JPH0850903A - Solid polymer type fuel cell - Google Patents

Solid polymer type fuel cell

Info

Publication number
JPH0850903A
JPH0850903A JP6185537A JP18553794A JPH0850903A JP H0850903 A JPH0850903 A JP H0850903A JP 6185537 A JP6185537 A JP 6185537A JP 18553794 A JP18553794 A JP 18553794A JP H0850903 A JPH0850903 A JP H0850903A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
gas
power generating
generating element
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6185537A
Other languages
Japanese (ja)
Inventor
Futoshi Fujikawa
太 藤川
Yasuaki Hasegawa
泰明 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP6185537A priority Critical patent/JPH0850903A/en
Publication of JPH0850903A publication Critical patent/JPH0850903A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide the structure of a compact solid polymer type fuel cell. CONSTITUTION:A pair of gas separating members 6 and 7 nippedly holding a power generation element 5 are provided with protruded parts 6a and 7a, alternately protruded in a direction vertical to a direction in which the power generation element 5 is extendedly provided, to nippedly hold the power generation element 5 by pushing the protruded parts 6a and 7a with each other to the surfaces 6b and 7b of the other side gas separating members. The power generating element 5 is extended in a zigzag in the extendedly provided direction of the gas separating members 6 and 7. Spaces 8 and 9, demarcated by the power generation element 5 obliquely extending and the respective gas separating members 6 and 7, constitute a gas passage for a fuel gas, that is, cathode side gas or an oxidant gas, that is, cathode side gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子型燃料電池
に関する。
FIELD OF THE INVENTION The present invention relates to a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術及び解決しようとする課題】固体高分子型
燃料電池は、一般的に、水素イオン導電性の固体高分子
を白金触媒を担持したカーボン電極で挟み込んで構成さ
れる発電素子すなわち固体高分子−電極接合体及び各電
極面にそれぞれの反応ガスを供給するためのガス通路を
画成するともに、発電素子を両側から支持するガス分離
部材とを積層した構造を有する。そして、一方の電極に
燃料ガスを供給し、他方の電極に酸化剤ガスを供給し
て、燃料ガスの酸化にかかる化学エネルギーを直接電気
エネルギーに変化することによってエネルギーを抽出す
るようになっている。ところで、固体高分子型燃料電池
において上記1つの発電素子とガス通路を構成する1対
のガス分離部材とから構成される1つの電池構造体すな
わちセルの積層数を増大すると電圧が増加し、1つのセ
ルの有効反応面積が増大することによって発生する電流
が増大する。固体高分子型燃料電池をコンパクトを達成
しつつ、電池の高出力化を達成することが望まれてい
る。コンパクト化を図るためにセルの1つの層を薄くす
るためにガス分離部材を薄くすることが提案されている
が、電池の積層構造の機械的強度が低下するという問題
が発生する。有効反応面積を増大させるためにガス分離
部材の発電素子支持部の面積を減少すると以下のような
問題が生じる。すなわち、ガス分離部材は電極面に接触
することによって高分子電解質膜を介して発生した電気
エネルギーを回収するための集電部材としても機能する
がこの接触面積を少なくしすぎると集電抵抗が増大し、
かえってエネルギー効率が低下するという問題が生じ
る。
2. Description of the Related Art A polymer electrolyte fuel cell is generally a power generating element, that is, a solid electrolyte fuel cell constructed by sandwiching a hydrogen ion conductive solid polymer between carbon electrodes carrying a platinum catalyst. It has a structure in which a molecule-electrode assembly and gas passages for supplying respective reaction gases to the respective electrode surfaces are defined and a gas separation member supporting the power generation element from both sides is laminated. Then, the fuel gas is supplied to one electrode, the oxidant gas is supplied to the other electrode, and the energy is extracted by directly converting the chemical energy involved in the oxidation of the fuel gas into electric energy. . By the way, in the polymer electrolyte fuel cell, when the number of stacked layers of one cell structure, that is, one cell structure composed of one power generation element and a pair of gas separation members forming a gas passage is increased, the voltage is increased. The current generated by increasing the effective reaction area of one cell increases. It is desired to achieve a high output of the cell while achieving a compact polymer electrolyte fuel cell. Although it has been proposed to reduce the thickness of the gas separation member in order to reduce the thickness of one layer of the cell in order to achieve compactness, the mechanical strength of the laminated structure of the battery is reduced. If the area of the power generation element supporting portion of the gas separation member is reduced in order to increase the effective reaction area, the following problems occur. That is, the gas separating member also functions as a current collecting member for recovering the electric energy generated through the polymer electrolyte membrane by coming into contact with the electrode surface, but if the contact area is too small, the current collecting resistance increases. Then
On the contrary, there arises a problem that energy efficiency is lowered.

【0003】さらに、固体高分子型燃料電池において
は、、燃料ガスと酸化剤ガスとをイオン化状態で酸化さ
せ、このときの化学エネルギーを取り出すように構成す
るものであるが、この場合、燃料ガスは、水素であり酸
化剤ガスは酸素または空気である。固体高分子型燃料電
池は、このガスを発電素子を介して対峙させる構造にな
っており、しかも、これらのガスをメイン通路から薄い
層構造の各セルに流通させるようになっている。このよ
うに固体高分子型燃料電池では、燃料ガスと酸化剤ガス
と極めて近接した状態において非接触状態を保持しなけ
ればならず、両ガスの混合状態を防ぐために極めて精度
の高いシール性が要求される。このシール性を確保する
ために、従来では、各燃料ガスと酸化剤ガスのそれぞれ
のメイン通路から各セルに分配するためのマニホールド
にシール部材を配し、ガス分離部材にシール部材を押し
つけるようにして燃料ガスと酸化剤ガスとの混合を防止
するように構成していた。しかし、このようにシール方
法では、ガス分離部材に不均一な応力が発生し、ガス分
離部材の薄くするガス分離部材が変形してシール性が保
持出来なくなるという問題が生じる。
Further, in the polymer electrolyte fuel cell, the fuel gas and the oxidant gas are oxidized in an ionized state, and the chemical energy at this time is taken out. In this case, the fuel gas is used. Is hydrogen and the oxidant gas is oxygen or air. The polymer electrolyte fuel cell has a structure in which this gas is opposed to each other via a power generation element, and these gases are allowed to flow from the main passage to each cell having a thin layer structure. As described above, in the polymer electrolyte fuel cell, it is necessary to maintain the non-contact state in the state where the fuel gas and the oxidant gas are extremely close to each other, and it is necessary to have a highly accurate sealing property in order to prevent the mixed state of both gases. To be done. In order to secure this sealing property, conventionally, a seal member is arranged in a manifold for distributing each fuel gas and an oxidant gas from each main passage to each cell, and the seal member is pressed against the gas separation member. The fuel gas and the oxidant gas are prevented from being mixed with each other. However, in such a sealing method, nonuniform stress is generated in the gas separation member, and the gas separation member that thins the gas separation member is deformed, so that the sealing performance cannot be maintained.

【0004】本発明はこのような事情に鑑みて構成され
たもので、上記のような問題点を解消しつつコンパクト
な固体高分子型燃料電池の構造を提供することを目的と
する。本発明の別の目的は、比較的簡単な構成でセル内
を流通するガス、冷却水等のシール性を改善することが
できる固体高分子型燃料電池の構造を提供することを目
的とする。
The present invention has been constructed in view of the above circumstances, and an object thereof is to provide a compact structure of a polymer electrolyte fuel cell while solving the above problems. Another object of the present invention is to provide a structure of a polymer electrolyte fuel cell capable of improving the sealing property of gas, cooling water, etc. flowing in the cell with a relatively simple structure.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明は以下のように構成される。すなわち、本発
明の固体高分子型燃料電池は、高分子電解質膜の両側に
電極構成部材を配した発電素子と、該発電素子部材を挟
んで延び両側からこれを支持し、かつ該それぞれの電極
構成部材の側から発電素子に関与するそれぞれの反応ガ
スの通路を画成する一対のガス分離部材とを備えた構造
を積層して構成される固体高分子型燃料電池において、
前記発電素子を挟んで対峙する一対のガス分離部材が前
記反応ガス通路を構成するために前記発電素子の延設方
向に対してほぼ垂直方向に突出する突出部を有してお
り、該突出部は発電素子に対してその両側から交互に突
出するように設けられ発電素子が該突出部によってジグ
ザグ状に延びるように支持され、発電素子の両側に前記
各ガス分離部材との間に前記それぞれの反応ガスの通路
が画成されたことを特徴とする。1つの好ましい態様で
は、前記突出部が前記発電素子の延設方向に対して横方
向に不連続的に設けられる。すなわち、1つ1つの突出
部は、柱状の突起として延び互いの他方のガス分離部材
の表面との間に発電素子を挟み付けて支持している。
In order to achieve the above object, the present invention is configured as follows. That is, the polymer electrolyte fuel cell of the present invention comprises a power generating element in which electrode constituent members are arranged on both sides of a polymer electrolyte membrane, and a power generating element extending from both sides of the power generating element member and supported from both sides, and each of the electrodes. In a polymer electrolyte fuel cell configured by stacking a structure including a pair of gas separation members that define a passage of each reaction gas involved in the power generation element from the side of the constituent members,
A pair of gas separation members facing each other with the power generation element interposed therebetween have a protrusion that protrudes in a direction substantially perpendicular to the extending direction of the power generation element to form the reaction gas passage, and the protrusion Is provided so as to alternately project from both sides of the power generating element, and the power generating element is supported by the projecting portion so as to extend in a zigzag shape. The reaction gas passage is defined. In one preferable aspect, the protrusion is provided discontinuously in a lateral direction with respect to the extending direction of the power generation element. That is, each of the protrusions extends as a columnar protrusion and sandwiches and supports the power generation element between the protrusions and the surface of the other gas separation member.

【0006】さらに、本発明の別の特徴によれば、高分
子電解質膜の両側に電極構成部材を配した発電素子と、
該発電素子部材を挟んで延び両側からこれを支持し、か
つ該それぞれの電極構成部材の側から発電素子に関与す
るそれぞれの反応ガスの通路を画成する一対のガス分離
部材とを備えた発電セル構造体を積層して構成される固
体高分子型燃料電池において、前記高分子電解質膜が電
極構成部材を越えて延在する部分に配置されて電極構成
部材の周縁部を電極構成部材と面一となるように支持
し、、反応ガスをメインガス通路から前記各発電セル構
造体のガス通路に分配供給するガスマニホールドを少な
くとも備えたフレームがさらに設けられ、前記発電素子
とフレームとが接着されたことを特徴とする。この場合
に好ましくは、高分子電解質膜と前記フレームとの接触
部を接着剤で接着する。さらに別の態様では、固体高分
子型燃料電池と前記フレームとの接触部を熱接着するこ
とによって反応ガスのシール性を確保する。
Further, according to another feature of the present invention, a power generating element in which electrode constituent members are arranged on both sides of a polymer electrolyte membrane,
Power generation including a pair of gas separation members extending across the power generating element member, supporting the power generating element member from both sides, and defining passages of respective reaction gases involved in the power generating element from the respective electrode component members side. In a polymer electrolyte fuel cell configured by stacking cell structures, the polymer electrolyte membrane is disposed in a portion extending beyond the electrode constituent member, and the peripheral edge portion of the electrode constituent member faces the electrode constituent member. Further provided is a frame having at least a gas manifold that supports the reaction gas from the main gas passage and distributes the reaction gas from the main gas passage to the gas passages of the power generation cell structures, and the power generation element and the frame are bonded to each other. It is characterized by that. In this case, preferably, the contact portion between the polymer electrolyte membrane and the frame is bonded with an adhesive. In still another aspect, the contact portion between the polymer electrolyte fuel cell and the frame is heat-bonded to ensure the sealing property of the reaction gas.

【0007】さらに別の態様では、発電素子部材を挟ん
で延び両側からこれを支持し、かつ該それぞれの電極構
成部材の側から発電素子に関与するそれぞれの反応ガス
の通路を画成するガス分離部材が設けられ、前記高分子
電解質膜と前記ガス分離部材とが接合された構造になっ
ている。さらに、本発明の別の特徴によれば、高分子電
解質膜の両側に電極構成部材を配した発電素子と、該発
電素子部材を挟んで延び両側からこれを支持し、かつ該
それぞれの電極構成部材の側から発電素子に関与するそ
れぞれの反応ガスの通路を画成する一対のガス分離部材
とを備えた発電セル構造体を積層して構成される固体高
分子型燃料電池において、電極構成部材を越えて高分子
電解質膜が延在する発電素子の周縁部に電極構成部材と
面一になるように該電極構成部材の周囲に配置されるフ
レームがさらに設けられ、前記フレームは高分子電解質
膜の両側に高分子電解質膜を挟んで配置され、少なくと
も一方のフレームの前記ガス分離部材との接合面には、
コーティング材が配置されていることを特徴とする。フ
レームは、好ましくは金属、フェノール樹脂、エポキシ
樹脂等の心材が配置される心材入りガスケットであり、
電極構成部材による電極領域すなわち活性領域をこえる
周辺領域に配置されて電極構成部材を支持する。
[0007] In still another embodiment, a gas separation member that extends from both sides of the power generating element member, supports the power generating element member from both sides, and defines passages of respective reaction gases involved in the power generating element from the side of the respective electrode component members. A member is provided, and the polymer electrolyte membrane and the gas separation member are joined together. Further, according to another feature of the present invention, a power generating element in which electrode constituent members are arranged on both sides of a polymer electrolyte membrane, and extending from both sides of the power generating element member and supporting the power generating element member, and the respective electrode configurations. In a polymer electrolyte fuel cell constituted by stacking a power generation cell structure including a pair of gas separation members defining respective reaction gas passages involved in a power generation element from the member side, an electrode constituent member A frame disposed around the electrode constituent member so as to be flush with the electrode constituent member is further provided in the peripheral portion of the power generation element in which the polymer electrolyte membrane extends beyond the polyelectrolyte membrane. Are arranged on both sides of the polymer electrolyte membrane, and at least one of the frames has a joint surface with the gas separation member,
The coating material is arranged. The frame is preferably a gasket with a core material in which a core material such as metal, phenol resin, epoxy resin is arranged,
The electrode component is disposed in an electrode region of the electrode component, that is, in a peripheral region beyond the active region to support the electrode component.

【0008】なお、コーティング材には、たとえば、N
BR、フッ素ゴム、シリコンゴム、PTFE等が挙げら
れる。
The coating material is, for example, N
BR, fluororubber, silicone rubber, PTFE, etc. may be mentioned.

【0009】[0009]

【作用】本発明の構造において、固体高分子型燃料電池
は、発電素子とこれを両側から支持するガス分離部材と
を含むセルを積層状態にして構成される。そして、この
積層状態にあるセルを貫通する方向に燃料ガス、酸化剤
ガス、及び冷却水の各セルに供給するためのメイン通路
が設けられる。メイン通路は、セルの周囲に設けられ、
これを支持するフレーム領域内に設けられる。そして、
メイン通路は、供給通路及びリターン通路のそれぞれ対
になっている必要があるので、少なくとも6つの貫通孔
が上記フレーム上に形成されることになる。そして、本
発明では、発電素子を挟持する一対のガス分離部材は発
電素子が延設される方向に対して垂直方向に互い違いに
突出する突出部を備えている。そして突出部は発電素子
を互いに他方のガス分離部材の表面に押しつけることに
よって発電素子を挟持する。したがって、発電素子は、
一方のガス分離部材の表面から他方のガス分離部材の表
面に向かって斜めにのび、突出部によってガス分離部材
に表面に押しつけられて支持され、この後、今度は反対
方向の斜めに延びて当該一方のガス分離部材の表面に、
他方のガス分離部材の突出部によって押しつけらる。こ
のように、発電素子は一対のガス分離部材の表面に所定
間隔ごとに接しつつジグザグ状にガス分離部材の延設方
向に延びている。
In the structure of the present invention, the polymer electrolyte fuel cell is constructed by stacking cells including a power generating element and a gas separating member supporting the power generating element from both sides. A main passage for supplying the fuel gas, the oxidant gas, and the cooling water to the respective cells is provided in a direction that penetrates the cells in the stacked state. The main passage is provided around the cell,
It is provided in the frame area that supports it. And
Since the main passage needs to be paired with the supply passage and the return passage, at least six through holes are formed on the frame. Further, in the present invention, the pair of gas separation members that sandwich the power generation element are provided with the protruding portions that alternately project in the direction perpendicular to the direction in which the power generation element extends. The protrusion holds the power generating element by pressing the power generating element against the surface of the other gas separating member. Therefore, the power generation element is
It extends obliquely from the surface of one gas separation member toward the surface of the other gas separation member, and is pressed against and supported by the surface of the gas separation member by the protrusions, and then extends diagonally in the opposite direction. On the surface of one gas separation member,
The other gas separating member is pressed by the protruding portion. In this way, the power generation element extends in the zigzag extending direction of the gas separation members while contacting the surfaces of the pair of gas separation members at predetermined intervals.

【0010】そして、斜めに延びる発電素子と各ガス分
離部材とで画成される空間は、燃料ガスまたは酸化剤ガ
スのガス通路を構成する。このように発電素子はこのよ
うに一対のガス分離部材の間にガス通路を形成しつつジ
グザグ状に配置されたのでガス分離部材の延設方向の単
位長さ当たりに配される発電素子はジグザグ状になって
いる分だけ長くなり、したがって発電素子の面積は大き
くなる。すなわち、ガス分離部材の延設長さに対する出
力密度を高めることができる。さらに、本例の別の特徴
によれば、上記メイン通路から各セルの上記ガス通路に
ガスを導入させる構造は、メイン通路からの分岐部すな
わちマニホールドには、ガスをシールするために発電素
子の高分子電解質膜をフレームとを接着する接着手段が
設けられるので、燃料ガス、酸化剤ガス、冷却水がフレ
ームの表面を介して混合状態が生じることを有効に防止
することができる。
The space defined by the obliquely extending power generation element and each gas separation member constitutes a gas passage for the fuel gas or the oxidant gas. In this way, the power generating elements are arranged in a zigzag shape while forming the gas passage between the pair of gas separating members in this way, so that the power generating elements arranged per unit length in the extending direction of the gas separating members are zigzag. The length of the power generation element is increased as much as the shape of the power generation element is increased. That is, the output density with respect to the extended length of the gas separation member can be increased. Further, according to another feature of the present example, the structure for introducing gas from the main passage into the gas passage of each cell is such that the branch portion from the main passage, that is, the manifold, has a power generating element for sealing the gas. Since the adhering means for adhering the polymer electrolyte membrane to the frame is provided, it is possible to effectively prevent the fuel gas, the oxidant gas, and the cooling water from being mixed with each other through the surface of the frame.

【0011】[0011]

【実施例】以下、本発明の実施例について説明する。図
1は、本発明に1実施例にかかる固体高分子型燃料電池
の要部を示す概略断面図であり、図2は図1の固体高分
子型燃料電池の1つのセルを模式的に示す斜視図であ
る。本例の固体高分子型燃料電池にかかるセル1は、反
応イオンを担持し、この移動を生じさせて反応を行わせ
る高分子電解質膜2と、この高分子電解質膜2の両側に
配置される電極構成部材3、4から構成される発電素子
5と、この発電素子5を両側から挟持するガス分離部材
6、7とを含んで構成される電池構成体すなわちセルを
積層して構成される。上記電極は、高分子電解質膜に両
側でホットプレス法などを用いて接着される。ガス分離
部材6、7は、導電性、かつ気密性の材料たとえば、ア
モルファスカーボンなどで構成される。そして、本発明
では、発電素子5を挟持する一対のガス分離部材6、7
は発電素子5が延設される方向に対して垂直方向に互い
違いに突出する突出部6a、7aを備えている。そして
突出部6a、7aは発電素子5を互いに他方のガス分離
部材の表面6b、7bに押しつけることによって発電素
子5を挟持する。したがって、発電素子5は、一方のガ
ス分離部材6の表面6bから他方のガス分離部材の表面
7bに向かって斜めにのび、突出部6aによってガス分
離部材7の表面7bに押しつけられて支持され、この
後、今度は反対方向の斜めに延びて当該一方のガス分離
部材6bの表面に、他方のガス分離部材7の突出部7a
によって押しつけらる。このように、発電素子5は一対
のガス分離部材6、7の表面6b、7bに所定間隔ごと
に接しつつジグザグ状にガス分離部材6、7の延設方向
に延びている。
Embodiments of the present invention will be described below. FIG. 1 is a schematic sectional view showing a main part of a polymer electrolyte fuel cell according to one embodiment of the present invention, and FIG. 2 schematically shows one cell of the polymer electrolyte fuel cell of FIG. It is a perspective view. The cell 1 of the polymer electrolyte fuel cell of the present example is arranged on both sides of the polymer electrolyte membrane 2 which carries the reaction ions and causes the movement of the reaction ions to cause the reaction. It is configured by stacking a battery constituent body, that is, a cell, which includes a power generation element 5 including the electrode constituent members 3 and 4, and gas separation members 6 and 7 that sandwich the power generation element 5 from both sides. The electrodes are bonded to the polymer electrolyte membrane on both sides using a hot pressing method or the like. The gas separation members 6 and 7 are made of an electrically conductive and airtight material such as amorphous carbon. In the present invention, the pair of gas separation members 6 and 7 that sandwich the power generation element 5 therebetween.
Is provided with projecting portions 6a and 7a which alternately project in the direction perpendicular to the direction in which the power generation element 5 is extended. The protrusions 6a and 7a hold the power generating element 5 by pressing the power generating element 5 against the surfaces 6b and 7b of the other gas separating member. Therefore, the power generation element 5 extends obliquely from the surface 6b of the one gas separation member 6 toward the surface 7b of the other gas separation member, and is pressed against and supported by the surface 7b of the gas separation member 7 by the protrusion 6a, After this, this time, the projections 7a of the other gas separation member 7 are formed on the surface of the one gas separation member 6b extending diagonally in the opposite direction.
To force it. As described above, the power generation element 5 extends in the zigzag-shaped extending direction of the gas separation members 6 and 7 while contacting the surfaces 6b and 7b of the pair of gas separation members 6 and 7 at predetermined intervals.

【0012】そして、斜めに延びる発電素子5と各ガス
分離部材6、7とで画成される空間8、9は、燃料ガス
すなわちカソード側ガスまたは酸化剤ガスすなわちカソ
ード側ガスのガス通路を構成する。図3を参照すると、
上記構造において、ガス分離部材6の平面図が示されて
おり、突起部6aは、ガス分離部材6の延設方向に対し
横方向にリブを形成するように延びている。このよう
に、本例では、発電素子5の配設を立体的にして一対の
ガス分離部材6、7の間にガス通路8、9を形成しつつ
ジグザグ状に配置したのでガス分離部材6、7の延設方
向の単位長さ当たりに配される発電素子5はジグザグ状
になっている分だけ長くなり、したがって発電素子5の
有効反応面積は大きくなる。すなわち、ガス分離部材
6、7の延設長さに対する出力密度を高めることができ
る。図4、及び図5を参照すると、本発明の他の実施例
にかかるセル1の構造が示されている。本例の構成で
は、突出部6aは、横方向に不連続状態で延びている。
すなわち、1つ1つの突出部が独立して柱状に延びて他
方のガス分離部材の表面まで達している。
Spaces 8 and 9 defined by the obliquely extending power generating element 5 and the gas separating members 6 and 7 constitute gas passages for fuel gas, that is, cathode side gas or oxidant gas, that is, cathode side gas. To do. Referring to FIG.
In the structure described above, a plan view of the gas separating member 6 is shown, and the protrusion 6a extends so as to form a rib in a direction transverse to the extending direction of the gas separating member 6. As described above, in this example, the power generation element 5 is arranged three-dimensionally, and the gas passages 8 and 9 are formed between the pair of gas separation members 6 and 7, so that the gas separation members 6 and 7 are arranged. The power generating elements 5 arranged per unit length in the extending direction of 7 are lengthened by the zigzag shape, so that the effective reaction area of the power generating elements 5 is increased. That is, the power density with respect to the extended length of the gas separation members 6 and 7 can be increased. 4 and 5, the structure of the cell 1 according to another embodiment of the present invention is shown. In the configuration of this example, the protrusion 6a extends laterally in a discontinuous state.
That is, each of the protruding portions independently extends in a columnar shape and reaches the surface of the other gas separating member.

【0013】このように構成することにより、発電素子
の有効反応面積をさらに増大することができ、コンパク
ト化を促進することができる。ただし、この場合には、
前例の構造と比べて、突出部6a、7aの頂部における
発電素子5との接触面積が減少しがちとなるので、突出
部の所定の必要な接触面積を確保できるように突出部の
間隔、大きさ、個数等を設定する必要がある。図6、図
7及び図8を参照して、発電素子の周辺部の構造を説明
する。本例の固体高分子型燃料電池は、上記したよう
に、発電素子5とこれを両側から支持するガス分離部材
6、7とを含むセル1を積層状態にして構成される。図
6、図7に示すように、積層されるセル1の一部を構成
する発電素子は平面的にみて矩形状を成しており、その
周囲には、この矩形状の発電素子5を支持する平面矩形
状のフレーム10が配される。そして、この積層状態に
あるセルを貫通する方向に燃料ガス酸化剤ガス及び冷却
水を各セルに供給するためのメイン通路17が設けられ
る。メイン通路17は、セルの周囲に設けられ、これを
支持するフレーム領域内に設けられる。そして、メイン
通路は、供給通路及びリターン通路のそれぞれ対になっ
ている必要があるので、少なくとも6つの貫通孔11、
12、13、14、15及び16が上記フレーム10上
に形成されることになる。本例では、燃料ガスとしての
水素、酸化剤ガスとしての空気を流通させるそれぞれ一
対のメイン通路の一部を構成する貫通口11、12及び
13、14を備えている。さらに冷却水通路のための貫
通口15、16が設けられる。
With this structure, the effective reaction area of the power generating element can be further increased, and the size reduction can be promoted. However, in this case,
Compared with the structure of the previous example, the contact area with the power generation element 5 at the tops of the protrusions 6a and 7a tends to decrease, so that the distance between the protrusions and the size of the protrusions can be increased so that a predetermined required contact area of the protrusions can be secured. It is necessary to set the number, etc. The structure of the peripheral portion of the power generation element will be described with reference to FIGS. 6, 7 and 8. As described above, the polymer electrolyte fuel cell of this example is configured by stacking the cells 1 including the power generation element 5 and the gas separation members 6 and 7 that support the power generation element 5 from both sides. As shown in FIG. 6 and FIG. 7, the power generation element forming a part of the stacked cells 1 has a rectangular shape when seen in a plan view, and the rectangular power generation element 5 is supported around the power generation element. A rectangular frame 10 having a rectangular shape is arranged. Further, a main passage 17 for supplying the fuel gas oxidant gas and the cooling water to each cell is provided in a direction that penetrates the cells in the stacked state. The main passage 17 is provided around the cell and is provided in a frame region that supports the cell. Since the main passage needs to be paired with the supply passage and the return passage, at least six through holes 11,
12, 13, 14, 15 and 16 will be formed on the frame 10. In this example, there are provided through-holes 11, 12 and 13, 14 which form a part of a pair of main passages through which hydrogen as a fuel gas and air as an oxidant gas flow. Further, through holes 15 and 16 for the cooling water passage are provided.

【0014】メイン通路から各セルの向けての導入部分
は、酸化剤ガス及び冷却水についても同様の構造になっ
ているので、以下、燃料ガスの導入部の構造について代
表的に説明し、その他のものについての詳細な説明は省
略する。図8には、本例の固体高分子型燃料電池の燃料
ガスのメイン通路17とマニホールド18の部分の断面
図が示されており、メイン通路17から各セルの上記燃
料ガス通路8にガスを導入させる構造すなわちメイン通
路17からの分岐部すなわちマニホールド18には、ガ
スをシールするために発電素子の高分子電解質膜をフレ
ーム10と接着するシール部分が存在する。シール部分
19は、図6において貫通口11の周囲を覆うように矩
形形状で設けられている。そして、電極3、4と高分子
電解質膜2からなる発電素子5が一対のガス分離部材
6、7に挟まれている。そして電極4の端部において
は、ほぼこの電極3の縁部と面一になるように一方の電
極側のガス分離部材6、7には切り欠き部6c、7cが
設けられている。そしてこの切り欠き部7の下側にはメ
イン通路17からガスを導入する導入部すなわちマニホ
ールド18の空間が設けられる。発電素子5の中間層す
なわち高分子電解質膜層2はメイン通路17の位置まで
延びている。また他方のガス分離部材側6は電極3の周
縁からメイン通路17までの間には、フレーム10が介
在する。このようにメイン通路17から各発電素子5の
電極面に対応するまでの導入部においては、ガスを導入
する電極4の側は、マニホールド18が形成された高分
子電解質膜2とガス分離部材との間に空隙が不可避的に
形成されることになる。従来では、この部分にシール部
材20を挟んで高分子電解質膜2が他方のガス分離部材
6から分離してしまうこと防止するようにしていた。こ
のようにしないと、他方のガス分離部材6とフレーム1
0との間には、平面的にずれた他の位置において他のガ
ス(酸化剤ガス)を他方の電極面に導入するためのマニ
ホールド(図示せず)が設けられ、このマニホールドを
介して他のガスがフレーム10とガス分離部材6との隙
間からメイン通路17に漏れでて両者が混合する恐れが
生じるからである。
Since the introduction portion from the main passage toward each cell has the same structure for the oxidizing gas and the cooling water, the structure of the introduction portion for the fuel gas will be described below as a representative. A detailed description of those items is omitted. FIG. 8 shows a cross-sectional view of the main passage 17 and the manifold 18 of the fuel gas of the polymer electrolyte fuel cell of this example, in which the gas is passed from the main passage 17 to the fuel gas passage 8 of each cell. The structure to be introduced, that is, the branch portion from the main passage 17, that is, the manifold 18, has a seal portion for adhering the polymer electrolyte membrane of the power generation element to the frame 10 in order to seal gas. The seal portion 19 is provided in a rectangular shape so as to cover the periphery of the through hole 11 in FIG. The power generation element 5 including the electrodes 3 and 4 and the polymer electrolyte membrane 2 is sandwiched between the pair of gas separation members 6 and 7. At the end of the electrode 4, notches 6c and 7c are provided in the gas separating members 6 and 7 on one electrode side so as to be substantially flush with the edge of the electrode 3. Below the cutout 7, there is provided a space for an inlet, that is, a manifold 18 for introducing gas from the main passage 17. The intermediate layer of the power generation element 5, that is, the polymer electrolyte membrane layer 2 extends to the position of the main passage 17. On the other gas separation member side 6, a frame 10 is interposed between the peripheral edge of the electrode 3 and the main passage 17. In this way, in the introduction portion from the main passage 17 to the electrode surface of each power generation element 5, the gas introduction electrode 4 side is provided with the polymer electrolyte membrane 2 in which the manifold 18 is formed and the gas separation member. Voids are inevitably formed between them. Conventionally, the seal member 20 is sandwiched in this portion to prevent the polymer electrolyte membrane 2 from being separated from the other gas separation member 6. Otherwise, the other gas separating member 6 and the frame 1
A manifold (not shown) for introducing another gas (oxidant gas) to the other electrode surface at another position that is displaced in a plane is provided between 0 and 0, and another manifold is provided via this manifold. This is because there is a risk that the gas of (2) may leak into the main passage 17 through the gap between the frame 10 and the gas separating member 6 and mix with each other.

【0015】しかし、マニホールド18にシール部材2
0を配置する構造では、ガス分離部材6、7に圧力がか
かることになるため、ガス分離部材6、7に剛性を持た
せることが必要となり、剛性が不足すると、これが変形
してガス漏れを防止できなくなるという問題があった。
また、剛性を確保するためには、ガス分離部材の厚みが
増すので、全体として固体高分子型燃料電池が厚くなる
という問題がある。本例の構造では、この問題に鑑み、
上記のマニホールド18の対応する位置においてフレー
ム10と発電素子5(高分子電解質膜2)、フレーム1
0とガス分離部材6とを接着するように構成する。この
電解膜2とフレームとの接着は、フレームが高分子部材
である場合には、熱圧着が有効である。さらに、図9に
示すように高分子電解質膜2とフレーム10との間に接
着剤21を配して接着剤により両者を接着してシール性
を確保するようにしてもよい。接着剤として、たとえ
ば、フェノール樹脂、エポキシ樹脂、金属、NBR、フ
ッ素ゴムなどを用いることができる。このように本例の
構造では、ガス分離部材7と発電素子5の周縁部にある
マニホールドの領域において、接着手段を設けたので、
燃料ガス、酸化剤ガス、冷却水がフレームの表面を介し
て混合状態になることを有効に防止することができる。
However, the seal member 2 is attached to the manifold 18.
In the structure in which 0 is arranged, pressure is applied to the gas separating members 6 and 7, so that it is necessary to give rigidity to the gas separating members 6 and 7. If the rigidity is insufficient, this deforms and gas leakage occurs. There was a problem that it could not be prevented.
Further, in order to secure the rigidity, the thickness of the gas separation member is increased, so that there is a problem that the polymer electrolyte fuel cell becomes thick as a whole. In the structure of this example, in view of this problem,
The frame 10, the power generating element 5 (polymer electrolyte membrane 2), and the frame 1 are provided at corresponding positions of the manifold 18.
0 and the gas separation member 6 are configured to adhere to each other. For the adhesion between the electrolytic membrane 2 and the frame, thermocompression bonding is effective when the frame is a polymer member. Further, as shown in FIG. 9, an adhesive 21 may be arranged between the polymer electrolyte membrane 2 and the frame 10 and the both may be adhered by the adhesive to ensure the sealing property. As the adhesive, for example, phenol resin, epoxy resin, metal, NBR, fluororubber or the like can be used. As described above, in the structure of this example, since the bonding means is provided in the region of the manifold in the peripheral portion of the gas separation member 7 and the power generation element 5,
It is possible to effectively prevent the fuel gas, the oxidant gas, and the cooling water from entering a mixed state via the surface of the frame.

【0016】図10、図11及び図12を参照すると、
本発明のさらに他の実施例が示されている。本例のフレ
ームは、高分子電解質膜2を挟むように両側に配置され
てお、電極構成部材3、4による活性領域を越えて高分
子電解質膜2が延びる部分に配置される。この場合、フ
レーム10は電極構成部材3、4とほぼ同じ厚さに構成
されるので、中央部分の電極構成部材3、4と高分子電
解質膜2とからなる発電素子5として機能する部分のそ
の周囲のフレーム10と高分子電解質膜2とからなる部
分とはほぼ同じ厚さとなっている。したがって、ガス分
離部材6、7に挟まれる構造体は、活性部分から周辺部
分に到るまでほぼ同じ厚さで構成されるため、両側から
ガス分離部材6、7で挟まれて支持される場合には、全
面にわたって均一圧力によって締めつけられる。このこ
とは、ガス分離部材6、7と発電素子(高分子電解質膜
−電極構成部材接合体)及びフレーム−高分子電解質膜
接合体との接着を均一化することができ、ガス通路から
のガス漏れを防止するのに役立つ。本例の構成では、ガ
ス分離部材に3つの平行な溝22が設けてあり、フレー
ム−高分子電解質膜接合体とガス分離部材とが接合され
たときメイン通路と活性領域におけるガス通路とを連絡
するガス通路が構成される。このように複数の細長いガ
ス通路によってメイン通路から分岐させることによって
分岐部のガス分離部材とフレーム−高分子電解質膜接合
体との締めつけ力の低下を少なくすることができるの
で、単1のマニホールドによって分岐する構造に比べ
て、メイン通路からの分岐部におけるフレーム−高分子
電解質膜接合体とガス分離部材との良好な密着性を得る
ことができる。
Referring to FIGS. 10, 11 and 12,
Yet another embodiment of the invention is shown. The frame of this example is arranged on both sides so as to sandwich the polymer electrolyte membrane 2, and is arranged in a portion where the polymer electrolyte membrane 2 extends beyond the active region defined by the electrode constituting members 3 and 4. In this case, since the frame 10 is configured to have substantially the same thickness as the electrode constituent members 3 and 4, the portion of the portion functioning as the power generation element 5 including the electrode constituent members 3 and 4 in the central portion and the polymer electrolyte membrane 2 is formed. The surrounding frame 10 and the portion including the polymer electrolyte membrane 2 have almost the same thickness. Therefore, since the structure sandwiched between the gas separation members 6 and 7 has almost the same thickness from the active portion to the peripheral portion, the structure sandwiched between the gas separation members 6 and 7 from both sides is supported. Is clamped with uniform pressure over the entire surface. This makes it possible to make the adhesion between the gas separation members 6 and 7 and the power generation element (polymer electrolyte membrane-electrode component member assembly) and the frame-polymer electrolyte membrane assembly uniform, and the gas from the gas passages. Helps prevent leaks. In the configuration of this example, three parallel grooves 22 are provided in the gas separation member, and when the frame-polymer electrolyte membrane assembly and the gas separation member are joined, the main passage and the gas passage in the active region are connected. A gas passage is formed. By branching from the main passage with a plurality of elongated gas passages, the tightening force between the gas separation member at the branched portion and the frame-polymer electrolyte membrane assembly can be reduced, so that the single manifold can be used. As compared with the branched structure, it is possible to obtain better adhesion between the frame-polymer electrolyte membrane assembly and the gas separation member at the branch portion from the main passage.

【0017】さらに、本例の構成では、フレーム10の
ガス分離部材6、7との接合面には、コーティング材を
塗布されており、これによってフレーム−高分子電解質
膜接合体がガス分離部材6、7との接合されて発電セル
を構成するとき両者の密着性を高める効果がある。これ
によって、ガス通路からのガス漏れを有効に防止するこ
とができる。
Further, in the structure of this embodiment, a coating material is applied to the joint surface of the frame 10 with the gas separating members 6 and 7, whereby the frame-polymer electrolyte membrane assembly is made into the gas separating member 6. , 7 are joined together to form a power generation cell, there is an effect of enhancing the adhesion between the two. As a result, gas leakage from the gas passage can be effectively prevented.

【0018】[0018]

【発明の効果】以上のように本発明の1つの特徴によれ
ば、発電素子の配設構造を立体的にジグザグ状に配置し
たものとしたので、有効反応面積の拡大を図りつつ、固
体高分子型燃料電池を小型にすることができる。また、
マニホールド領域における燃料ガスと酸化剤ガスとの混
合が生じることを簡単な構成で有効に防止することがで
きる。
As described above, according to one feature of the present invention, the arrangement structure of the power generating elements is three-dimensionally arranged in a zigzag shape, so that the effective reaction area is increased and the solid height is increased. The molecular fuel cell can be downsized. Also,
It is possible to effectively prevent mixing of the fuel gas and the oxidant gas in the manifold region with a simple configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例にかかる固体高分子型燃料電
池の1層のセルを示す断面図、
FIG. 1 is a cross-sectional view showing a single-layer cell of a polymer electrolyte fuel cell according to an embodiment of the present invention,

【図2】図1のセルの発電素子のレイアウトを示す斜視
図、
2 is a perspective view showing a layout of a power generation element of the cell of FIG.

【図3】図1のガス分離部材の部分平面図、3 is a partial plan view of the gas separation member of FIG.

【図4】本発明の他の実施例にかかるセルの斜視図、FIG. 4 is a perspective view of a cell according to another embodiment of the present invention,

【図5】図4の実施例におけるセルの平面図、5 is a plan view of the cell in the embodiment of FIG. 4,

【図6】固体高分子型燃料電池のセルの周縁部の機構を
示す平面図、
FIG. 6 is a plan view showing the mechanism of the periphery of the cell of the polymer electrolyte fuel cell,

【図7】図6の固体高分子型燃料電池の周縁部を示す部
分断面図、
7 is a partial cross-sectional view showing a peripheral portion of the polymer electrolyte fuel cell of FIG. 6,

【図8】フレームは発電素子の積層状態を示す分解斜視
図、
FIG. 8 is an exploded perspective view showing a laminated state of the power generating element,

【図9】セルの周縁部の接着構造の他の例を示す部分断
面図、
FIG. 9 is a partial cross-sectional view showing another example of the bonding structure of the peripheral portion of the cell.

【図10】ガスメイン通路の周辺部を示すセルの部分平
面図、
FIG. 10 is a partial plan view of the cell showing the periphery of the gas main passage,

【図11】図10のA−A断面図、11 is a cross-sectional view taken along the line AA of FIG.

【図12】図11のB−B断面図である。12 is a sectional view taken along line BB of FIG.

【符号の説明】[Explanation of symbols]

1 セル、 2 高分子電解質膜、 3、4 電極、 5 発電素子、 6、7 ガス分離部材、 8、9 ガス通路、 10 フレーム、 11、12、13、14、15、16 ガス及び冷却水
用貫通孔。 17 メイン通路、 22 溝。
1 cell, 2 polymer electrolyte membrane, 3, 4 electrode, 5 power generating element, 6 and 7 gas separating member, 8 and 9 gas passage, 10 frame, 11, 12, 13, 14, 15, 16 gas and cooling water Through hole. 17 main passages, 22 grooves.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】高分子電解質膜の両側に電極構成部材を配
した発電素子と、該発電素子部材を挟んで延び両側から
これを支持し、かつ該それぞれの電極構成部材の側から
発電素子に関与するそれぞれの反応ガスの通路を画成す
る一対のガス分離部材とを備えた発電セル構造体を積層
して構成される固体高分子型燃料電池において、 前記発電素子を挟んで対峙する一対のガス分離部材が前
記反応ガス通路を構成するために前記発電素子の延設方
向に対してほぼ垂直方向に突出する突出部を有してお
り、該突出部は発電素子に対してその両側から交互に突
出するように設けられ発電素子が該突出部によってジグ
ザグ状に延びるように支持され、発電素子の両側に前記
各ガス分離部材との間に前記それぞれの反応ガスの通路
が画成されたことを特徴とする固体高分子型燃料電池。
1. A power generating element in which electrode constituent members are arranged on both sides of a polymer electrolyte membrane, and extending from both sides of the power generating element member to support the power generating element member, and a power generating element from each of the electrode constituent member sides. In a polymer electrolyte fuel cell constituted by stacking a power generation cell structure including a pair of gas separation members that define respective reaction gas passages involved, a pair of fuel cell elements facing each other with the power generation element sandwiched therebetween. The gas separation member has a protrusion that protrudes in a direction substantially perpendicular to the extending direction of the power generating element to form the reaction gas passage, and the protrusions alternate with respect to the power generating element from both sides thereof. The power generation element is provided so as to project in the direction of the zigzag by the projecting portion, and the passages of the respective reaction gases are defined between the gas separation members on both sides of the power generation element. Featuring Polymer electrolyte fuel cell.
【請求項2】請求項1において、前記突出部が前記発電
素子の延設方向に対して横方向に不連続的に設けられた
ことを特徴とする固体高分子型燃料電池。
2. The polymer electrolyte fuel cell according to claim 1, wherein the projecting portion is provided discontinuously in the lateral direction with respect to the extending direction of the power generation element.
【請求項3】高分子電解質膜の両側に電極構成部材を配
した発電素子と、該発電素子を挟んで延び両側からこれ
を支持し、かつ該それぞれの電極構成部材の側から発電
素子に関与するそれぞれの反応ガスの通路を画成する一
対のガス分離部材とを備えた発電セル構造体を積層して
構成される固体高分子型燃料電池において、 前記高分子電解質膜が電極構成部材を越えて延在する部
分に配置されて電極構成部材の周縁部を電極構成部材と
面一となるように支持し、反応ガスをメインガス通路か
ら前記各発電セル構造体のガス通路に分配供給するガス
マニホールドを少なくとも備えたフレームがさらに設け
られ、 前記発電素子とフレームとが接着されたことを特徴とす
る固体高分子型燃料電池。
3. A power generating element in which electrode constituent members are disposed on both sides of a polymer electrolyte membrane, and extending from both sides of the power generating element to support the power generating element, and to participate in the power generating element from the side of each of the electrode constituent members. In a solid polymer electrolyte fuel cell configured by stacking a power generation cell structure including a pair of gas separation members that define respective reaction gas passages, the polymer electrolyte membrane exceeds an electrode constituent member. Gas that is disposed in a portion that extends so as to support the peripheral portion of the electrode component member so as to be flush with the electrode component member, and distributes and supplies the reaction gas from the main gas passage to the gas passages of the power generation cell structures. A polymer electrolyte fuel cell, further comprising a frame including at least a manifold, wherein the power generation element and the frame are bonded to each other.
【請求項4】請求項3において、 高分子電解質膜と前
記フレームとの接触部を接着剤で接着したことを特徴と
する固体高分子型燃料電池。
4. The polymer electrolyte fuel cell according to claim 3, wherein a contact portion between the polymer electrolyte membrane and the frame is adhered with an adhesive.
【請求項5】請求項3において、固体高分子型燃料電池
と前記フレームとの接触部を熱接着したことを特徴とす
る固体高分子型燃料電池。
5. The polymer electrolyte fuel cell according to claim 3, wherein a contact portion between the polymer electrolyte fuel cell and the frame is heat-bonded.
【請求項6】請求項3において、さらに発電素子部材を
挟んで延び両側からこれを支持し、かつ該それぞれの電
極構成部材の側から発電素子に関与するそれぞれの反応
ガスの通路を画成するガス分離部材が設けられ、前記高
分子電解質膜と前記ガス分離部材とが接合されたことを
特徴とするた固体高分子型燃料電池。
6. The power generating element member according to claim 3, further extending and sandwiching the power generating element member from both sides to support the power generating element member, and to define passages of respective reaction gases involved in the power generating element from the side of the respective electrode constituent members. A solid polymer electrolyte fuel cell, comprising a gas separation member, wherein the polymer electrolyte membrane and the gas separation member are joined together.
【請求項7】高分子電解質膜の両側に電極構成部材を配
した発電素子と、該発電素子部材を挟んで延び両側から
これ支持し、かつ該それぞれの電極構成部材の側から発
電素子に関与するそれぞれの反応ガスの通路を画成する
一対のガス分離部材とを備えた発電セル構造体を積層し
て構成される固体高分子型燃料電池において、 電極構成部材を越えて高分子電解質膜が延在する発電素
子の周縁部に電極構成部材と面一になるように該電極構
成部材の周囲に配置されるフレームがさらに設けられ、 前記フレームは高分子電解質膜の両側に高分子電解質膜
を挟んで配置され、少なくとも一方のフレームの前記ガ
ス分離部材との接合面には、コーティング材が配置され
ていることを特徴とする固体高分子型燃料電池。
7. A power generating element in which electrode constituent members are arranged on both sides of a polymer electrolyte membrane, and extending from both sides of the power generating element member and supported from both sides, and the power generating element is involved from the side of each of the electrode constituent members. In a polymer electrolyte fuel cell constituted by stacking a power generation cell structure including a pair of gas separation members that define respective reaction gas passages, a polymer electrolyte membrane is formed across electrode members. A frame disposed around the electrode constituent member so as to be flush with the electrode constituent member is further provided at the peripheral portion of the extending power generating element, and the frame has the polymer electrolyte membrane on both sides of the polymer electrolyte membrane. A polymer electrolyte fuel cell, characterized in that a coating material is arranged on both sides of at least one of the frames, which is sandwiched, and is joined to the gas separation member.
JP6185537A 1994-08-08 1994-08-08 Solid polymer type fuel cell Pending JPH0850903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6185537A JPH0850903A (en) 1994-08-08 1994-08-08 Solid polymer type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6185537A JPH0850903A (en) 1994-08-08 1994-08-08 Solid polymer type fuel cell

Publications (1)

Publication Number Publication Date
JPH0850903A true JPH0850903A (en) 1996-02-20

Family

ID=16172547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6185537A Pending JPH0850903A (en) 1994-08-08 1994-08-08 Solid polymer type fuel cell

Country Status (1)

Country Link
JP (1) JPH0850903A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060649A1 (en) * 1998-05-18 1999-11-25 Firma Carl Freudenberg Fuel cell
GB2339067A (en) * 1998-07-01 2000-01-12 British Gas Plc Internal cooling arrangement fo undulate MEA fuel cell stack
WO2000002273A3 (en) * 1998-07-01 2000-02-24 British Gas Plc Electrochemical fuel cell having a membrane electrode assembly formed in-situ and methods for forming same
WO2000002272A3 (en) * 1998-07-01 2000-04-13 British Gas Plc Fuel cell separator plate providing interconnection of serpentine reactant gas flowpaths in fuel cell stacks
JP2001319665A (en) * 2000-05-08 2001-11-16 Honda Motor Co Ltd Manufacturing method of fuel cell and its electrolyte
JP2003100322A (en) * 2001-09-19 2003-04-04 Honda Motor Co Ltd Fuel cell
KR100409042B1 (en) * 2001-02-24 2003-12-11 (주)퓨얼셀 파워 Membrane Electrode Assembly and method for producing the same
WO2003067693A3 (en) * 2002-02-06 2004-12-16 Angstrom Power Inc Apparatus of high power density fuel cell layer with micro structured components
US6864010B1 (en) 2002-02-06 2005-03-08 Angstrom Power Apparatus of high power density fuel cell layer with micro for connecting to an external load
US6872287B1 (en) 2002-02-06 2005-03-29 Angstrom Power Electrochemical cell
FR2870388A1 (en) * 2004-05-12 2005-11-18 Peugeot Citroen Automobiles Sa SOLID ELECTROLYTE FUEL CELL CELL
US6969563B1 (en) 2002-03-01 2005-11-29 Angstrom Power High power density fuel cell stack using micro structured components
US6989215B1 (en) 2002-02-06 2006-01-24 Angstrom Power Apparatus of high power density fuel cell layer with micro structured components
US7052795B2 (en) 2004-04-06 2006-05-30 Angstrom Power Compact chemical reactor
US7063910B2 (en) 2004-04-06 2006-06-20 Angstrom Power Compact chemical reactor with reactor frame
US7067217B2 (en) 2004-04-06 2006-06-27 Angstrom Power Compact fuel cell layer
US7150933B1 (en) 2002-02-06 2006-12-19 Angstrom Power, Inc. Method of manufacturing high power density fuel cell layers with micro structured components
US7195652B2 (en) 2004-04-06 2007-03-27 Angstrom Power Method for forming compact chemical reactors with reactor frames
US7205057B2 (en) 2003-06-19 2007-04-17 Angstrom Power Inc. Integrated fuel cell and heat sink assembly
US7241525B2 (en) 2004-04-06 2007-07-10 Angstrom Power Inc. Fuel cell layer with reactor frame
JP2008047533A (en) * 2006-08-18 2008-02-28 Antig Technology Corp Film/electrode laminate
US7458997B2 (en) 2004-04-06 2008-12-02 Angstrom Power Incorporated Method for making compact chemical reactors
US7687183B2 (en) 2004-08-25 2010-03-30 Gm Global Technology Operations, Inc. Electrochemical fuel cell elements having improved compression over channels
DE102022000794B3 (en) 2022-03-08 2023-03-02 Lsi Ludwig Schleicher Ingenium Gmbh & Co. Kg fuel cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253170A (en) * 1984-05-29 1985-12-13 Ishikawajima Harima Heavy Ind Co Ltd Laminated fuel battery
JPH04154047A (en) * 1990-10-16 1992-05-27 Mitsubishi Electric Corp Fuel cell
JPH0613091A (en) * 1992-06-25 1994-01-21 Mitsubishi Heavy Ind Ltd Plate solid electrolyte fuel cell
JPH0696783A (en) * 1992-09-16 1994-04-08 Matsushita Electric Ind Co Ltd Fuel cell
JPH07249417A (en) * 1994-03-10 1995-09-26 Toyota Motor Corp Unit cell for fuel cell and manufacture thereof
JPH07335234A (en) * 1994-06-14 1995-12-22 Toyota Motor Corp Fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253170A (en) * 1984-05-29 1985-12-13 Ishikawajima Harima Heavy Ind Co Ltd Laminated fuel battery
JPH04154047A (en) * 1990-10-16 1992-05-27 Mitsubishi Electric Corp Fuel cell
JPH0613091A (en) * 1992-06-25 1994-01-21 Mitsubishi Heavy Ind Ltd Plate solid electrolyte fuel cell
JPH0696783A (en) * 1992-09-16 1994-04-08 Matsushita Electric Ind Co Ltd Fuel cell
JPH07249417A (en) * 1994-03-10 1995-09-26 Toyota Motor Corp Unit cell for fuel cell and manufacture thereof
JPH07335234A (en) * 1994-06-14 1995-12-22 Toyota Motor Corp Fuel cell

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060649A1 (en) * 1998-05-18 1999-11-25 Firma Carl Freudenberg Fuel cell
KR100392922B1 (en) * 1998-05-18 2003-07-28 칼 프로이덴베르크 카게 Fuel cell
AU751839B2 (en) * 1998-05-18 2002-08-29 Carl Freudenberg Kg Fuel cell
WO2000002276A3 (en) * 1998-07-01 2000-04-20 British Gas Plc Fuel cell separator plate providing interconnection of reactant gas flowpaths in undulate layer fuel cell stacks
US6593022B1 (en) 1998-07-01 2003-07-15 Ballard Power Systems Inc. Membrane electrode assembly providing interconnection of reactant gas flowpaths in undulate layer fuel cell stacks
WO2000002268A3 (en) * 1998-07-01 2000-04-13 British Gas Plc Membrane electrode assembly providing interconnection of reactant gas flowpaths in ondulate mea fuel cell stacks
WO2000002269A3 (en) * 1998-07-01 2000-04-13 British Gas Plc Internal support structure for an undulate membrane electrode assembly in an electrochemical fuel cell
WO2000002270A3 (en) * 1998-07-01 2000-04-13 British Gas Plc A printed circuit board separator for an electrochemical fuel cell
WO2000002275A3 (en) * 1998-07-01 2000-04-13 British Gas Plc Electrochemical fuel cell having an undulate membrane electrode assembly
WO2000002281A3 (en) * 1998-07-01 2000-04-13 British Gas Plc Internal cooling arrangement for undulate mea fuel cell stack
WO2000002272A3 (en) * 1998-07-01 2000-04-13 British Gas Plc Fuel cell separator plate providing interconnection of serpentine reactant gas flowpaths in fuel cell stacks
WO2000002267A3 (en) * 1998-07-01 2000-09-14 British Gas Canada Limited Internal cooling arrangement for undulate mea fuel cell stack
US6638658B1 (en) 1998-07-01 2003-10-28 Ballard Power Systems Inc. Fuel cell separator plate providing interconnection of reactant gas flowpaths in undulate layer fuel cell stacks
WO2000002273A3 (en) * 1998-07-01 2000-02-24 British Gas Plc Electrochemical fuel cell having a membrane electrode assembly formed in-situ and methods for forming same
US6541147B1 (en) 1998-07-01 2003-04-01 Ballard Power Systems Inc. Printed circuit board separator for an electrochemical fuel cell
GB2339067A (en) * 1998-07-01 2000-01-12 British Gas Plc Internal cooling arrangement fo undulate MEA fuel cell stack
WO2000002271A3 (en) * 1998-07-01 2000-04-13 British Gas Plc Internal cooling arrangement for fuel cell stack
JP2001319665A (en) * 2000-05-08 2001-11-16 Honda Motor Co Ltd Manufacturing method of fuel cell and its electrolyte
KR100409042B1 (en) * 2001-02-24 2003-12-11 (주)퓨얼셀 파워 Membrane Electrode Assembly and method for producing the same
JP2003100322A (en) * 2001-09-19 2003-04-04 Honda Motor Co Ltd Fuel cell
WO2003067693A3 (en) * 2002-02-06 2004-12-16 Angstrom Power Inc Apparatus of high power density fuel cell layer with micro structured components
US7150933B1 (en) 2002-02-06 2006-12-19 Angstrom Power, Inc. Method of manufacturing high power density fuel cell layers with micro structured components
US6872287B1 (en) 2002-02-06 2005-03-29 Angstrom Power Electrochemical cell
US6989215B1 (en) 2002-02-06 2006-01-24 Angstrom Power Apparatus of high power density fuel cell layer with micro structured components
CN100358177C (en) * 2002-02-06 2007-12-26 昂斯特罗姆动力公司 Apparatus of high power density fuel cell layer with micro structured components
US6864010B1 (en) 2002-02-06 2005-03-08 Angstrom Power Apparatus of high power density fuel cell layer with micro for connecting to an external load
USRE41577E1 (en) 2002-03-01 2010-08-24 Angstrom Power Incorporated High power density fuel cell stack using micro structured components
US6969563B1 (en) 2002-03-01 2005-11-29 Angstrom Power High power density fuel cell stack using micro structured components
US7205057B2 (en) 2003-06-19 2007-04-17 Angstrom Power Inc. Integrated fuel cell and heat sink assembly
US7195652B2 (en) 2004-04-06 2007-03-27 Angstrom Power Method for forming compact chemical reactors with reactor frames
US7067217B2 (en) 2004-04-06 2006-06-27 Angstrom Power Compact fuel cell layer
US7063910B2 (en) 2004-04-06 2006-06-20 Angstrom Power Compact chemical reactor with reactor frame
US7241525B2 (en) 2004-04-06 2007-07-10 Angstrom Power Inc. Fuel cell layer with reactor frame
US7052795B2 (en) 2004-04-06 2006-05-30 Angstrom Power Compact chemical reactor
US7458997B2 (en) 2004-04-06 2008-12-02 Angstrom Power Incorporated Method for making compact chemical reactors
US7560077B2 (en) 2004-04-06 2009-07-14 Angstrom Power Incorporated Compact chemical reactor with reactor frame
WO2005122302A3 (en) * 2004-05-12 2007-02-22 Peugeot Citroen Automobiles Sa Solid electrolyte fuel cell
JP2007537568A (en) * 2004-05-12 2007-12-20 プジョー・シトロエン・オトモビル・ソシエテ・アノニム Cell for solid electrolytic fuel cell
FR2870388A1 (en) * 2004-05-12 2005-11-18 Peugeot Citroen Automobiles Sa SOLID ELECTROLYTE FUEL CELL CELL
US7687183B2 (en) 2004-08-25 2010-03-30 Gm Global Technology Operations, Inc. Electrochemical fuel cell elements having improved compression over channels
JP2008047533A (en) * 2006-08-18 2008-02-28 Antig Technology Corp Film/electrode laminate
DE102022000794B3 (en) 2022-03-08 2023-03-02 Lsi Ludwig Schleicher Ingenium Gmbh & Co. Kg fuel cell

Similar Documents

Publication Publication Date Title
JPH0850903A (en) Solid polymer type fuel cell
JP4818546B2 (en) Membrane / electrode structure
CN107293767B (en) Fuel cell stack
JP2006244765A (en) Fuel cell stack
JPH08222237A (en) Separator for fuel cell
WO2007105740A1 (en) Cell stack and fuel cell with the same
WO2006033374A1 (en) Single cell and method for producing single cell, fuel cell and method for producing fuel cell
JP3981623B2 (en) Fuel cell stack
JP2008171613A (en) Fuel cells
CA2991279C (en) Fuel cell for reducing leakage of gas and water vapor
US20070077477A1 (en) Fuel cell unit
JP2001110436A (en) Fuel cell
JP7349641B2 (en) Fuel cell module, fuel cell stack, and method for manufacturing fuel cell module
US8101314B2 (en) Separator and fuel cell
JP2011222393A (en) Fuel cell
JP4935611B2 (en) Manufacturing method of fuel cell and separator
WO2007072671A1 (en) Sealing structure of fuel cell
JP2012203999A (en) Fuel cell and manufacturing method thereof
JP2006147258A (en) Separator and fuel battery stack
JP2002298902A (en) Fuel cell
JP2000067903A (en) Solid polymer type fuel cell
JP2004349014A (en) Fuel cell
JP5261948B2 (en) Fuel cell and fuel cell stack
JP2016225274A (en) Assembly, fuel cell using the assembly and disassembly method thereof
JP2006338880A (en) Membrane-electrode assembly and fuel cell