JPH0861089A - Dynamic pressure gas thrust bearing for turbine compressor - Google Patents

Dynamic pressure gas thrust bearing for turbine compressor

Info

Publication number
JPH0861089A
JPH0861089A JP19515194A JP19515194A JPH0861089A JP H0861089 A JPH0861089 A JP H0861089A JP 19515194 A JP19515194 A JP 19515194A JP 19515194 A JP19515194 A JP 19515194A JP H0861089 A JPH0861089 A JP H0861089A
Authority
JP
Japan
Prior art keywords
thrust bearing
bearing
pressure gas
dynamic pressure
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19515194A
Other languages
Japanese (ja)
Inventor
Hironobu Ueda
博信 上田
Susumu Harada
原田  進
Kazuo Okamoto
和夫 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19515194A priority Critical patent/JPH0861089A/en
Publication of JPH0861089A publication Critical patent/JPH0861089A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To secure a dynamic pressure gas thrust bearing that is ease of metalworking and excellent in wear and abrasion resistance in expanding an applicable range to a plant by way of improving a load capacity in this dynamic pressure gas thrust bearing capable of promoting the compactification and low-unit cost of a device in addition to cleanliness in environment. CONSTITUTION: In this turbine compressor which has supported a rotator attached with a turbine rotor 8, making high pressure gas into adiabatic expansion, at one and also a compressor rotor 2, making gas into adiabatic compression by dint of power produced by this turbine rotor 8, at the other end with a dynamic gas journal bearing 12 and a dynamic gas thrust bearing 14, a base material of this dynamic gas thrust bearing 14 is made into such material as being ease of machining in particular, and basic form of the bearing is formed into a spiral shape being high in relatively load capacity. In addition, the spiral form tilts a bottom surface of a spiral groove so as to be narrowed in the rotational direction, and a surface of the thrust bearing 14 is subjected to surface reforming and filming by an ion source, thereby improving the extent of wear and abrasion resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転体の一端にタービ
ン翼車を取り付け、他端にコンプレッサ翼車を取り付け
たタービンコンプレッサの動圧気体スラスト軸受に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic gas thrust bearing for a turbine compressor in which a turbine wheel is attached to one end of a rotor and a compressor wheel is attached to the other end.

【0002】[0002]

【従来の技術】タービンコンプレッサ用軸受の一般的な
従来技術として、例えばターボ機械第21巻第5号 P
62の低温装置におけるターボ機械の新技術に関する文
献に記載されているように、比較的大型な空気分離装置
の軸受には油軸受を用い、小型プラントの軸受には気体
軸受を用いる事例が紹介されている。
2. Description of the Related Art As a general prior art for bearings for turbine compressors, for example, Turbomachinery Vol. 21, No. 5, P.
As described in the literature relating to the new technology of turbomachinery for low-temperature equipment in No. 62, an example of using oil bearings for bearings of relatively large air separation devices and gas bearings for bearings of small plants was introduced. ing.

【0003】[0003]

【発明が解決しようとする課題】気体の粘性係数は油の
1/1000のオーダであるため、気体軸受は負荷能力及び軸
受剛性が油軸受より低い。従って、高負荷能力を必要と
する大型プラントへは油軸受が採用されている。しか
し、油軸受を用いたプラントは、給油装置及び給油装置
とタービンコンプレッサを連結する配管などの付属部品
が必要となるため、装置全体の大型化が余儀なくされ、
排煙などによる環境悪化等にも問題がある。
The viscosity coefficient of gas is the same as that of oil.
Since the order is 1/1000, the gas bearing has lower load capacity and bearing rigidity than the oil bearing. Therefore, oil bearings are used in large plants that require high load capacity. However, a plant using an oil bearing requires accessory parts such as a refueling device and a pipe connecting the refueling device and the turbine compressor, so that the size of the entire device is inevitably increased.
There is also a problem of environmental degradation due to smoke emission.

【0004】一方、気体軸受を用いたタービンコンプレ
ッサは、軸受損失が少なくタービン側の動力を有効的に
コンプレッサ動力に利用でき、給油装置などの付属部品
がなくなるため、コンパクトで、低負荷能力の小型プラ
ントへは最適である。しかし前述したように、負荷能力
及び軸受剛性が小さいため、適用範囲が小型のみに限定
されてしまう。また、気体軸受には静圧タイプや動圧タ
イプなどがあり、静圧タイプは動圧タイプに対し、負荷
能力は高いが軸受部に余分なガスを供給する必要があり
経済性が悪く、そのガスを供給する配管及び供給部の構
造などが複雑になる等の難点がある。動圧気体軸受は油
軸受及び静圧軸受の欠点を補うことができる反面、軸受
面に相対速度が無い限り負荷を支える圧力が発生しない
ので軸受として作用せず、起動停止時に軸と軸受が固体
接触することになる。従って、動圧気体軸受を作るに
は、固体接触を起こしても傷んだり、摺り減ったりしな
い硬質の材料を選ぶ必要がある。一方、硬質材料の場
合、一般的に加工が難しく複雑な溝などの微細加工を行
う場合は加工コストが高くなるという難点がある。
On the other hand, a turbine compressor using a gas bearing has a small bearing loss and can effectively use the power on the turbine side for the compressor power, and since there are no accessories such as an oil supply device, it is compact and has a low load capacity. Optimal for plants. However, as described above, since the load capacity and the bearing rigidity are small, the application range is limited to the small size. In addition, there are static pressure type and dynamic pressure type gas bearings.The static pressure type has higher load capacity than the dynamic pressure type, but it is necessary to supply extra gas to the bearing part, which is not economically efficient. There are drawbacks such as the structure of the piping for supplying gas and the supply section becoming complicated. Dynamic gas bearings can compensate for the drawbacks of oil bearings and hydrostatic bearings, but they do not work as bearings because pressure is not generated to support the load unless the bearing surface has a relative speed, and the shaft and bearing are solid when starting and stopping. You will come into contact. Therefore, in order to make a dynamic pressure gas bearing, it is necessary to select a hard material that is not damaged or worn away even if solid contact occurs. On the other hand, in the case of a hard material, it is generally difficult to process, and when performing fine processing such as a complicated groove, the processing cost becomes high.

【0005】本発明の目的は、環境がクリーンで、装置
のコンパクト化,低コスト化が図れる動圧気体軸受の負
荷能力を高めることでプラントへの適用範囲を拡充し、
工作が容易で耐摩耗性に優れた動圧気体スラスト軸受を
提供することにある。
An object of the present invention is to expand the range of application to a plant by increasing the load capacity of a dynamic pressure gas bearing, which has a clean environment, can make the apparatus compact and reduce the cost.
An object of the present invention is to provide a dynamic pressure gas thrust bearing that is easy to machine and has excellent wear resistance.

【0006】[0006]

【課題を解決するための手段】上記目的は、一端に高圧
ガスを断熱膨張させるタービン翼車を取り付け、他端に
タービン翼車で発生した動力によりガスを断熱圧縮する
コンプレッサ翼車を取り付けた回転体を動圧気体ジャー
ナル軸受及び動圧気体スラスト軸受で支持したタービン
コンプレッサにおいて、特に前記動圧気体スラスト軸受
の母材を加工容易な材質とし、その軸受の基本形状を比
較的負荷能力の高いスパイラル形とし、そのスパイラル
形状はスパイラル溝の底面を回転方向に狭くなるような
傾斜あるいは、段差又はその両者とし、スラスト軸受表
面あるいは、対抗面又はその両者をイオン源により、表
面改質や成膜し、耐摩耗性を向上させることで達成され
る。
SUMMARY OF THE INVENTION The above object is to rotate a turbine impeller for adiabatically expanding high-pressure gas at one end and a compressor impeller for adiabatically compressing gas by the power generated by the turbine impeller at the other end. In a turbine compressor in which a body is supported by a dynamic pressure gas journal bearing and a dynamic pressure gas thrust bearing, especially the base material of the dynamic pressure gas thrust bearing is a material that is easy to machine, and the basic shape of the bearing is a spiral with a relatively high load capacity. The shape of the spiral is such that the bottom surface of the spiral groove is inclined or stepped so that it narrows in the direction of rotation, or both, and the thrust bearing surface or the opposing surface or both are surface-modified or film-formed by an ion source. , By improving wear resistance.

【0007】[0007]

【作用】例えば、回転体のコンプレッサ側を下方にして
鉛直軸で使用する場合、軸と軸受は固体接触して静止し
ている。この状態でタービン側にガスを供給すると、タ
ービン翼車及び、タービン動力によりコンプレッサが起
動し、上方へスラスト力が働く。一方、スラスト部では
外周より軸受室内のガスを内周側に吸引し、スパイラル
溝内の圧力が高まり、回転体を下方に押し下げる力が働
く。この際、スパイラル溝の底面を回転方向に狭くなる
よう傾斜させているため、スパイラル溝により生じる負
荷容量と回転方向に存在するくさび状隙間の効果で軸受
負荷容量はスパイラル単体より2〜3割増加する。回転
体は初期浮上段階に若干の固体接触を伴い、所定回転数
でスラスト力と軸受負荷容量がバランスし、所定のギャ
ップを維持する。また停止時においては、上記内容と逆
にタービン側へのガス供給が停止することで回転数が低
下し、スラスト力及び軸受負荷容量が低下する。このた
め、軸と軸受は固体接触を伴いながら停止することにな
る。しかし、起動,停止時の固体接触により生じる摩耗
又は焼き付きは、スラスト軸受表面をイオン源により表
面改質や成膜して耐摩耗性を向上させるので、防止する
ことが出来る。
For example, when the rotary body is used with a vertical shaft with the compressor side facing downward, the shaft and the bearing are in solid contact with each other and are stationary. When gas is supplied to the turbine side in this state, the turbine is driven by the turbine impeller and turbine power, and thrust force acts upward. On the other hand, in the thrust portion, the gas in the bearing chamber is sucked toward the inner peripheral side from the outer peripheral side, the pressure in the spiral groove increases, and the force that pushes down the rotating body works. At this time, since the bottom surface of the spiral groove is inclined so as to narrow in the rotation direction, the load capacity generated by the spiral groove and the wedge-shaped gap existing in the rotation direction increase the bearing load capacity by 20 to 30% compared to the spiral unit. To do. The rotating body involves some solid contact in the initial floating stage, and the thrust force and the bearing load capacity are balanced at a predetermined rotation speed to maintain a predetermined gap. Further, at the time of stop, contrary to the above, the gas supply to the turbine side is stopped, so that the rotation speed is reduced and the thrust force and the bearing load capacity are reduced. For this reason, the shaft and the bearing are stopped with solid contact. However, abrasion or seizure caused by solid contact at the time of starting or stopping can be prevented because the surface of the thrust bearing is surface-modified or film-formed by an ion source to improve abrasion resistance.

【0008】これにより、負荷容量の向上によるタービ
ンコンプレッサの適用範囲が拡大でき、不要な配管又は
給油装置を排除することによるコンパクト化,低コスト
化及びクリーン化が図れる。また、本軸受はスラスト軸
受の母材を加工容易な材質とするため、複雑な形状の軸
受も容易に製作することができ、スラスト軸受表面ある
いは対抗面をイオン源により表面改質又は成膜するた
め、工作が容易で耐摩耗性に優れた軸受となる。
As a result, the range of application of the turbine compressor can be expanded by improving the load capacity, and the unnecessary pipe or oil supply device can be eliminated to achieve compactness, cost reduction and cleanliness. In addition, since the base material of the thrust bearing is a material that can be easily processed, this bearing can easily manufacture bearings with complicated shapes. Surface modification or film formation on the thrust bearing surface or counter surface with an ion source Therefore, the bearing is easy to machine and has excellent wear resistance.

【0009】[0009]

【実施例】以下、本発明の一実施例を図1,2,3によ
り説明する。プロセスガスはまず、コンプレッサ吸込み
口1を通り、コンプレッサ翼車2で圧縮され、コンプレ
ッサ翼車2の出口に設けられたディフューザ3で速度エ
ネルギーを圧力に効率よく変換される。更に、プロセス
ガスはコンプレッサ出口4から出て熱交換器5で冷却さ
れた後タービン入口6へ導かれ、ノズル7を通り、ター
ビン翼車8で断熱膨張し、低温・低圧のプロセスガスと
なって流出する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. The process gas first passes through the compressor suction port 1 and is compressed by the compressor wheel 2. The diffuser 3 provided at the outlet of the compressor wheel 2 efficiently converts velocity energy into pressure. Further, the process gas is discharged from the compressor outlet 4, cooled by the heat exchanger 5, and then guided to the turbine inlet 6, passes through the nozzle 7, and is adiabatically expanded by the turbine impeller 8 to become a low-temperature low-pressure process gas. leak.

【0010】また、コンプレッサ翼車2,タービン翼車
8の背面にはラビリンス9が各々設置され、コンプレッ
サ室,タービン室及び軸受室10を隔離している。ター
ビン翼車8の断熱膨張時に発生した動力はシャフト11
でコンプレッサ翼車2に伝達され、プロセスガスを断熱
圧縮する。このシャフト11は動圧気体ジャーナル軸受
12と動圧気体スラスト軸受20によって支持される。
動圧気体スラスト軸受20は、シャフト11と一体にな
ったスラストカラー13及び、そのスラストカラー13
の両端に、例えばSUS,Cu又はAl等の加工容易な
材料にスパイラル溝を施したスラスト軸受14のサンド
イッチ構造となっている。
Further, labyrinths 9 are installed on the back surfaces of the compressor impeller 2 and the turbine impeller 8 to separate the compressor chamber, the turbine chamber and the bearing chamber 10. The power generated during the adiabatic expansion of the turbine impeller 8 is generated by the shaft 11
Is transmitted to the compressor impeller 2 and the process gas is adiabatically compressed. The shaft 11 is supported by a dynamic pressure gas journal bearing 12 and a dynamic pressure gas thrust bearing 20.
The dynamic pressure gas thrust bearing 20 includes a thrust collar 13 integrated with the shaft 11 and the thrust collar 13 thereof.
The thrust bearing 14 has a sandwich structure in which spiral grooves are formed at both ends of the material, such as SUS, Cu, or Al, which is easily processed.

【0011】図2にスラスト軸受14の詳細図を示す。
スパイラル溝15は、スラスト軸受14の外周からシー
ル面16に向けて対数螺旋状に配置される(なお、本図
は溝数9本の場合の例である)。溝方向底面の状態は、
図3に示すように回転方向に対して溝深さが小さくなる
よう傾いたもので、その表面にはイオン源により表面改
質又は成膜し、耐摩耗性が向上した層17が施される。
FIG. 2 shows a detailed view of the thrust bearing 14.
The spiral groove 15 is arranged in a logarithmic spiral shape from the outer circumference of the thrust bearing 14 toward the seal surface 16 (this drawing is an example in the case of 9 grooves). The state of the bottom in the groove direction is
As shown in FIG. 3, the groove is inclined with respect to the rotation direction so that the groove depth becomes small, and the surface thereof is subjected to surface modification or film formation by an ion source, and a layer 17 having improved wear resistance is provided. .

【0012】次に、上記した構成要素からなるタービン
コンプレッサの具体的動作について説明する。
Next, the specific operation of the turbine compressor having the above-mentioned components will be described.

【0013】例えば、図1のようにコンプレッサ側を下
方にして鉛直軸で使用する場合、スラストカラー13と
スラスト軸受14は固体接触して、静止している。この
状態で、コンプレッサより排出されたプロセスガスがタ
ービン側へ供給されるとタービン翼車8が回転する一
方、タービン動力によりコンプレッサが起動し、コンプ
レッサ側からタービン側へスラスト力が働く。スラスト
力により、スラストカラー13と上方のスラスト軸受1
4が接近すると共に、スラスト部では外周より軸受室1
0内のガスを内周側に吸引してスパイラル溝15内の圧
力が高まり、回転体(シャフト11,スラストカラー1
3及びシャフト11両端にタービン翼車8,コンプレッ
サ翼車2を設置したもの)を下方に押し下げる力が働
く。この際、スパイラル溝15の底面を回転方向に狭く
なるよう傾斜させているため、スパイラル溝15により
生じる負荷容量と回転方向に存在するくさび状隙間の効
果で軸受負荷容量はスパイラル単体より2〜3割増加す
る。回転体は初期浮上段階に若干の固体接触を伴い、所
定回転数でスラスト力と軸受負荷容量がバランスし、所
定の隙間を維持する。また、停止時においては上記内容
と逆にタービン側へのガス供給が停止することにより回
転数が低下し、スラスト力及び軸受負荷容量が低下す
る。このため、スラストカラー13と下方のスラスト軸
受14で固体接触を伴いながら停止することになる。し
かし、起動,停止時の固体接触により生じる摩耗又は焼
き付きは、スラスト軸受表面をイオン源により表面改質
や成膜し、耐摩耗性を向上させるので、防止することが
出来る。
For example, when the compressor is used with a vertical shaft with the compressor side facing downward as shown in FIG. 1, the thrust collar 13 and the thrust bearing 14 are in solid contact with each other and are stationary. In this state, when the process gas discharged from the compressor is supplied to the turbine side, the turbine impeller 8 rotates, while the compressor is started by the turbine power, and the thrust force acts from the compressor side to the turbine side. By the thrust force, the thrust collar 13 and the upper thrust bearing 1
4 approaches, and the bearing chamber 1
The gas in 0 is sucked toward the inner peripheral side to increase the pressure in the spiral groove 15, and the rotor (shaft 11, thrust collar 1
3 and the shaft 11 on both ends of which the turbine impeller 8 and the compressor impeller 2 are installed). At this time, since the bottom surface of the spiral groove 15 is inclined so as to be narrow in the rotation direction, the load capacity generated by the spiral groove 15 and the wedge-shaped gap existing in the rotation direction make the bearing load capacity 2 to 3 times that of the spiral unit. Increase relatively. The rotating body involves some solid contact in the initial floating stage, and the thrust force and the bearing load capacity are balanced at a predetermined rotation speed to maintain a predetermined clearance. Further, at the time of stoppage, contrary to the above, the gas supply to the turbine side is stopped, so that the rotation speed is reduced and the thrust force and the bearing load capacity are reduced. Therefore, the thrust collar 13 and the lower thrust bearing 14 are stopped together with solid contact. However, abrasion or seizure caused by solid contact at the time of starting or stopping can be prevented because the surface of the thrust bearing is surface-modified or film-formed by an ion source to improve abrasion resistance.

【0014】図4,5に本発明のその他の実施例である
スパイラル溝の溝方向底面の状態を示す。18は回転方
向に対して、溝深さが階段状に小さくなる階段状底面、
19は同様に溝深さが途中から段差及び傾斜により小さ
くなる段付傾斜面である。本実施例は両者とも図3に示
す例と同様な効果がある。
4 and 5 show the state of the bottom surface in the groove direction of the spiral groove according to another embodiment of the present invention. 18 is a stepped bottom surface in which the groove depth decreases stepwise with respect to the rotation direction,
Similarly, 19 is a stepped inclined surface in which the groove depth becomes smaller due to a step and an inclination from the middle. Both of the present embodiments have the same effect as the example shown in FIG.

【0015】[0015]

【発明の効果】本発明によれば、負荷容量の向上による
タービンコンプレッサの適用範囲が拡充でき、不要な配
管又は給油装置を排除することによるコンパクト化,低
コスト化及びクリーン化が図れる。また、本軸受はスラ
スト軸受の母材を加工容易な材質とするため、複雑な形
状の軸受も容易に製作することができ、スラスト軸受表
面あるいは、対抗面又はその両者をイオン源により表面
改質や成膜するため、工作が容易で耐摩耗性に優れた軸
受が得られる。
According to the present invention, the range of application of the turbine compressor can be expanded by improving the load capacity, and the unnecessary pipe or oil supply device can be eliminated to achieve compactness, cost reduction and cleanliness. In addition, since this bearing uses the base material of the thrust bearing as a material that can be easily processed, it is possible to easily manufacture bearings with complicated shapes, and the surface of the thrust bearing or the opposing surface or both of them can be surface modified by an ion source. Because of the thin film formation, it is possible to obtain a bearing that is easy to machine and has excellent wear resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を適用した動圧気体軸受式タ
ービンコンプレッサの断面図である。
FIG. 1 is a cross-sectional view of a dynamic pressure gas bearing type turbine compressor to which an embodiment of the present invention is applied.

【図2】本発明の一実施例を示す動圧気体スラスト軸受
の詳細平面図である。
FIG. 2 is a detailed plan view of a dynamic pressure gas thrust bearing showing an embodiment of the present invention.

【図3】図2のA−A断面拡大図である。3 is an enlarged cross-sectional view taken along the line AA of FIG.

【図4】他の実施例を示す溝方向底面状態の断面図であ
る。
FIG. 4 is a cross-sectional view showing another embodiment of the bottom surface in the groove direction.

【図5】さらに他の実施例を示す溝方向底面状態の断面
図である。
FIG. 5 is a sectional view showing a groove-direction bottom surface state of yet another embodiment.

【符号の説明】[Explanation of symbols]

1…コンプレッサ吸込み口、2…コンプレッサ翼車、3
…ディフューザ、4…コンプレッサ出口、5…熱交換
器、6…タービン入口、7…ノズル、8…タービン翼
車、9…ラビリンス、10…軸受室、11…シャフト、
12…動圧気体ジャーナル軸受、13…スラストカラ
ー、14…スラスト軸受、15…スパイラル溝、16…
シール面、17…層、18…階段状底面、19…段付き
傾斜面、20…動圧気体スラスト軸受。
1 ... Compressor suction port, 2 ... Compressor wheel, 3
... Diffuser, 4 ... Compressor outlet, 5 ... Heat exchanger, 6 ... Turbine inlet, 7 ... Nozzle, 8 ... Turbine impeller, 9 ... Labyrinth, 10 ... Bearing chamber, 11 ... Shaft,
12 ... Dynamic pressure gas journal bearing, 13 ... Thrust collar, 14 ... Thrust bearing, 15 ... Spiral groove, 16 ...
Sealing surface, 17 ... Layer, 18 ... Stepped bottom surface, 19 ... Stepped inclined surface, 20 ... Dynamic pressure gas thrust bearing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一端に高圧ガスを断熱膨張させるタービン
翼車を取り付け、他端にタービン翼車で発生した動力に
よりガスを断熱圧縮するコンプレッサ翼車を取り付けた
回転体を動圧気体ジャーナル軸受及び動圧気体スラスト
軸受で支持したタービンコンプレッサにおいて、前記動
圧気体スラスト軸受の母材が加工容易な材質で、その軸
受形状をスパイラル形とし、スパイラル形の溝の底面を
回転方向に狭くなるような傾斜あるいは、段差又はその
両者とし、スラスト軸受表面あるいは、対抗面又はその
両者をイオン源により表面改質や成膜することを特徴と
するタービンコンプレッサ用動圧気体スラスト軸受。
1. A rotary body having a turbine impeller for adiabatically expanding high-pressure gas at one end and a compressor impeller for adiabatically compressing gas by the power generated by the turbine impeller at the other end as a dynamic pressure gas journal bearing and In a turbine compressor supported by a dynamic pressure gas thrust bearing, the base material of the dynamic pressure gas thrust bearing is a material that can be easily processed, and the bearing shape is a spiral type, and the bottom of the spiral type groove is narrowed in the rotation direction. A dynamic pressure gas thrust bearing for a turbine compressor, wherein the thrust bearing surface or the opposing surface or both are inclined or stepped or both, and surface modification or film formation is performed by an ion source.
JP19515194A 1994-08-19 1994-08-19 Dynamic pressure gas thrust bearing for turbine compressor Pending JPH0861089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19515194A JPH0861089A (en) 1994-08-19 1994-08-19 Dynamic pressure gas thrust bearing for turbine compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19515194A JPH0861089A (en) 1994-08-19 1994-08-19 Dynamic pressure gas thrust bearing for turbine compressor

Publications (1)

Publication Number Publication Date
JPH0861089A true JPH0861089A (en) 1996-03-05

Family

ID=16336286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19515194A Pending JPH0861089A (en) 1994-08-19 1994-08-19 Dynamic pressure gas thrust bearing for turbine compressor

Country Status (1)

Country Link
JP (1) JPH0861089A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077661A (en) * 2012-10-09 2014-05-01 Jeol Resonance Inc Nmr measurement spinner
JP5572832B2 (en) * 2010-03-26 2014-08-20 ソーラテック コーポレイション Centrifugal blood pump device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572832B2 (en) * 2010-03-26 2014-08-20 ソーラテック コーポレイション Centrifugal blood pump device
JP2014077661A (en) * 2012-10-09 2014-05-01 Jeol Resonance Inc Nmr measurement spinner

Similar Documents

Publication Publication Date Title
JP4251679B2 (en) Screw type compressor equipped with a device for sealing the rotor shaft and such a device
US20120163742A1 (en) Axial gas thrust bearing for rotors in rotating machinery
JPS62210279A (en) Scroll compressor
JP4081274B2 (en) Screw compressor into which water is injected
CN105003302B (en) Turbomachine
JP4474707B2 (en) Turbo compressor
JPH1113686A (en) Turbomachine
US5413467A (en) Oil-free type screw compressor device
JP2000509786A (en) Two-stage vacuum pump
JPH0861089A (en) Dynamic pressure gas thrust bearing for turbine compressor
JPS62210282A (en) Shift seal device of oil-free fluid machine
JP3829416B2 (en) Turbo machine
JPS58180831A (en) Gas bearing structure
US20080260543A1 (en) Liquid ring compressor
JPH1113696A (en) Turbomachinery
JP3829415B2 (en) Turbo machine
JPH06193591A (en) Centrifugal compressor
KR100343724B1 (en) Bearing structure for turbo compressor
JPS6316938Y2 (en)
JP2001153089A (en) Vacuum pump
JPH11303790A (en) Multi-stage turbo compressor
JPH07119477A (en) Sealing device of supercharger
KR100405985B1 (en) Foil bearing of Turbo compressor
JPS6343425Y2 (en)
KR100390489B1 (en) Structure for reducing gas leakage of turbo compressor