JPH0854227A - Method for detecting condensed liquid in gas piping laid horizontally - Google Patents

Method for detecting condensed liquid in gas piping laid horizontally

Info

Publication number
JPH0854227A
JPH0854227A JP19311994A JP19311994A JPH0854227A JP H0854227 A JPH0854227 A JP H0854227A JP 19311994 A JP19311994 A JP 19311994A JP 19311994 A JP19311994 A JP 19311994A JP H0854227 A JPH0854227 A JP H0854227A
Authority
JP
Japan
Prior art keywords
echo
condensate
ultrasonic
condensed liquid
gas piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19311994A
Other languages
Japanese (ja)
Inventor
Fujitaka Taguchi
藤孝 田口
Hiroshi Hasegawa
宏 長谷川
Mitsuru Otaka
充 大高
Takashi Seki
貴司 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP19311994A priority Critical patent/JPH0854227A/en
Publication of JPH0854227A publication Critical patent/JPH0854227A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PURPOSE:To detect a condensed liquid staying in a gas piping laid horizontally through a simple method. CONSTITUTION:An ultrasonic transmitting/receiving section 2 is fixed to the outer face at the bottom of a horizontal gas piping 1 in order to monitor an ultrasonic echo. A condensed liquid 4 is detected based on the presence of an echo subsequent to an echo from the inner face of the bottom wall of the piping 1 and the level of the condensed liquid 4 is calculated from the time elapsed after transmission of an ultrasonic wave before detection of an objective echo. Since no valve nor nozzle is required for the gas piping itself and only an ultrasonic transmitter/receiver is required on the outside of the bottom part, the facility is simplified while reducing the cost and the required space and the method can be applied to an existing piping. Furthermore, the condensed liquid can be detected without stopping the line of objective gas piping.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は横設したガス配管内の凝
縮液の検出方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting condensate in a horizontally installed gas pipe.

【0002】[0002]

【従来の技術】例えばLNG設備のボイルオフガスライ
ン等を構成するガス配管においては、横設したガス配管
に凝縮液が溜ることがあり、従ってこのようなラインの
横設配管では凝縮液の検出手段が必要である。
2. Description of the Related Art For example, in a gas pipe constituting a boil-off gas line of an LNG facility, a condensate may collect in a horizontally installed gas pipe. is necessary.

【0003】そのための手段の一つとして、例えば図5
に示すように横設したガス配管aにおいて、凝縮液が溜
る可能性のある最低部を含む配管部分bの上流側と下流
側の夫々にバルブc,dを設けると共に、最低部にバル
ブeを備えた凝縮液ノズルfを接続した構成がある。
As one of the means for that, for example, FIG.
In the gas pipe a which is installed horizontally as shown in FIG. 3, valves c and d are provided on the upstream side and the downstream side of the pipe portion b including the lowest portion where the condensed liquid may accumulate, and the valve e is provided at the lowest portion. There is a configuration in which the provided condensate nozzle f is connected.

【0004】このような構成では、必要に応じてライン
を停止し、バルブc,dを閉として配管部分bをライン
から分離した後、バルブeを開として、凝縮液ノズルf
からの凝縮液の流出の有無により直接的に凝縮液の検出
を行うものである。
In such a construction, the line is stopped as required, the valves c and d are closed to separate the pipe portion b from the line, the valve e is opened, and the condensate nozzle f is opened.
The condensate is directly detected depending on whether or not the condensate flows out from.

【0005】[0005]

【発明が解決しようとする課題】上述したものでは、次
のような課題がある。 構成要素が多く、コストや所要スペース等の点で不利
である。 凝縮液の検出動作においてラインを停止しなければら
ない。 既設の横設配管には適用困難である。 従って本発明は、このような課題を解決することを目的
とするものである。
The above-mentioned problems have the following problems. It has many components and is disadvantageous in terms of cost and required space. The line must be stopped in the condensate detection operation. It is difficult to apply to existing horizontal piping. Therefore, the present invention aims to solve such a problem.

【0006】[0006]

【課題を解決するための手段】上述した課題を解決する
ために、本発明では、まず、横設したガス配管の底部外
面に超音波送受信部を取付けて超音波のエコーを監視
し、配管の底壁内面によるエコー以後のエコーの存在に
より凝縮液を検出することを提案する。
In order to solve the above-mentioned problems, in the present invention, first, an ultrasonic wave transmitting / receiving section is attached to the outer surface of the bottom of a horizontally installed gas pipe to monitor the echo of ultrasonic waves, and We propose to detect the condensate by the presence of the echo after the echo by the inner surface of the bottom wall.

【0007】また本発明では、上述したように、配管の
底壁内面によるエコー以後のエコーの存在により凝縮液
を検出すると共に、送信時点から対象エコーの検出時点
までの経過時間から凝縮液の液面高さを算出することを
提案する。
Further, in the present invention, as described above, the condensate is detected by the presence of the echo after the echo by the inner surface of the bottom wall of the pipe, and the liquid of the condensate is detected from the time elapsed from the transmission time to the detection time of the target echo. We propose to calculate the surface height.

【0008】[0008]

【作用】横設したガス配管内に凝縮液が溜っていると、
底部外面に取り付けた超音波送受信部から上方に発信さ
れた超音波が凝縮液により反射され、配管の底壁内面に
よるエコーの以後のエコーとして観測される。従って、
この後のエコーにより凝縮液の存在を検出できると共
に、送信時点からの経過時間により凝縮液の高さ、即ち
溜っている量を算出することができる。
[Operation] If the condensate is accumulated in the gas pipe installed horizontally,
The ultrasonic waves emitted upward from the ultrasonic wave transmitting / receiving section attached to the outer surface of the bottom are reflected by the condensate and are observed as echoes after the echo by the inner surface of the bottom wall of the pipe. Therefore,
The presence of the condensate can be detected by the echo after this, and the height of the condensate, that is, the accumulated amount can be calculated from the time elapsed from the time of transmission.

【0009】この際、ガス配管はラインの停止を行う必
要がない。また超音波送受信部は既設のガス配管に容易
に取付けて使用することができる。
At this time, it is not necessary to stop the gas piping. Further, the ultrasonic wave transmitting / receiving unit can be easily attached to an existing gas pipe for use.

【0010】[0010]

【実施例】次に本発明を図1〜図4について説明する。
符号1は凝縮液が溜る可能性のある横設したガス配管の
一部を示すもので、2はこのガス配管1の底部外面に取
付けた超音波送受信部である。この超音波送受信部2
は、送信専用と受信専用の1組の超音波トランスデュー
サーから構成するものや、送受信兼用の超音波トランス
デューサーにより構成するものを適用することができ
る。符号3は処理装置であり、この処理装置3は、超音
波送受信部2を制御すると共に、超音波を発信してから
エコーが到達するまでの時間から超音波の伝播距離を測
定することにより、超音波の送信面から反射面までの距
離を算出する構成としている。従って上記超音波送受信
部2と処理装置3は、従来の超音波厚さ計と同様な構成
を利用することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to FIGS.
Reference numeral 1 denotes a part of a horizontally installed gas pipe in which condensate may accumulate, and reference numeral 2 denotes an ultrasonic transmission / reception unit attached to the outer surface of the bottom of the gas pipe 1. This ultrasonic transceiver 2
Can be applied to those configured by one set of ultrasonic transducers dedicated to transmission and reception or those configured with ultrasonic transducers for both transmission and reception. Reference numeral 3 denotes a processing device. The processing device 3 controls the ultrasonic wave transmitting / receiving unit 2 and measures the propagation distance of the ultrasonic wave from the time from the transmission of the ultrasonic wave to the arrival of the echo, It is configured to calculate the distance from the transmitting surface of ultrasonic waves to the reflecting surface. Therefore, the ultrasonic transmitting / receiving unit 2 and the processing device 3 can use the same configuration as the conventional ultrasonic thickness gauge.

【0011】以上の構成において、処理装置3は操作者
の指令により、又は所定時間毎に超音波送受信部2を制
御して、ガス配管1の底部外面から上方に超音波を発信
し、そのエコーを受信する。
In the above-mentioned structure, the processing device 3 controls the ultrasonic wave transmitting / receiving section 2 in accordance with an operator's command or at predetermined time intervals to emit an ultrasonic wave upward from the outer surface of the bottom portion of the gas pipe 1 and echo it. To receive.

【0012】まず、ガス配管1内に凝縮液が溜っていな
い場合には、超音波はガスとの境界面である底部壁の内
面においてほぼ完全反射して超音波送受信部2に戻る。
従って、図4中の破線に示すように超音波の発信時点t
0からガス配管1の管の厚さに対応した時間経過後のt1
時点にのみエコーe1が観測される。
First, when the condensate is not accumulated in the gas pipe 1, the ultrasonic waves are almost completely reflected on the inner surface of the bottom wall, which is the boundary surface with the gas, and return to the ultrasonic wave transmitting / receiving section 2.
Therefore, as shown by the broken line in FIG.
T 1 after a lapse of time corresponding to the thickness of the gas pipe 1 from 0
The echo e 1 is observed only at the time point.

【0013】一方、ガス配管1内に凝縮液4が溜ってい
ると、超音波は凝縮液との境界面である底部壁の内面に
おいて大部分反射して超音波送受信部方向に戻って行く
が、一部は凝縮液に透過する。例えばガス配管1が鋼
製、凝縮液が水であると、縦波の垂直入射時における音
圧反射率は約94%である。凝縮液に透過した超音波は、
ガスとの境界面である表面に至り、ここでほぼ完全反射
して入射方向に戻って超音波送受信部2に至る。従っ
て、図4中の実線に示すように超音波の発信時点t0
らガス配管1の管の厚さに対応した時間経過後のt1
点にエコーe1′が観測されてから、凝縮液4の深さに
対応した時間経過後のt2時点にもエコーe2が観測され
る。従って、このエコーe2の有無により、凝縮液4の
有無を検出することができる。またこれらのエコー
1′、e2の観測時点t1、t2とにより凝縮液4の深さ
を算出することができる。
On the other hand, when the condensate 4 is accumulated in the gas pipe 1, most of the ultrasonic waves are reflected by the inner surface of the bottom wall, which is the interface with the condensate, and return toward the ultrasonic transmitter / receiver. , Partly permeates the condensate. For example, when the gas pipe 1 is made of steel and the condensate is water, the sound pressure reflectance at the time of vertical incidence of longitudinal waves is about 94%. The ultrasonic waves transmitted through the condensate are
It reaches the surface which is the boundary surface with the gas, where it is almost completely reflected and returns to the incident direction to reach the ultrasonic wave transmitting / receiving section 2. Therefore, as shown by the solid line in FIG. 4, after the echo e 1 ′ is observed at time t 1 after a lapse of time corresponding to the thickness of the gas pipe 1 from the time t 0 of ultrasonic wave transmission, the condensate is The echo e 2 is also observed at time t 2 after the time corresponding to the depth of 4 has elapsed. Therefore, the presence or absence of the condensate 4 can be detected by the presence or absence of this echo e 2 . Further, the depth of the condensate 4 can be calculated from the observation times t 1 and t 2 of these echoes e 1 ′ and e 2 .

【0014】尚、超音波送受信部2は、ガス配管1に常
時取り付けておいて所定時間毎に上述した凝縮液の検出
動作を行うようにしても良いし、必要時にガス配管1に
取り付けて上述した検出動作を行うようにすることもで
きる。
The ultrasonic wave transmitting / receiving section 2 may be always attached to the gas pipe 1 so as to perform the above-described operation of detecting the condensate at predetermined time intervals. It is also possible to perform the above detection operation.

【0015】[0015]

【発明の効果】本発明は以上のとおりであるので、以下
に示すような効果がある。 ガス配管自体にバルブやノズル等を設置する必要がな
く、底部外側に超音波送受信装置を取り付ければ良いの
で、設備が簡素でコストや所要スペースの点で有利であ
り、既設の配管にも適用できる。 凝縮液の検出動作において、対象とするガス配管の部
分のラインを停止する必要がない。
Since the present invention is as described above, it has the following effects. Since it is not necessary to install valves or nozzles in the gas pipe itself, and an ultrasonic transmitter / receiver can be attached to the outside of the bottom, the facility is simple and advantageous in terms of cost and required space, and it can also be applied to existing pipes. . In the operation of detecting the condensate, it is not necessary to stop the line of the target gas pipe.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の構成を概念的に表したガス配管の縦
断面図である。
FIG. 1 is a vertical sectional view of a gas pipe conceptually showing the configuration of the present invention.

【図2】 本発明の構成を概念的に表したガス配管の横
断面図である。
FIG. 2 is a cross-sectional view of a gas pipe conceptually showing the constitution of the present invention.

【図3】 図2の要部拡大図である。FIG. 3 is an enlarged view of a main part of FIG.

【図4】 本発明における凝縮液の検出動作を概念的に
示す説明図である。
FIG. 4 is an explanatory view conceptually showing a condensate detecting operation in the present invention.

【図5】 従来の凝縮液の検出方法を概念的に示す説明
図である。
FIG. 5 is an explanatory view conceptually showing a conventional condensate detection method.

【符号の説明】[Explanation of symbols]

1 ガス配管 2 超音波送受信部 3 処理装置 4 凝縮液 1 Gas pipe 2 Ultrasonic transmitter / receiver unit 3 Processing device 4 Condensate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 横設したガス配管の底部外面に超音波送
受信部を取付けて超音波のエコーを監視し、配管の底壁
内面によるエコー以後のエコーの存在により凝縮液を検
出することを特徴とする横設したガス配管内の凝縮液の
検出方法
1. An ultrasonic transmitting / receiving unit is attached to the outer surface of the bottom of a horizontally installed gas pipe to monitor the echo of ultrasonic waves, and the condensate is detected by the presence of the echo after the echo by the inner surface of the bottom wall of the pipe. Method for detecting condensate in horizontally installed gas pipe
【請求項2】 横設したガス配管の底部外面に超音波送
受信部を取付けて超音波のエコーを監視し、配管の底壁
内面によるエコー以後のエコーの存在により凝縮液を検
出し、送信時点から対象エコーの検出時点までの経過時
間から凝縮液の液面高さを算出することを特徴とする横
設したガス配管内の凝縮液の検出方法
2. An ultrasonic wave transmitter / receiver is attached to the outer surface of the bottom of a horizontally installed gas pipe to monitor the echo of the ultrasonic wave, and the condensate is detected by the presence of the echo after the echo from the inner surface of the bottom wall of the pipe, and the time of transmission. Method for detecting condensate in a horizontally installed gas pipe, characterized in that the liquid level height of the condensate is calculated from the elapsed time from the detection time to the target echo
JP19311994A 1994-08-17 1994-08-17 Method for detecting condensed liquid in gas piping laid horizontally Pending JPH0854227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19311994A JPH0854227A (en) 1994-08-17 1994-08-17 Method for detecting condensed liquid in gas piping laid horizontally

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19311994A JPH0854227A (en) 1994-08-17 1994-08-17 Method for detecting condensed liquid in gas piping laid horizontally

Publications (1)

Publication Number Publication Date
JPH0854227A true JPH0854227A (en) 1996-02-27

Family

ID=16302581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19311994A Pending JPH0854227A (en) 1994-08-17 1994-08-17 Method for detecting condensed liquid in gas piping laid horizontally

Country Status (1)

Country Link
JP (1) JPH0854227A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787557A2 (en) 1996-01-30 1997-08-06 Suzuki Motor Corporation Method of bonding aluminum members
US8387461B2 (en) 2007-07-11 2013-03-05 Flexlife Limited Inspection method
CN103245454A (en) * 2013-05-14 2013-08-14 西南石油大学 Non-intrusive pipeline real-time monitoring, prewarning and fault locating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787557A2 (en) 1996-01-30 1997-08-06 Suzuki Motor Corporation Method of bonding aluminum members
US8387461B2 (en) 2007-07-11 2013-03-05 Flexlife Limited Inspection method
CN103245454A (en) * 2013-05-14 2013-08-14 西南石油大学 Non-intrusive pipeline real-time monitoring, prewarning and fault locating system

Similar Documents

Publication Publication Date Title
US5095754A (en) Apparatus and method for detection of icing onset and ice thickness
US6595059B2 (en) Noninvasive detection of corrosion, MIC, and foreign objects in fluid-filled pipes using leaky guided ultrasonic waves
CN104198003B (en) Ultrasonic flowmeter
JP2001527639A (en) Ultrasonic buffer / waveguide
EP1621856A3 (en) Doppler ultrasonic flow velocity profile meter
RU2004110033A (en) DIAGNOSTIC DEVICE FOR PIPELINES
WO2015059990A1 (en) Fluid metering device
US5271267A (en) Method and apparatus for determining fluid properties from sonic/temperature fluid signature
US9212943B2 (en) Ultrasonic reactor water level measuring device and evaluation method
US4446736A (en) Ultrasonic identification of damage in lined structures
USH608H (en) Detecting multiple phase flow in a conduit
JPH0854227A (en) Method for detecting condensed liquid in gas piping laid horizontally
JP2001194210A (en) Ultrasonic level measuring apparatus
JP3940580B2 (en) Piping inspection method and piping inspection device
JP6221624B2 (en) Fluid type discrimination device and fluid type discrimination method
US20220099629A1 (en) Method and device for non-destructive testing of a plate material
KR20220064538A (en) Pipe Thickness Measuring System by Using Induced Ultrasonic wave and Ultra Sonar
JP2021103100A (en) Delamination inspection method and delamination inspection device for laminated body
JP3810661B2 (en) Defect detection method for piping
JP2003254942A (en) Pipe inspection device and pipe inspection method
NO333551B1 (en) Device for detection and painting of layer formation around drainage drains
JP3030132B2 (en) Valve seat leakage diagnosis
JP3729686B2 (en) Defect detection method for piping
JPH05149928A (en) Method and apparatus for non-destructive inspection with ultrasonic wave, and probe used in apparatus thereof
Edwards et al. Detection of corrosion in offshore risers using guided ultrasonic waves