−
アルミナは可及的に微粒子のクラスターであることが好
ましい。
Examples of the fine aluminum compound as the alumina source include γ-alumina, alumina hydroxide, ammonium dosanite, alum and the like, but γ-alumina is preferable. The α-alumina cluster particles are obtained by firing the fine aluminum compound particles having an average particle size of 0.1 to 3 μm in a high temperature range of 1200 ° C. or higher, and X-ray diffraction Are particles confirmed to have a cluster property containing α-alumina as a main component. Alumina has a different crystal structure depending on the firing temperature, but in the temperature range around 1200 ° C., the γ-type crystallinity is low and it is converted into a strong cluster-shaped α-alumina in which primary particles are aggregated. The α-alumina is mainly composed of α-alumina as a crystal type, but may be a crystalline alumina that slightly contains a crystal structure such as θ, δ, or φ. Also, α-
Alumina is preferably a cluster of fine particles.

【0016】一方、リチウム源となるリチウム化合物と
しては、例えば炭酸リチウム、水酸化リチウム、硝酸リ
チウムなどを挙げることができるが、本発明の目的には
炭酸リチウムの使用が最も効果的である。また、リチウ
ム化合物は粉末として使用されるが、そのの粒度は平均
粒子径として10μm 以下、好ましくは5μm 以下の微
粉末を用いることが好適である。
On the other hand, examples of the lithium compound serving as a lithium source include lithium carbonate, lithium hydroxide and lithium nitrate, and the use of lithium carbonate is most effective for the purpose of the present invention. The lithium compound is used as a powder, and the particle size of the lithium compound is preferably 10 μm or less, preferably 5 μm or less.

【0017】α−アルミナのクラスター粒子とリチウム
化合物粉末は、アルミン酸リチウムを得るための化学量
論に近い当量比で配合し、乾式条件下で混合する。この
混合工程において、粉末間の相互分散が不十分であると
反応生成したアルミン酸リチウム粒子が部分的に凝集
し、粗粒化する。このため、原料の均一な混合分散状態
を得るためには、例えばヘンシルミキサーのような高速
分散混合機、もしくはジェットミル、アトマイザーまた
はバンダムミルのような衝撃型粉砕機から選ばれた1種
または2種以上の混合装置を用いて処理することが好ま
しい。しかし、従来技術で用いられていたボールミルな
ど磨砕タイプの粉砕混合機は、アルミナの粒子構造を破
壊する傾向をもたらすため、本発明の目的には適合しな
い。
The α-alumina cluster particles and the lithium compound powder are blended in an equivalence ratio close to the stoichiometry for obtaining lithium aluminate and mixed under dry conditions. In this mixing step, if the mutual dispersion between the powders is insufficient, the lithium aluminate particles produced by the reaction partially aggregate and become coarse. Therefore, in order to obtain a uniform mixed and dispersed state of the raw materials, one or two selected from a high speed dispersion mixer such as a Hensyl mixer or an impact type crusher such as a jet mill, an atomizer or a bandam mill. It is preferable to process using a mixing device of one or more kinds. However, attrition type milling mixers, such as ball mills used in the prior art, are not suitable for the purposes of the present invention because they tend to destroy the grain structure of the alumina.

【0018】原料混合物は、ついで焼成処理される。焼
成処理は、800℃以上の温度域で0.5〜16時間、
好ましくは900℃以上の高温下に1〜5時間の条件で
行われ、α−アルミナのクラスター粒子とリチウム化合
物を反応させてアルミン酸リチウムとして生成させる。
得られた生成物がγ型結晶を主体とするアルミン酸リチ
ウムであることの確認は、X線回折により行うことがで
きる。
The raw material mixture is then calcined. The firing treatment is performed in a temperature range of 800 ° C. or higher for 0.5 to 16 hours,
Preferably, it is carried out at a high temperature of 900 ° C. or higher for 1 to 5 hours to react the α-alumina cluster particles with a lithium compound to generate lithium aluminate.
It can be confirmed by X-ray diffraction that the obtained product is lithium aluminate mainly composed of γ-type crystals.

【0019】このようにして製造されたアルミン酸リチ
ウム粒子は、BET比表面積が1〜15m2/gの範囲にあ
り、粒子性状が凝集クラスター状の微粒子であり、上述
した合成化度(P)が高く、且つBET比表面積変化率
(R)が小さい極めて安定した物性を具備している。
The lithium aluminate particles produced in this manner have a BET specific surface area in the range of 1 to 15 m 2 / g, and the particle properties are fine particles in the form of agglomerated clusters. Has a very high BET specific surface area change rate (R) and has extremely stable physical properties.

【0020】このような粒子特性をもつアルミン酸リチ
ウムは、高温下の溶融炭酸塩中において優れた熱安定
性、化学的安定性を発揮するため、MCFCの電解質保
持板として好適な素材となる。
Lithium aluminate having such particle characteristics exhibits excellent thermal stability and chemical stability in a molten carbonate under high temperature, and is therefore a suitable material as an electrolyte holding plate for MCFC.

【0021】[0021]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。しかし、本発明の範囲はこれら実施例
に限定されるものではない。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples. However, the scope of the present invention is not limited to these examples.

【0022】実施例1〜3、比較例1〜2 (1)アルミン酸リチウムの製造;平均粒子径0.05μm
、BET比表面積60m2/gのγ−アルミナ粒子を12
00℃で4時間焼成して、BET比表面積12.7m2/g
のα−アルミナ粉末からなるアルミナ源を調製した。こ
のα−アルミナ粉末と平均粒子径3.2μm の炭酸リチ
ウムをAlとLiの原子量比が化学量論的に当量になる
ように配合し、乾式ヘンシルミキサーで十分均一に混合
処理したのち、混合粉末を900〜1100℃の温度段
階で2時間焼成した。生成したアルミン酸リチウムの結
晶型、BET比表面積(N2SA)および合成化度(P)を測
定し、その結果を原料組成ならびに焼成温度と対比させ
て表1に示した。また、比較のためにγアルミナ粒子を
焼成せず、そのままアルミナ源として同様に製造したア
ルミン酸リチウムの物性についても表1に併載した。
Examples 1 to 3 and Comparative Examples 1 to 2 (1) Production of lithium aluminate; average particle diameter 0.05 μm
, Γ-alumina particles having a BET specific surface area of 60 m 2 / g
BET specific surface area 12.7m 2 / g after firing at 00 ℃ for 4 hours
An alumina source composed of the α-alumina powder of was prepared. This α-alumina powder and lithium carbonate having an average particle diameter of 3.2 μm were mixed so that the atomic ratio of Al and Li would be stoichiometrically equivalent, and the mixture was uniformly mixed with a dry Hensyl mixer and then mixed. The powder was calcined at a temperature stage of 900-1100 ° C. for 2 hours. The crystal form, BET specific surface area (N 2 SA) and degree of synthesis (P) of the produced lithium aluminate were measured, and the results are shown in Table 1 in comparison with the raw material composition and the firing temperature. Further, for comparison, the physical properties of lithium aluminate produced in the same manner as the alumina source without firing the γ-alumina particles are also shown in Table 1.

【0023】図1〜4は生成段階の粒子構造を示したS
EM写真で、図1は素原料となる焼成前のγ−アルミナ
の粒子構造、図2は焼成後のアルミナ源であるα−アル
ミナの粒子構造、図3は実施例2で生成したアルミン酸
リチウムの粒子構造、そして図4は比較例1で生成した
アルミン酸リチウムの粒子構造である。図1と図2を対
比すると、本発明のアルミナ源がγ−アルミナの一次粒
子が凝集したクラスター粒子構造を呈していることが認
められる。
FIGS. 1 to 4 show S showing the grain structure at the production stage.
In the EM photograph, FIG. 1 is a particle structure of γ-alumina which is a raw material before firing, FIG. 2 is a particle structure of α-alumina which is an alumina source after firing, and FIG. 3 is a lithium aluminate produced in Example 2. 4 and the particle structure of lithium aluminate produced in Comparative Example 1. By comparing FIG. 1 and FIG. 2, it is recognized that the alumina source of the present invention has a cluster particle structure in which primary particles of γ-alumina are aggregated.

【0024】[0024]

【表1】 [Table 1]

【0025】(2)溶融炭酸塩下の安定化試験;実施例1
〜3および比較例1〜2で得られたアルミン酸リチウム
粒子と固体無電解質(成分組成 Li2CO3:K2CO3=62:38m
ol% )とを1:3の重量比で混合したのち、空気/CO
2 =70/30の雰囲気に保持された電気炉に入れ、7
00℃の温度で200時間加熱して安定化試験を行っ
た。加熱処理したアルミン酸リチウムの加熱前後のBE
T比表面積を測定し、BET比表面積変化率(R)を算
出して表2に示した。また、実施例2の安定化試験後に
おけるアルミン酸リチウム粒子のSEM写真を図5に、
比較例1の安定化試験後におけるアルミン酸リチウム粒
子のSEM写真を図6にそれぞれ示した。
(2) Stabilization test under molten carbonate; Example 1
To 3 and lithium aluminate particles obtained in Comparative Examples 1-2 and the solid non-electrolyte (component composition Li 2 CO 3: K 2 CO 3 = 62: 38m
ol%) in a weight ratio of 1: 3 and then air / CO
2 = 70/30 put in an electric furnace maintained in the atmosphere,
A stability test was performed by heating at a temperature of 00 ° C. for 200 hours. BE before and after heating of heat-treated lithium aluminate
The T specific surface area was measured, and the BET specific surface area change rate (R) was calculated and shown in Table 2. Further, an SEM photograph of the lithium aluminate particles after the stabilization test of Example 2 is shown in FIG.
SEM photographs of the lithium aluminate particles after the stabilization test of Comparative Example 1 are shown in FIG. 6, respectively.

【0026】[0026]

【表2】 [Table 2]

【0027】表2の結果から、本発明に係るγ型を主体
とするアルミン酸リチウムは比較例品に比べ溶融炭酸塩
下での安定性が著しく優れていることが認められる。こ
の様子は、安定化試験前後のγ型を主体とするアルミン
酸リチウムのSEM写真からも観察することができる。
これに対し、従来のアルミン酸リチウム(比較例1)は
安定化試験後の粒子径が著しく大きくなっていることが
判る。
From the results in Table 2, it is recognized that the lithium aluminate according to the present invention, which is mainly composed of γ-type, has remarkably excellent stability under molten carbonate as compared with the comparative example. This state can also be observed from SEM photographs of lithium aluminate mainly consisting of γ type before and after the stabilization test.
On the other hand, it is understood that the conventional lithium aluminate (Comparative Example 1) has a remarkably large particle size after the stabilization test.

【0028】[0028]

【発明の効果】以上のとおり、本発明によればBET比
表面積が1〜15m2/gの範囲にあり、一次粒子が凝集し
たクラスター形状をもつγ型を主体とした結晶構造を備
え、溶融炭酸塩中で優れた熱安定性ならびに化学的安定
性を発揮するアルミン酸リチウムを提供することができ
る。また、本発明の製造方法に従えば、簡易な工程によ
り高品位のアルミン酸リチウムを工業的に有利に得るこ
とができる。したがって、特にMCFCの電解質保持板
に好適なアルミン酸リチウムおよびその製造技術として
極めて有用である。
Industrial Applicability As described above, according to the present invention, the BET specific surface area is in the range of 1 to 15 m 2 / g, the crystal structure mainly composed of γ type having a cluster shape in which primary particles are aggregated, and melting It is possible to provide lithium aluminate that exhibits excellent thermal stability and chemical stability in carbonate. Further, according to the production method of the present invention, high-quality lithium aluminate can be industrially advantageously obtained by a simple process. Therefore, it is extremely useful as a lithium aluminate suitable for an electrolyte holding plate of MCFC and a manufacturing technique thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】焼成前のγ−アルミナの粒子構造を示したSE
M写真(拡大倍率:30,000倍)である。
FIG. 1 SE showing the grain structure of γ-alumina before firing.
It is an M photograph (magnification: 30,000 times).

【図2】アルミナ源であるα−アルミナの粒子構造を示
したSEM写真(拡大倍率:30,000倍)である。
FIG. 2 is an SEM photograph (magnification: 30,000 times) showing a particle structure of α-alumina as an alumina source.

【図3】実施例2で生成したアルミン酸リチウムの粒子
構造を示したSEM写真(拡大倍率:30,000倍)であ
る。
FIG. 3 is an SEM photograph (magnification: 30,000 times) showing the particle structure of lithium aluminate produced in Example 2.

【図4】比較例1で生成したアルミン酸リチウムの粒子
構造を示したSEM写真(拡大倍率:30,000倍)であ
る。
FIG. 4 is an SEM photograph (magnification: 30,000 times) showing the particle structure of lithium aluminate produced in Comparative Example 1.

【図5】実施例2の安定化試験後におけるアルミン酸リ
チウムの粒子構造をを示したSEM写真(拡大倍率:3
0,000倍)である。
5 is a SEM photograph showing the particle structure of lithium aluminate after the stabilization test of Example 2 (magnification: 3
0,000 times).

【図6】比較例1の安定化試験後におけるアルミン酸リ
チウムの粒子構造をを示したSEM写真(拡大倍率:3
0,000倍)である。
6 is an SEM photograph showing the particle structure of lithium aluminate after the stabilization test of Comparative Example 1 (magnification: 3
0,000 times).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡部 武憲 東京都江東区豊洲三丁目1番15号 石川島 播磨重工業株式会社東二テクミカルセンタ ー内 (72)発明者 鈴木 勝美 東京都江東区豊洲三丁目1番15号 石川島 播磨重工業株式会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takenori Watanabe 3-15-1, Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries Co., Ltd. Toni Technical Center (72) Inventor Katsumi Suzuki Mizo Toyosu, Koto-ku, Tokyo No. 1-15 Ishikawajima Harima Heavy Industries Ltd. Technical Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 BET比表面積(N2SA)が1〜15m2/gの
範囲にあるアルミン酸リチウム粒子であって、下記 (1)
式で算出される合成化度(P)が80%以上であること
を特徴とするアルミン酸リチウム。 但し、 (1)式において、I1 およびI2 はアルミン酸リ
チウムのX線回析(X-RD) スペクトル分析における回析
強度で、I1 は最強強度ピークの高さ、I2 は第2強度
ピーク高さを表す。
1. Lithium aluminate particles having a BET specific surface area (N 2 SA) in the range of 1 to 15 m 2 / g, comprising the following (1)
Lithium aluminate having a degree of synthesis (P) calculated by a formula of 80% or more. However, in the formula (1), I 1 and I 2 are diffraction intensities in the X-ray diffraction (X-RD) spectrum analysis of lithium aluminate, I 1 is the height of the strongest intensity peak, and I 2 is the second It represents the intensity peak height.
【請求項2】 下記 (2)式で求められるBET比表面積
変化率(R)が25%以下の範囲にある請求項1記載の
アルミン酸リチウム。 但し、 (2)式において、S1 は加熱前のBET比表面積
(m2/g)、S2 は加熱後のBET比表面積(m2/g)を示し、
多孔質アルミン酸リチウムの加熱条件は、試料と電解質
(成分組成 Li2 CO3 :K2 CO3 =62:38mol%)を重量比
1:3で混合し、空気/CO2 =70/30の雰囲気に
保持された電気炉中で700℃の温度に200時間処理
するものとする。
2. The lithium aluminate according to claim 1, wherein the BET specific surface area change rate (R) determined by the following formula (2) is in the range of 25% or less. However, in the equation (2), S 1 is the BET specific surface area before heating.
(m 2 / g), S 2 represents the BET specific surface area (m 2 / g) after heating,
The heating conditions for the porous lithium aluminate were as follows: the sample and the electrolyte (component composition Li 2 CO 3 : K 2 CO 3 = 62: 38 mol%) were mixed at a weight ratio of 1: 3, and air / CO 2 = 70/30. It shall be treated at a temperature of 700 ° C. for 200 hours in an electric furnace maintained in the atmosphere.
【請求項3】 微細なアルミニウム化合物を焼成して得
られるα−アルミナのクラスター粒子とリチウム化合物
とを化学量論比近傍の量比で乾式混合し、該混合物を焼
成処理することを特徴とするアルミン酸リチウムの製造
方法。
3. An α-alumina cluster particle obtained by calcining a fine aluminum compound and a lithium compound are dry-mixed in a stoichiometric ratio close to the stoichiometric ratio, and the mixture is calcined. Method for producing lithium aluminate.
JP29606295A 1995-10-19 1995-10-19 Lithium aluminate and method for producing the same Expired - Lifetime JP3786456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29606295A JP3786456B2 (en) 1995-10-19 1995-10-19 Lithium aluminate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29606295A JP3786456B2 (en) 1995-10-19 1995-10-19 Lithium aluminate and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09110421A true JPH09110421A (en) 1997-04-28
JP3786456B2 JP3786456B2 (en) 2006-06-14

Family

ID=17828617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29606295A Expired - Lifetime JP3786456B2 (en) 1995-10-19 1995-10-19 Lithium aluminate and method for producing the same

Country Status (1)

Country Link
JP (1) JP3786456B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169219A (en) * 2013-02-07 2014-09-18 Nippon Chem Ind Co Ltd METHOD FOR PRODUCING α-LITHIUM ALUMINATE
US10150678B2 (en) 2014-07-25 2018-12-11 Nippon Chemical Industrial Co., Ltd. Method for producing alpha-lithium aluminate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169219A (en) * 2013-02-07 2014-09-18 Nippon Chem Ind Co Ltd METHOD FOR PRODUCING α-LITHIUM ALUMINATE
WO2015114840A1 (en) * 2013-02-07 2015-08-06 日本化学工業株式会社 METHOD FOR PRODUCING α-LITHIUM ALUMINATE
US9731977B2 (en) 2013-02-07 2017-08-15 Nippon Chemical Industrial Co., Ltd. Method for producing α-lithium aluminate
US10150678B2 (en) 2014-07-25 2018-12-11 Nippon Chemical Industrial Co., Ltd. Method for producing alpha-lithium aluminate

Also Published As

Publication number Publication date
JP3786456B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
KR102154947B1 (en) MXene particulate material, manufacturing method of the particulate material, and secondary battery
US5514631A (en) Alumina sol-gel fiber
JP4340160B2 (en) Method for producing nano-sized and sub-micron sized lithium transition metal oxides
JPH07100608B2 (en) Manufacturing method of alumina powder and sintered body
DE102006011965A1 (en) Process for producing fine alpha-alumina particles
JP4281943B2 (en) Method for producing plate-like alumina particles
JP7470242B2 (en) Annealing separator manufacturing method, annealing separator, and grain-oriented electrical steel sheet
CN1427899A (en) Magnesium oxide particle aggregate
WO2016013567A1 (en) METHOD FOR PRODUCING α-LITHIUM ALUMINATE
JPH1179746A (en) Perovskite composite oxide and its production
JPH11292548A (en) Tricobalt tetroxide and its production
JP5873117B2 (en) Method for producing α-lithium aluminate
JP4312286B2 (en) Method for producing α-lithium aluminate
JPH09110421A (en) Lithium aluminate and its production
JPH11292549A (en) Cobalt hydroxide and its production
CN115465900A (en) Spinel phase lithium nickel manganese oxide positive electrode material, preparation method thereof and battery
JP3786457B2 (en) Method for producing porous lithium aluminate
JP2539483B2 (en) Manufacturing method of lithium aluminum powder with large specific surface area
JP2890866B2 (en) Method for producing fine α-alumina powder
JPH0822737B2 (en) Production of large surface area gamma lithium aluminate
US6290928B1 (en) Gamma lithium aluminate product and process of making
JP3333547B2 (en) γ-lithium aluminate and method for producing the same
JP3619875B2 (en) High-performance ceria-based solid electrolyte containing nanosize domains
JPH0986934A (en) Production of nio/ysz complex powder
JPS62100405A (en) Aluminium nitride powder and production thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term