JPH0875276A - Freezer device with hfc system non-azeotropic refrigerant mixture - Google Patents

Freezer device with hfc system non-azeotropic refrigerant mixture

Info

Publication number
JPH0875276A
JPH0875276A JP6230699A JP23069994A JPH0875276A JP H0875276 A JPH0875276 A JP H0875276A JP 6230699 A JP6230699 A JP 6230699A JP 23069994 A JP23069994 A JP 23069994A JP H0875276 A JPH0875276 A JP H0875276A
Authority
JP
Japan
Prior art keywords
refrigerant mixture
refrigerant
mixture
outlet
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6230699A
Other languages
Japanese (ja)
Inventor
Hiroyuki Umezawa
浩之 梅沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6230699A priority Critical patent/JPH0875276A/en
Publication of JPH0875276A publication Critical patent/JPH0875276A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a freezer device which has no possibility to damage an ozone layer and a composition of refrigerant mixture is less deteriorated during a freezing cycle by a method wherein there is provided a bypass pipe passage having a check valve with its one end being connected to a part near an inlet of a heat exchanging coil of a condensor and/or an evaporator and the other end being connected to a part near its outlet. CONSTITUTION: This device comprises a bypassing pipe passage 10 with its one end being connected to a part near an inlet port of a heat exchanging coil 7 of a condensor of a freezing device having HFC system non-azeotropic refrigerant mixture and the other end being connected to a part near an outlet port of the coil. This bypassing pipe passage 10 is provided with a check valve 11. That is, refrigerant mixture gas entered from an inlet 8 into the heat exchanging coil 7 flows through the coil, is heat exchanged there to become liquid refrigerant mixture and then the mixture flow out of an outlet 9. Refrigerant mixture of main gaseous phase is bypassed through the bypassing pipe passage, thereby it is possible to mix gaseous phase and liquid phase of the refrigerant mixture to each other. In addition, since the check valve 11 is arranged, the refrigerant mixture of liquid phase does not flow back through the bypassing pipe passage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はHFC系非共沸冷媒混合
物を用いた冷凍装置に関するものであり、さらに詳しく
はオゾン層を破壊する危険がなく、不燃性であるHFC
系非共沸冷媒混合物を用いても、冷凍サイクル中の該冷
媒混合物の組成変化を少なくすることができるので長期
に亘り安定して運転することができる冷凍装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus using an HFC-based non-azeotropic refrigerant mixture, and more specifically to a non-flammable HFC which does not have a risk of depleting the ozone layer.
The present invention relates to a refrigerating apparatus which can be stably operated for a long period of time because the composition change of the refrigerant mixture in the refrigeration cycle can be reduced even when a non-azeotropic refrigerant mixture is used.

【0002】[0002]

【従来の技術】従来、冷凍機の冷媒として用いられてい
るものはジクロロジフルオロメタン(以下R−12とい
う)や共沸混合冷媒のR−12と1,1−ジフルオロエ
タン(R−152a)とからなるR−500が多い。R
−12の沸点は大気圧で−29.65℃で、R500の
沸点は−33.45℃であり、通常の冷凍装置に好適で
あり、R−12などのCFC系冷媒と相溶性のある鉱物
油やアルキルベンゼン系油などの冷凍機油を使用した冷
凍サイクルは、信頼性、耐久性などの高い品質レベルに
至っている。
2. Description of the Related Art Conventionally, a refrigerant used in a refrigerator is composed of dichlorodifluoromethane (hereinafter referred to as R-12) or an azeotropic mixed refrigerant R-12 and 1,1-difluoroethane (R-152a). There are many R-500s. R
The boiling point of −12 is −29.65 ° C. at atmospheric pressure, and the boiling point of R500 is −33.45 ° C., which is suitable for a normal refrigeration system and is a mineral compatible with a CFC-based refrigerant such as R-12. Refrigeration cycles that use refrigerating machine oils such as oils and alkylbenzene-based oils have reached high quality levels such as reliability and durability.

【0003】しかしながら、上記の各冷媒は、その高い
オゾン破壊の潜在性により、大気中に放出されて地球上
空のオゾン層に到達すると、このオゾン層を破壊する。
このオゾン層の破壊は冷媒中の塩素基(Cl)により引
き起こされる。そこで、この塩素基の含有量の少ない冷
媒、例えばクロロジフルオロメタン(HCFC−22、
以下R−22という)、塩素基を含まない冷媒、例えば
ジフルオロメタン(HFC−32、以下R−32とい
う)、ペンタフルオロエタン(HFC−125、以下R
−125という)や1,1,1,2−テトラフルオロエ
タン(HFC−134a、以下R−134aという)、
あるいはこれらの混合物がこれらの代替冷媒として考え
られている。このR−22の沸点は、大気圧で−40.
82℃で、R−32の沸点は、−51.7℃で、R−1
25の沸点は、−48.5℃、R−134aの沸点は、
−26.5℃である。
However, due to their high ozone depletion potential, each of the above refrigerants destroys the ozone layer when it reaches the ozone layer above the earth by being released into the atmosphere.
The destruction of the ozone layer is caused by chlorine groups (Cl) in the refrigerant. Therefore, a refrigerant having a low chlorine group content, for example, chlorodifluoromethane (HCFC-22,
R-22), chlorine-free refrigerants such as difluoromethane (HFC-32, hereinafter R-32), pentafluoroethane (HFC-125, hereinafter R)
-125) or 1,1,1,2-tetrafluoroethane (HFC-134a, hereinafter R-134a),
Alternatively, mixtures of these are considered as alternative refrigerants for these. The boiling point of R-22 is -40.
At 82 ° C., the boiling point of R-32 is −51.7 ° C. and R-1.
The boiling point of 25 is -48.5 ° C, and the boiling point of R-134a is
It is -26.5 degreeC.

【0004】HFC系冷媒混合物とはHFC系冷媒の2
種あるいは3種以上の混合物であり、通常、混合物の沸
点と露点が相違している組み合わせが多い。本発明にお
いてはこれらの混合物をHFC系非共沸冷媒混合物と称
す。HFC系非共沸冷媒混合物は、具体的には例えば、
R125/R143a/134a(重量比44/52/
4)(R404A、沸点−46.78℃、露点−46.
08℃、商品名:HP62、デュポン社製、以下HP6
2と称す)、R32/R125/134a(重量比20
/40/40)(R407A、沸点−45.4℃、露点
−38.8℃、商品名:KLEA60G2、ICI社
製、以下KLEA60と称す)などを挙げることができ
る。
The HFC-based refrigerant mixture is a mixture of HFC-based refrigerants.
It is a mixture of three or more kinds, and usually, there are many combinations in which the boiling point and the dew point of the mixture are different. In the present invention, these mixtures are referred to as HFC-based non-azeotropic refrigerant mixture. The HFC-based non-azeotropic refrigerant mixture is specifically, for example,
R125 / R143a / 134a (weight ratio 44/52 /
4) (R404A, boiling point -46.78 ° C, dew point -46.
08 ° C, trade name: HP62, manufactured by DuPont, hereinafter HP6
2), R32 / R125 / 134a (weight ratio 20)
/ 40/40) (R407A, boiling point −45.4 ° C., dew point −38.8 ° C., trade name: KLEA60G2, manufactured by ICI, hereinafter referred to as KLEA60).

【0005】図2に代表的な冷凍回路の例を示す。1は
圧縮機、2は凝縮器、3はドライヤ、4はキャピラリー
チューブ、5は蒸発器、6はアキュムレーターである。
矢印は冷媒の流れ方向を示す。HFC系非共沸冷媒混合
物を用いた冷凍サイクルは、非共沸混合物であるために
冷凍サイクルの各部で該冷媒混合物の組成が変化し、例
えば運転する日によって凝縮器2の熱交換コイルの入口
と出口の間で、あるいは蒸発器5の熱交換コイルの入口
と出口の間で該冷媒混合物の組成が変化したり、温度変
化が大きく、冷凍容量や冷凍能力が均一でなくなるので
長期に亘り安定して運転することができない欠点があ
る。
FIG. 2 shows an example of a typical refrigeration circuit. 1 is a compressor, 2 is a condenser, 3 is a dryer, 4 is a capillary tube, 5 is an evaporator, and 6 is an accumulator.
The arrow indicates the flow direction of the refrigerant. Since the refrigeration cycle using the HFC-based non-azeotropic refrigerant mixture is a non-azeotropic mixture, the composition of the refrigerant mixture changes in each part of the refrigeration cycle, and for example, the inlet of the heat exchange coil of the condenser 2 changes depending on the day of operation. Between the outlet and the outlet, or between the inlet and the outlet of the heat exchange coil of the evaporator 5, the composition of the refrigerant mixture is large, and the temperature change is large, and the refrigerating capacity and the refrigerating capacity are not uniform, so that it is stable for a long time. There is a drawback that you can not drive.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、オゾ
ン層を破壊する危険がなく、不燃性であるHFC系非共
沸冷媒混合物を用いても、凝縮器の熱交換コイルの入口
と出口の間で、あるいは蒸発器の熱交換コイルの入口と
出口の間で該冷媒混合物の組成を均一にし、温度変化を
少なくして、長期に亘り安定して運転できる冷凍装置を
提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to use an HFC-based non-azeotropic refrigerant mixture which is non-flammable and has no risk of depleting the ozone layer, and the inlet and outlet of the heat exchange coil of the condenser. It is to provide a refrigerating apparatus which can be operated stably over a long period of time by making the composition of the refrigerant mixture uniform between the two or between the inlet and outlet of the heat exchange coil of the evaporator and reducing the temperature change. .

【0007】[0007]

【課題を解決するための手段】本発明者は上記の課題に
鑑み鋭意研究した結果、熱交換コイルの入口近傍部と出
口近傍部を連結するバイパス管路を設け、バイパス管路
を通して冷媒混合物をバイパスさせて冷媒混合物の気相
と液相とを混合することにより上記課題を解決できるこ
とを見出し、本発明をなすに至った。
Means for Solving the Problems As a result of intensive studies in view of the above-mentioned problems, the present inventor has provided a bypass conduit connecting the inlet and outlet vicinity of a heat exchange coil, and a refrigerant mixture is passed through the bypass conduit. The inventors have found that the above problems can be solved by bypassing and mixing the gas phase and the liquid phase of the refrigerant mixture, and have completed the present invention.

【0008】本発明の請求項1の発明は、冷媒を凝縮液
化する凝縮器、冷凍回路中の水分を除去するためのドラ
イヤ、キャピラリーチューブ、液化冷媒を蒸発させる蒸
発器、アキュムレータおよび蒸発気化した冷媒を圧縮し
て凝縮器に吐出する圧縮機などを備え、該圧縮機で圧縮
される冷媒としてHFC系非共沸冷媒混合物を用いた冷
凍装置において、該凝縮器の熱交換コイルおよび/また
は該蒸発器の熱交換コイルの入口近傍部に一端が連結さ
れ、他端が出口近傍部に連結されたバイパス管路を設
け、且つ該バイパス管路に逆止弁を設けたことを特徴と
するHFC系非共沸冷媒混合物を用いた冷凍装置であ
る。
According to the first aspect of the present invention, a condenser for condensing and liquefying a refrigerant, a dryer for removing water in a refrigeration circuit, a capillary tube, an evaporator for evaporating a liquefied refrigerant, an accumulator, and an evaporated vaporized refrigerant. In a refrigerating apparatus including a compressor for compressing and discharging the refrigerant to a condenser, and using a HFC-based non-azeotropic refrigerant mixture as a refrigerant compressed by the compressor, a heat exchange coil of the condenser and / or the evaporation HFC system having a bypass pipe, one end of which is connected to the vicinity of the inlet of the heat exchange coil of the reactor and the other end of which is connected to the vicinity of the outlet, and a check valve provided on the bypass pipe. It is a refrigeration system using a non-azeotropic refrigerant mixture.

【0009】本発明の請求項2の発明は、該入口近傍部
のコイル内の該冷媒混合物は主に気相であり、該出口近
傍部のコイル内の該冷媒混合物は主に液相であり、該バ
イパス管路を通して該冷媒混合物をバイパスすることに
より、該冷媒混合物の気相と液相を混合することを特徴
とする請求項1記載の冷凍装置である。
According to the second aspect of the present invention, the refrigerant mixture in the coil near the inlet is mainly in the gas phase, and the refrigerant mixture in the coil near the outlet is mainly in the liquid phase. The refrigeration apparatus according to claim 1, wherein the refrigerant mixture is bypassed through the bypass pipe line to mix the gas phase and the liquid phase of the refrigerant mixture.

【0010】本発明の請求項3の発明は、該入口近傍部
のコイル内の該冷媒混合物は主に液相であり、該出口近
傍部のコイル内の該冷媒混合物は主に気相であり、該バ
イパス管路を通して該冷媒混合物をバイパスすることに
より、該冷媒混合物の液相と気相を混合することを特徴
とする請求項1記載の冷凍装置である。
According to a third aspect of the present invention, the refrigerant mixture in the coil near the inlet is mainly in the liquid phase, and the refrigerant mixture in the coil near the outlet is mainly in the gas phase. The refrigerating apparatus according to claim 1, wherein the refrigerant mixture is bypassed through the bypass pipe line to mix the liquid phase and the gas phase of the refrigerant mixture.

【0011】本発明の請求項4の発明は、該熱交換コイ
ルの入口と出口の該冷媒混合物の組成変化が最小となる
ように該バイパス管路を設けたことを特徴とする請求項
1ないし請求項3記載の冷凍装置である。
The invention according to claim 4 of the present invention is characterized in that the bypass line is provided so as to minimize the composition change of the refrigerant mixture at the inlet and the outlet of the heat exchange coil. The refrigeration apparatus according to claim 3.

【0012】本発明の請求項5の発明は、該熱交換コイ
ルの入口と出口の温度差が最小となるように該バイパス
管路を設けたことを特徴とする請求項1ないし請求項4
記載の冷凍装置である。
According to a fifth aspect of the present invention, the bypass line is provided so that the temperature difference between the inlet and the outlet of the heat exchange coil is minimized.
It is the described refrigeration apparatus.

【0013】本発明の請求項6の発明は、冷凍機油が鉱
油系潤滑油、アルキルベンゼン系潤滑油、エステル系潤
滑油、エーテル系潤滑油あるいはこれらの混合物である
請求項1ないし請求項5記載の冷凍装置である。
According to a sixth aspect of the present invention, the refrigerating machine oil is a mineral oil type lubricating oil, an alkylbenzene type lubricating oil, an ester type lubricating oil, an ether type lubricating oil or a mixture thereof. It is a refrigerator.

【0014】[0014]

【作用】凝縮器の熱交換コイルや蒸発器の熱交換コイル
の入口近傍部と出口近傍部を連結する、逆止弁が設けら
れたバイパス管路を設け、バイパス管路を経て冷媒混合
物を流して冷媒混合物の気相と液相を混合することによ
り熱交換コイルの入口と出口の冷媒混合物の組成変化を
最小にでき、かつ温度変化を最小にできる。本発明にお
いて熱交換コイルの入口近傍部とは、熱交換コイルの冷
媒の入口から冷媒の出口までの全長の中央部から入口ま
での部分を称し、また、熱交換コイルの出口近傍部と
は、熱交換コイルの冷媒の入口から冷媒の出口までの全
長の中央部から出口までの部分を称す。
[Function] A bypass pipe line provided with a check valve is provided to connect the vicinity of the inlet and the vicinity of the outlet of the heat exchange coil of the condenser and the heat exchange coil of the evaporator, and the refrigerant mixture is allowed to flow through the bypass pipe. By mixing the vapor phase and the liquid phase of the refrigerant mixture with each other, the composition change of the refrigerant mixture at the inlet and the outlet of the heat exchange coil can be minimized and the temperature change can be minimized. In the present invention, the vicinity of the inlet of the heat exchange coil refers to the portion from the central portion of the entire length from the inlet of the refrigerant of the heat exchange coil to the outlet of the refrigerant, and the outlet vicinity of the heat exchange coil, The part from the central portion of the entire length of the heat exchange coil from the refrigerant inlet to the refrigerant outlet to the outlet is referred to.

【0015】本発明において熱交換コイルの入口近傍部
と出口近傍部とを連結するバイパス管路を入口近傍部や
出口近傍部の何処に設置するかは、特に限定されない。
熱交換コイルの温度、圧力、冷媒組成などにより、熱交
換コイルの入口と出口間の冷媒混合物の組成変化を最小
にし、温度変化を最小にするように適宜決めることがで
きる。熱交換コイルを流れる冷媒混合物の気相を主体と
する部分と主に液相である部分とをバイパス管路で連結
して両者を混合することが好ましい。
In the present invention, there is no particular limitation as to where the bypass pipe connecting the inlet vicinity and the outlet vicinity of the heat exchange coil is installed near the inlet or the outlet.
The temperature, pressure, and refrigerant composition of the heat exchange coil can be appropriately determined so as to minimize the composition change of the refrigerant mixture between the inlet and the outlet of the heat exchange coil and minimize the temperature change. It is preferable that the portion of the refrigerant mixture flowing through the heat exchange coil, which is mainly in the gas phase, and the portion that is mainly in the liquid phase are connected by a bypass line to mix them.

【0016】本発明においてバイパス管路を通してバイ
パスさせる冷媒混合物の量も特に限定されない。バイパ
スさせる冷媒混合物の量は熱交換コイルの入口と出口間
の冷媒混合物の組成変化を最小にし、温度変化を最小に
するように適宜決めることができる。本発明において、
冷凍機油は特に限定されない。鉱油系潤滑油、アルキル
ベンゼン系潤滑油、エステル系潤滑油、エーテル系潤滑
油あるいはこれらの混合物などが好ましく使用できる。
In the present invention, the amount of the refrigerant mixture to be bypassed through the bypass line is also not particularly limited. The amount of the refrigerant mixture to be bypassed can be appropriately determined so as to minimize the composition change of the refrigerant mixture between the inlet and the outlet of the heat exchange coil and minimize the temperature change. In the present invention,
The refrigerating machine oil is not particularly limited. Mineral oil-based lubricating oil, alkylbenzene-based lubricating oil, ester-based lubricating oil, ether-based lubricating oil, or a mixture thereof can be preferably used.

【0017】[0017]

【実施例】以下、本発明の内容を実施例によりさらに具
体的に説明するが、本発明はこの内容に何ら限定される
ものではない。図1に、HFC系非共沸冷媒混合物を用
いた冷凍装置の凝縮器の熱交換コイル7の入口近傍部に
一端が連結され、他端が出口近傍部に連結されたバイパ
ス管路10を設け、且つ該バイパス管路10に逆止弁1
1を設けた熱交換コイル7を示す。矢印は混合冷媒の流
れ方向を示す。入口8から熱交換コイル7に入った冷媒
混合物ガスはコイル中を流れて熱交換されて液体冷媒混
合物となって出口9からでる。熱交換コイル7の入口近
傍部において冷媒混合物は主に気相であり、熱交換コイ
ル7の出口近傍部において冷媒混合物は主に液相であ
り、バイパス管路を通って主に気相の冷媒混合物をバイ
パスさせることにより、冷媒混合物の気相と液相とを混
合することができる。逆止弁11が設けられているので
バイパス管路を通って液相の冷媒混合物が逆に流れるこ
とはない。冷媒混合物の気相と液相を混合することによ
り熱交換コイル7の入口8と出口9の冷媒混合物の組成
変化を最小にすることができ、かつ温度変化を最小にで
きた。
EXAMPLES The contents of the present invention will be described more specifically below with reference to examples, but the present invention is not limited to these contents. In FIG. 1, a bypass line 10 is provided, one end of which is connected to the inlet vicinity of the heat exchange coil 7 of the condenser of the refrigeration system using the HFC-based non-azeotropic refrigerant mixture, and the other end of which is connected to the outlet vicinity. And the check valve 1 in the bypass line 10.
1 shows a heat exchange coil 7 provided with 1. The arrow indicates the flow direction of the mixed refrigerant. The refrigerant mixture gas that has entered the heat exchange coil 7 from the inlet 8 flows through the coil and undergoes heat exchange to become a liquid refrigerant mixture and exits from the outlet 9. The refrigerant mixture is mainly in the gas phase near the inlet of the heat exchange coil 7, and the refrigerant mixture is mainly in the liquid phase near the outlet of the heat exchange coil 7, and is mainly in the gas phase through the bypass pipe line. Bypassing the mixture allows the vapor phase and the liquid phase of the refrigerant mixture to be mixed. Since the check valve 11 is provided, the refrigerant mixture in the liquid phase does not flow backward through the bypass line. By mixing the gas phase and the liquid phase of the refrigerant mixture, the composition change of the refrigerant mixture at the inlet 8 and the outlet 9 of the heat exchange coil 7 can be minimized and the temperature change can be minimized.

【0018】[0018]

【発明の効果】本発明のHFC系非共沸冷媒混合物を用
いた冷凍装置は、オゾン層を破壊する危険がなく、不燃
性であるHFC系非共沸冷媒混合物を用いても、冷凍サ
イクル中の冷媒混合物の組成変化を少なくすることがで
きるので長期に亘り安定して運転できる。凝縮器の熱交
換コイルや蒸発器の熱交換コイルの入口と出口の冷媒混
合物の組成変化を最小にでき、温度変化を最小にできる
ので、熱交換コイルの設計や性能の設定が容易になる。
冷凍サイクル運転中に系外に冷媒混合物がリークしたと
しても、リーク場所によらず冷媒混合物の組成が均一で
あるので保守管理が容易である。本発明の冷凍装置は簡
単な構成からなるので経済的である上、上記のように効
果が大きく産業上の利用価値が高い。
INDUSTRIAL APPLICABILITY The refrigerating apparatus using the HFC-based non-azeotropic refrigerant mixture according to the present invention has no risk of depleting the ozone layer, and the non-flammable HFC-based non-azeotropic refrigerant mixture is used in the refrigeration cycle. Since the change in composition of the refrigerant mixture can be reduced, stable operation can be achieved for a long period of time. Since the composition change of the refrigerant mixture at the inlet and the outlet of the heat exchange coil of the condenser or the heat exchange coil of the evaporator can be minimized and the temperature change can be minimized, the design and performance of the heat exchange coil can be easily set.
Even if the refrigerant mixture leaks to the outside of the system during the refrigeration cycle operation, the composition of the refrigerant mixture is uniform regardless of the leak location, so that maintenance management is easy. The refrigerating apparatus of the present invention is economical because it has a simple structure, and has a large effect as described above and a high industrial utility value.

【図面の簡単な説明】[Brief description of drawings]

【図1】 バイパス管路を付けた熱交換コイルの説明図
である。
FIG. 1 is an explanatory diagram of a heat exchange coil provided with a bypass line.

【図2】 代表的な冷凍装置の冷凍回路の例である。FIG. 2 is an example of a refrigeration circuit of a typical refrigeration system.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 ドライヤ 4 キャピラリーチューブ 5 蒸発器 6 アキュムレータ 7 熱交換コイル 8 入口 9 出口 10 バイパス管路 12 逆止弁 1 Compressor 2 Condenser 3 Dryer 4 Capillary tube 5 Evaporator 6 Accumulator 7 Heat exchange coil 8 Inlet 9 Outlet 10 Bypass line 12 Check valve

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を凝縮液化する凝縮器、冷凍回路中
の水分を除去するためのドライヤ、キャピラリーチュー
ブ、液化冷媒を蒸発させる蒸発器、アキュムレータおよ
び蒸発気化した冷媒を圧縮して凝縮器に吐出する圧縮機
などを備え、該圧縮機で圧縮される冷媒としてHFC系
非共沸冷媒混合物を用いた冷凍装置において、該凝縮器
の熱交換コイルおよび/または該蒸発器の熱交換コイル
の入口近傍部に一端が連結され、他端が出口近傍部に連
結されたバイパス管路を設け、且つ該バイパス管路に逆
止弁を設けたことを特徴とするHFC系非共沸冷媒混合
物を用いた冷凍装置。
1. A condenser for condensing and liquefying a refrigerant, a dryer for removing water in a refrigeration circuit, a capillary tube, an evaporator for evaporating a liquefied refrigerant, an accumulator, and a refrigerant which has been evaporated and vaporized is discharged to a condenser. In a refrigerating apparatus including a compressor, etc., using an HFC-based non-azeotropic refrigerant mixture as a refrigerant compressed by the compressor, in the vicinity of an inlet of the heat exchange coil of the condenser and / or the heat exchange coil of the evaporator. An HFC-based non-azeotropic refrigerant mixture is used, characterized in that a bypass pipe having one end connected to the section and the other end connected to the vicinity of the outlet is provided, and a check valve is provided at the bypass pipe. Refrigeration equipment.
【請求項2】 該入口近傍部のコイル内の該冷媒混合物
は主に気相であり、該出口近傍部のコイル内の該冷媒混
合物は主に液相であり、該バイパス管路を通して該冷媒
混合物をバイパスすることにより、該冷媒混合物の気相
と液相を混合することを特徴とする請求項1記載の冷凍
装置。
2. The refrigerant mixture in the coil near the inlet is predominantly in the vapor phase, the refrigerant mixture in the coil near the outlet is predominantly in the liquid phase, and the refrigerant is passed through the bypass line. The refrigeration system of claim 1, wherein the gas phase and the liquid phase of the refrigerant mixture are mixed by bypassing the mixture.
【請求項3】 該入口近傍部のコイル内の該冷媒混合物
は主に液相であり、該出口近傍部のコイル内の該冷媒混
合物は主に気相であり、該バイパス管路を通して該冷媒
混合物をバイパスすることにより、該冷媒混合物の液相
と気相を混合することを特徴とする請求項1記載の冷凍
装置。
3. The refrigerant mixture in the coil near the inlet is mainly in a liquid phase, the refrigerant mixture in the coil near the outlet is mainly in a gas phase, and the refrigerant is passed through the bypass line. The refrigeration system according to claim 1, wherein the liquid phase and the gas phase of the refrigerant mixture are mixed by bypassing the mixture.
【請求項4】 該熱交換コイルの入口と出口の該冷媒混
合物の組成変化が最小となるように該バイパス管路を設
けたことを特徴とする請求項1ないし請求項3記載の冷
凍装置。
4. The refrigerating apparatus according to claim 1, wherein the bypass pipe line is provided so that a change in the composition of the refrigerant mixture at the inlet and the outlet of the heat exchange coil is minimized.
【請求項5】 該熱交換コイルの入口と出口の温度差が
最小となるように該バイパス管路を設けたことを特徴と
する請求項1ないし請求項4記載の冷凍装置。
5. The refrigerating apparatus according to claim 1, wherein the bypass pipe line is provided so that a temperature difference between an inlet and an outlet of the heat exchange coil is minimized.
【請求項6】 冷凍機油が鉱油系潤滑油、アルキルベン
ゼン系潤滑油、エステル系潤滑油、エーテル系潤滑油あ
るいはこれらの混合物である請求項1ないし請求項5記
載の冷凍装置。
6. The refrigerating apparatus according to claim 1, wherein the refrigerating machine oil is a mineral oil type lubricating oil, an alkylbenzene type lubricating oil, an ester type lubricating oil, an ether type lubricating oil or a mixture thereof.
JP6230699A 1994-08-31 1994-08-31 Freezer device with hfc system non-azeotropic refrigerant mixture Pending JPH0875276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6230699A JPH0875276A (en) 1994-08-31 1994-08-31 Freezer device with hfc system non-azeotropic refrigerant mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6230699A JPH0875276A (en) 1994-08-31 1994-08-31 Freezer device with hfc system non-azeotropic refrigerant mixture

Publications (1)

Publication Number Publication Date
JPH0875276A true JPH0875276A (en) 1996-03-19

Family

ID=16911937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6230699A Pending JPH0875276A (en) 1994-08-31 1994-08-31 Freezer device with hfc system non-azeotropic refrigerant mixture

Country Status (1)

Country Link
JP (1) JPH0875276A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6748755B2 (en) 2000-03-09 2004-06-15 Fujitsu Limited Refrigeration system utilizing incomplete evaporation of refrigerant in evaporator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6748755B2 (en) 2000-03-09 2004-06-15 Fujitsu Limited Refrigeration system utilizing incomplete evaporation of refrigerant in evaporator
US7007506B2 (en) 2000-03-09 2006-03-07 Fujitsu Limited Refrigeration system utilizing incomplete evaporation of refrigerant in evaporator

Similar Documents

Publication Publication Date Title
EP3730870A1 (en) Refrigeration cycle device
US11506425B2 (en) Refrigeration cycle apparatus
WO2019124140A1 (en) Refrigeration cycle device
JPH08313120A (en) Three-constituent mixture refrigerant filling device and filling method
JP7060017B2 (en) Working medium for thermal cycles, compositions for thermal cycle systems and thermal cycle systems
JPH07173462A (en) Refrigerant composition
JP4855256B2 (en) Compositions based on hydrofluorocarbons and their use
JP2698319B2 (en) Non-azeotropic mixtures containing difluoromethane and 1,1,1,2-tetrafluoroethane and their application as refrigerant liquids in air conditioning
JPH08166172A (en) Refrigerating equipment
CN110869461A (en) Azeotropic or azeotrope-like composition, working medium for heat cycle, and heat cycle system
JPH08170074A (en) Working fluid
JPH0925480A (en) Hydraulic fluid
JPH0875276A (en) Freezer device with hfc system non-azeotropic refrigerant mixture
JPH08261575A (en) Freezing device using nonazeotropic refrigerant mixture
JPH0841448A (en) Freezing cycle using hfc-based non-azeotropic cooling medium mixture and freezing apparatus
KR0184083B1 (en) Refrigerant mixtures
JPH08127767A (en) Working fluid
JPH0882462A (en) Freezer with non-azeotropic refrigerant mixture of hfc system
JPH09221664A (en) Working fluid
JPH0882459A (en) Refrigerator with non-azeotropic refrigerant mixture of hfc system
JPH08151569A (en) Working fluid
JPH08176537A (en) Hydraulic fluid
Shukla et al. Study of performance of a household refrigeration system with different refrigerants
JPH09208941A (en) Hydraulic fluid
KR100212117B1 (en) Cooling system with mixing refrigerant

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Effective date: 20060306

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100310

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110310

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20140310

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250