JPH0843017A - Scanning optical microscope - Google Patents

Scanning optical microscope

Info

Publication number
JPH0843017A
JPH0843017A JP18147794A JP18147794A JPH0843017A JP H0843017 A JPH0843017 A JP H0843017A JP 18147794 A JP18147794 A JP 18147794A JP 18147794 A JP18147794 A JP 18147794A JP H0843017 A JPH0843017 A JP H0843017A
Authority
JP
Japan
Prior art keywords
sample
scanning
light
objective lens
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18147794A
Other languages
Japanese (ja)
Inventor
Nobuhiro Kita
信浩 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP18147794A priority Critical patent/JPH0843017A/en
Publication of JPH0843017A publication Critical patent/JPH0843017A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes

Abstract

PURPOSE:To perform the accurate measurement of a length by providing an objective lens, a photodetector, a two-dimensional scanning mechanism, a moving mechanism, which relatively moves the position of the focal point of the objective lens and the position of a sample, and a control means for the scanning mechanism and the moving mechanism. CONSTITUTION:The laser light emitted from a laser 1 is transmitted through a half mirror 2 and transmitted through an objective lens 4, and the minute spot is condensed on a sample 5 on a stage 6. The spot is moved in X and Y directions on the sample 5 by the same way in the raster scanning of a TV with a two-dimensional scanning mechanism 3. The light reflected from the sample 5 is returned in the reverse direction on the optical path of the incident light and reflected from the half mirror 2. The light is made to pass through a pinhole 7 and cast at a photodetector 8. The photodetector 8 converts the reflected light from the sample 5 into the electric signal. The electric signal undergoes signal processing in a signal processing unit 9. Then, the signal is preserved in the image memory of an image processing unit 12 as the image data. The setting of the measuring range, the setting of the moving amount of the stage 6 and the control of the system are performed with a monitor 14 of a computer 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は走査型光学顕微鏡に関す
る。
FIELD OF THE INVENTION This invention relates to scanning optical microscopes.

【0002】[0002]

【従来の技術】走査型光学顕微鏡の1つに共焦点顕微鏡
がある。共焦点顕微鏡は点状光源によって観察試料を点
状に照明し、照明された試料からの透過光または反射光
を再び点状に結像させて、ピンホール開口を有する検出
器で像の濃度情報を得る顕微鏡である。図4はその概略
図であって、点光源40から出た光はハーフミラー41
を通過して、収差の良く補正された対物レンズ42によ
って試料43上に点として結像され試料43を照明す
る。試料43で反射した光は再び対物レンズ42を通っ
てハーフミラー41で反射され集光する。集光位置には
ピンホール44が配置され、ここを通った光は光検出器
45で検出される。そして試料43を、テレビのラスタ
ー走査と同じように2次元走査することによって、試料
43の2次元画像が得られる。
2. Description of the Related Art One of scanning optical microscopes is a confocal microscope. A confocal microscope illuminates an observation sample in a point-like manner with a point light source, re-images the transmitted light or reflected light from the illuminated sample into a point-like image, and uses a detector with a pinhole opening to detect image density information. It is a microscope to obtain. FIG. 4 is a schematic diagram thereof, in which the light emitted from the point light source 40 is a half mirror 41.
After passing through, the sample 43 is illuminated by being imaged as a point on the sample 43 by the objective lens 42 whose aberration is corrected well. The light reflected by the sample 43 passes through the objective lens 42 again and is reflected by the half mirror 41 to be condensed. A pinhole 44 is arranged at the condensing position, and the light passing therethrough is detected by the photodetector 45. Then, the two-dimensional image of the sample 43 is obtained by two-dimensionally scanning the sample 43 in the same manner as the raster scanning of the television.

【0003】ところで点線の光は、対物レンズ42の集
光位置からずれた位置Aからの光を示している。この光
はピンホール44上では集光しない。したがって、ピン
ホール44を通過できず光検出器45には到達しない。
すなわちこのような光学系では、対物レンズ42の集光
位置すなわち合焦位置のみの画像を得ることが可能にな
る。
By the way, the light of the dotted line shows the light from the position A deviated from the condensing position of the objective lens 42. This light is not condensed on the pinhole 44. Therefore, it cannot pass through the pinhole 44 and does not reach the photodetector 45.
That is, with such an optical system, it is possible to obtain an image only at the focusing position of the objective lens 42, that is, the focusing position.

【0004】次に、図5のように高さの異なる試料50
を、従来の光学顕微鏡で観察する場合を考える。各面の
高さが異なるので例えばA面に合焦した場合はB面やC
面はぼけてしまう。したがって、A、B、Cの全部の面
に合焦した画像を得ることは不可能であった。しかしな
がら、共焦点光学系を持つ顕微鏡の場合、A面にピント
を合わせた画像を保存し、同じようにして得られたB
面、C面の画像を足し合わせることにより全面に合焦し
た画像が容易に得られる。実際には各画素について、明
るさの最大値を保持させればよい。
Next, as shown in FIG. 5, samples 50 having different heights are used.
Consider the case of observing with a conventional optical microscope. Since the height of each surface is different, for example, when focusing on surface A, surface B or C
The surface is blurred. Therefore, it is impossible to obtain an image focused on all surfaces of A, B, and C. However, in the case of a microscope having a confocal optical system, an image focused on the A surface is stored, and B obtained in the same manner.
An image focused on the entire surface can be easily obtained by adding the images of the surfaces C and C. Actually, the maximum brightness value may be held for each pixel.

【0005】この光学的特性を利用して試料の表面形状
を測定することができる。この場合、試料を載せたステ
ージを光軸方向に移動させながら各画素について最大強
度になるときのステージの移動量をメモリに記憶させ
る。また、最大強度を検出するために現在のステージ位
置での光強度と、ひとつ前のステージ位置での強度とを
比較する。ここで、現在のステージ位置での光強度がひ
とつ前のステージ位置での強度よりも大きい場合、現在
のステージ位置での光強度とステージの移動量がそれぞ
れメモリに記憶される。そうでない場合は、ひとつ前の
ステージ位置での強度とステージの移動量が引き続き記
憶される。以上のような方法で、試料を光軸方向に移動
させながら反射光の最大ピークを検出することで試料の
高さ情報が得られる。
The surface shape of the sample can be measured by utilizing this optical characteristic. In this case, the amount of movement of the stage when the maximum intensity is obtained for each pixel is stored in the memory while moving the stage on which the sample is placed in the optical axis direction. Further, in order to detect the maximum intensity, the light intensity at the current stage position is compared with the intensity at the previous stage position. Here, when the light intensity at the current stage position is higher than the intensity at the previous stage position, the light intensity at the current stage position and the amount of movement of the stage are stored in the memory. If not, the strength and the movement amount of the stage at the previous stage position are continuously stored. By the method as described above, the height information of the sample can be obtained by detecting the maximum peak of the reflected light while moving the sample in the optical axis direction.

【0006】[0006]

【発明が解決しようとする課題】次に上記した方法によ
って、試料60として例えば図6のように反射率の高い
物質61の上に透明でしかも反射率が物質61よりも低
い物質62がのっているような試料の高さ情報を得る場
合を考えてみる。このような試料60を光軸方向に、対
物レンズ63の方向に移動させながら、反射強度を測定
していくと図7のようになる。まず最初に物質62の表
面が対物レンズ63の合焦位置に近づくにつれて反射強
度が徐々に大きくなる。そして合焦位置に一致したとき
に最大となりその後反射強度は徐々に小さくなる。ここ
で第一回目のピーク70が発生する。さらに試料60を
移動させ続けると、今度は物質61が対物レンズ63の
合焦位置に近づき再び、反射強度が徐々に大きくなる。
結果として物質62の時と同じように2回目のピーク7
1が発生する。ここで1回目のピーク70と2回目のピ
ーク71の違いは、物質61と62の反射率の違いによ
ってピークの強度に差があるということである。当然反
射率の高い物質61のピーク71の方がピーク70より
強い。このような方法で従来通りのピーク検出を行う
と、最大強度であるピーク71が最終的に保存されるの
で、本来検出すべきピーク70がピーク71のために検
出できなくなってしまう。
Next, according to the method described above, as the sample 60, a substance 62 having a high reflectance and a substance 62 having a lower reflectance than the substance 61 as shown in FIG. Consider the case of obtaining the height information of the sample as described above. When the reflection intensity is measured while moving the sample 60 in the optical axis direction toward the objective lens 63, the result is as shown in FIG. First, the reflection intensity gradually increases as the surface of the substance 62 approaches the in-focus position of the objective lens 63. Then, it becomes maximum when the focus position is reached, and thereafter the reflection intensity gradually decreases. Here, the first peak 70 occurs. When the sample 60 is further moved, the substance 61 approaches the in-focus position of the objective lens 63, and the reflection intensity gradually increases again.
As a result, the second peak 7 is the same as when the substance 62 is used.
1 occurs. Here, the difference between the first-time peak 70 and the second-time peak 71 is that there is a difference in peak intensity due to the difference in reflectance between the substances 61 and 62. Naturally, the peak 71 of the substance 61 having a high reflectance is stronger than the peak 70. When the conventional peak detection is performed by such a method, the peak 71 having the maximum intensity is finally stored, so that the peak 70 which should be originally detected cannot be detected because of the peak 71.

【0007】このように従来の走査型光学顕微鏡はピー
ク検出回路やZ移動量メモリ等の複雑な回路構成を有し
ているにもかかわらず、試料によっては測定したい部分
のピークが検出できないため、正確な高さ測定ができな
いという問題があった。
As described above, although the conventional scanning optical microscope has a complicated circuit configuration such as a peak detection circuit and a Z movement amount memory, the peak of the portion to be measured cannot be detected depending on the sample. There was a problem that the height could not be measured accurately.

【0008】本発明の走査型光学顕微鏡はこのような課
題に着目してなされたものであり、その目的とするとこ
ろは、複雑な回路構成を用いることなしに正確な高さ測
定を行なうことができる走査型光学顕微鏡を提供するこ
とにある。
The scanning optical microscope of the present invention has been made in view of such a problem, and its object is to perform accurate height measurement without using a complicated circuit structure. It is to provide a scanning optical microscope capable of performing the above.

【0009】[0009]

【課題を解決するための手段及び作用】上記の目的を達
成するために、第1の発明に係る走査型光学顕微鏡は、
光源から出た光を試料に集光する対物レンズと、試料か
らの光を検出する光検出器と、この光検出器の前であっ
てかつ前記対物レンズと共役な位置に配置された微小開
口と、前記試料に集光した光を第1の方向及び第2の方
向に2次元走査する走査機構と、前記対物レンズの焦点
位置と試料の位置を相対的に第3の方向に移動させる移
動機構と、第1の位置から第1の方向へ走査を開始し、
この走査が終了した後、再び第1の方向へ走査するとき
は、前記第1の位置から第2及び第3の方向に所定の距
離だけ変位した第2の位置から走査を開始すべく前記走
査機構及び移動機構を制御する制御手段とを具備する。
In order to achieve the above object, the scanning optical microscope according to the first invention comprises:
An objective lens that collects the light emitted from the light source on the sample, a photodetector that detects the light from the sample, and a minute aperture that is arranged in front of the photodetector and at a position conjugate with the objective lens. And a scanning mechanism for two-dimensionally scanning the light focused on the sample in a first direction and a second direction, and a movement for relatively moving the focal position of the objective lens and the position of the sample in the third direction. Mechanism and start scanning in a first direction from a first position,
After the completion of this scanning, when scanning again in the first direction, the scanning should be started from the second position displaced from the first position in the second and third directions by a predetermined distance. And a control means for controlling the mechanism and the moving mechanism.

【0010】また、第2の発明に係る走査型光学顕微鏡
は、第1の発明に係る走査型光学顕微鏡において、前記
試料を走査して得られるデータの保存領域を、走査開始
位置が変わるごとに変更するようにする。
A scanning optical microscope according to a second aspect of the present invention is the scanning optical microscope according to the first aspect, in which a storage area for data obtained by scanning the sample is changed every time the scanning start position changes. Try to change.

【0011】また、第3の発明に係る走査型光学顕微鏡
は、第1または第2の発明に係る走査型光学顕微鏡にお
いて、前記第1の方向がX方向であり、第2方向がY方
向であり、第3方向がZ方向である。
A scanning optical microscope according to a third invention is the scanning optical microscope according to the first or second invention, wherein the first direction is the X direction and the second direction is the Y direction. Yes, and the third direction is the Z direction.

【0012】[0012]

【実施例】以下に図面を参照して本発明の一実施例を詳
細に説明する。図1は一実施例の共焦点走査型光学顕微
鏡の構成を示す図である。同図において、レーザ1から
出たレーザ光はハーフミラー2を通過し対物レンズ4を
通過してステージ6上の試料5に微小なスポットに集光
する。スポットは、2次元走査機構3によってTVのラ
スター走査と同じように、試料5上をX、Y方向に移動
していく。試料5から反射した光は入射した光路を逆に
戻り、ハーフミラー2で反射されてピンホール(微小開
口)7を通り光検出器8に入射する。光検出器8は試料
の反射光を電気信号に変換する。電気信号は信号処理ユ
ニット9で信号処理が施された後、画像処理ユニット1
2の画像メモリに画像データとして保存される。画像メ
モリは、例えば512画素×512画素×8ビット(2
56階調)が用意されており、反射光の電気信号の値が
保存される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a diagram showing the configuration of a confocal scanning optical microscope according to an embodiment. In the figure, the laser light emitted from the laser 1 passes through the half mirror 2, the objective lens 4, and is focused on the sample 5 on the stage 6 in a minute spot. The spot moves on the sample 5 in the X and Y directions by the two-dimensional scanning mechanism 3 as in the raster scanning of the TV. The light reflected from the sample 5 returns in the reverse direction of the incident optical path, is reflected by the half mirror 2, passes through the pinhole (small aperture) 7, and enters the photodetector 8. The photodetector 8 converts the reflected light of the sample into an electric signal. The electric signal is subjected to signal processing by the signal processing unit 9, and then the image processing unit 1
The image data is stored in the second image memory as image data. The image memory has, for example, 512 pixels × 512 pixels × 8 bits (2
56 gradations) are prepared, and the value of the electric signal of the reflected light is stored.

【0013】ステージ6の光軸方向(Z方向)への移動
は、コンピュータ(制御手段)13から命令がZ移動回
路11に出される。ステージ6の1回の移動ごとにコン
ピュータ13から命令が出される。測定範囲の設定及び
各測定範囲でのステージ6の移動量の設定、画像の表示
及びシステムの制御は使用者がコンピュータ13のモニ
タ14で行う。また、コンピュータ13からは2次元走
査のための命令が2次元駆動回路10に出される。2次
元駆動回路10とZ移動回路11はコンピュータ13で
制御されているため、XYZ方向についてあらゆる組合
せの駆動ができる。
As for the movement of the stage 6 in the optical axis direction (Z direction), a command is issued from the computer (control means) 13 to the Z movement circuit 11. A command is issued from the computer 13 for each movement of the stage 6. The user sets the measurement range, the movement amount of the stage 6 in each measurement range, the image display, and the system control on the monitor 14 of the computer 13. In addition, the computer 13 outputs a command for two-dimensional scanning to the two-dimensional drive circuit 10. Since the two-dimensional drive circuit 10 and the Z movement circuit 11 are controlled by the computer 13, it is possible to drive in any combination in the XYZ directions.

【0014】以下に本実施例に係る高さ測定方法を図2
及び図3を参照して説明する。本実施例では図2に示す
ように、まず、第1の位置(A点)から第1の方向(X
方向)へ走査を開始し、この走査が終了した後、再び第
1の方向(X方向)へ走査するときは第1の位置(A
点)から第2の方向(Y方向)及び第3の方向(Z方
向)に所定の距離だけ変位した第2の位置(B点)から
走査を開始すべく2次元駆動回路10及びZ移動回路1
1を制御する。
The height measuring method according to this embodiment will be described below with reference to FIG.
And FIG. 3 will be described. In the present embodiment, as shown in FIG. 2, first, from the first position (point A) to the first direction (X
Scanning in the first direction), and after this scanning ends, when scanning again in the first direction (X direction), the first position (A
Two-dimensional drive circuit 10 and Z moving circuit to start scanning from a second position (point B) which is displaced from the point) in a second direction (Y direction) and a third direction (Z direction) by a predetermined distance. 1
Control 1

【0015】すなわち、図2において、試料20は基板
21の上に物質22がありその上を物質23が覆ってい
るものである。走査の開始点は、物質23のやや上方の
A点からはじまる。レーザビームはA点からX方向に予
め設定された範囲を移動していく。X方向の走査が終わ
ると、レーザビームは次の走査開始位置Bへ移動する。
この走査開始位置BはA点からY方向に少しずれた位置
へ移動するとともに、Z方向についてもA点から物質2
3に近づいた位置になっている。ここで、Y方向への移
動は2次元走査機構3で行われ、Z方向への移動はZ移
動回路11がステージ6を駆動することによって行われ
る。
That is, in FIG. 2, the sample 20 has a substance 22 on a substrate 21 and a substance 23 covering the substance 22. The scanning start point starts from point A, which is slightly above the substance 23. The laser beam moves from point A in the X direction in a preset range. When the scanning in the X direction ends, the laser beam moves to the next scanning start position B.
This scanning start position B moves to a position slightly displaced from the point A in the Y direction, and also in the Z direction from the point A to the substance 2
The position is closer to 3. Here, the movement in the Y direction is performed by the two-dimensional scanning mechanism 3, and the movement in the Z direction is performed by the Z movement circuit 11 driving the stage 6.

【0016】図3(a)は上記動作が連続して行われた
時の様子を示している。図3(b)はその時の情報を画
像化したものである。A点ではレーザビームの集光位置
にレーザビームを反射するものが何もないため、X方向
への走査中は光検出器8の出力はほぼゼロである。従っ
て図3(b)のように画像化した場合、一本の暗線とな
って表示される。次の走査開始位置B点においても同じ
である。ここで本実施例では、走査開始位置が変わるご
とに、画像情報を記憶する領域も変えていくため、B点
からの走査によって発生した画像情報が前回のA点から
の走査によって得られる画像情報に上書きされることは
ない。D点及びF点についても同様の結果となる。
FIG. 3A shows a state in which the above operation is continuously performed. FIG. 3B is an image of the information at that time. At point A, there is nothing that reflects the laser beam at the focus position of the laser beam, so the output of the photodetector 8 is almost zero during scanning in the X direction. Therefore, when imaged as shown in FIG. 3B, it is displayed as one dark line. The same is true at the next scanning start position B. In this embodiment, since the area for storing image information is changed every time the scanning start position is changed, the image information generated by the scanning from the point B is the image information obtained by the previous scanning from the point A. Will not be overwritten. Similar results are obtained for points D and F.

【0017】ステージ6の移動を続けて行うと、レーザ
ビームの走査開始点はC点となる。この時、レーザビー
ムは物質23の表面で反射する。したがって光検出器8
にレーザビームが入射し所定の画像信号が発生する。し
たがってこの場合は、図3(b)のように画像中に輝線
が描画される。同様にレーザビームがE点になったとき
も物質22の表面で反射する。従ってこの場合も画像中
に輝線が描画される。C点とE点での輝線の明るさは、
物質22、物質23の反射率で決まる。例えば物質22
の反射率が物質23の反射率よりも高い場合、E点の輝
線の方がC点の輝線より明るく表示される。図3(c)
は、図3(b)のY方向の輝度データを表す。前述のよ
うに、E点の方がC点より明るくなっている。
When the stage 6 is continuously moved, the scanning start point of the laser beam becomes the point C. At this time, the laser beam is reflected by the surface of the substance 23. Therefore, the photodetector 8
A laser beam is incident on the laser beam and a predetermined image signal is generated. Therefore, in this case, a bright line is drawn in the image as shown in FIG. Similarly, when the laser beam reaches the point E, it is reflected on the surface of the substance 22. Therefore, also in this case, a bright line is drawn in the image. The brightness of the bright lines at points C and E is
It is determined by the reflectance of the substance 22 and the substance 23. For example, substance 22
If the reflectivity of is higher than that of the substance 23, the bright line at the point E is displayed brighter than the bright line at the point C. Figure 3 (c)
Represents the luminance data in the Y direction of FIG. As described above, the point E is brighter than the point C.

【0018】以上上記した実施例によれば、2次元走査
に同期してZ駆動を行って試料の輝度情報を保存してい
く過程で、1ライン(X走査)ごとの画像データを異な
るメモリ領域に保存するようにしたのでピークを検出す
る回路やZ方向の移動量を記憶するメモリ等の複雑な構
成を用いることなく、すべてのピークを検出する事がで
きる。
According to the above-described embodiment, in the process of performing the Z drive in synchronization with the two-dimensional scanning to store the luminance information of the sample, the image data for each line (X scanning) is stored in different memory areas. All peaks can be detected without using a complicated structure such as a circuit for detecting peaks and a memory for storing the amount of movement in the Z direction.

【0019】[0019]

【発明の効果】本発明によれば、複雑な回路構成を用い
ることなしに正確な高さ測定を行なうことができるよう
になる。
According to the present invention, accurate height measurement can be performed without using a complicated circuit structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る共焦点走査型光学顕微
鏡の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a confocal scanning optical microscope according to an embodiment of the present invention.

【図2】本実施例の高さ測定方法を説明するための図で
ある。
FIG. 2 is a diagram for explaining a height measuring method according to the present embodiment.

【図3】本実施例の高さ測定方法によって得られるデー
タを画像化したときのようすを示す図である。
FIG. 3 is a diagram showing a state in which data obtained by the height measuring method according to the present embodiment is imaged.

【図4】従来の共焦点走査型光学顕微鏡の構成を示す図
である。
FIG. 4 is a diagram showing a configuration of a conventional confocal scanning optical microscope.

【図5】不均一な高さを有する試料を示す図である。FIG. 5 is a diagram showing a sample having a non-uniform height.

【図6】試料の表面形状を測定する従来の方法の問題点
を説明するための図である。
FIG. 6 is a diagram for explaining a problem of a conventional method for measuring a surface shape of a sample.

【図7】反射率の異なる2層構成の試料を測定したとき
に得られる2つのピークを示す図である。
FIG. 7 is a diagram showing two peaks obtained when a sample having a two-layer structure having different reflectances is measured.

【符号の説明】[Explanation of symbols]

1…レーザ、2…ハーフミラー、3…2次元走査機構、
4…対物レンズ、5…試料、6…ステージ、7…ピンホ
ール、8…光検出器、9…信号処理ユニット、10…2
次元駆動回路、11…Z移動回路、12…画像処理ユニ
ット、13…コンピュータ、14…モニタ。
1 ... Laser, 2 ... Half mirror, 3 ... Two-dimensional scanning mechanism,
4 ... Objective lens, 5 ... Sample, 6 ... Stage, 7 ... Pinhole, 8 ... Photodetector, 9 ... Signal processing unit, 10 ... 2
Dimensional drive circuit, 11 ... Z moving circuit, 12 ... Image processing unit, 13 ... Computer, 14 ... Monitor.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光源から出た光を試料に集光する対物レ
ンズと、 試料からの光を検出する光検出器と、 この光検出器の前であってかつ前記対物レンズと共役な
位置に配置された微小開口と、 前記試料に集光した光を第1の方向及び第2の方向に2
次元走査する走査機構と、 前記対物レンズの焦点位置と試料の位置を相対的に第3
の方向に移動させる移動機構と、 第1の位置から第1の方向へ走査を開始し、この走査が
終了した後、再び第1の方向へ走査するときは、前記第
1の位置から第2及び第3の方向に所定の距離だけ変位
した第2の位置から走査を開始すべく前記走査機構及び
移動機構を制御する制御手段と、 を具備したことを特徴とする走査型光学顕微鏡。
1. An objective lens for condensing light emitted from a light source onto a sample, a photodetector for detecting light from the sample, and a position in front of the photodetector and at a position conjugate with the objective lens. The minute aperture arranged and the light condensed on the sample are moved in the first direction and the second direction.
A scanning mechanism for three-dimensional scanning, and a focus position of the objective lens and a sample position relative to each other by a third
And a moving mechanism for moving the first direction from the first position to start scanning in the first direction, and after the scanning is finished, when scanning in the first direction again, And a control means for controlling the scanning mechanism and the moving mechanism to start scanning from a second position displaced in the third direction by a predetermined distance, and a scanning optical microscope.
【請求項2】 前記試料を走査して得られるデータの保
存領域を、走査開始位置が変わるごとに変更することを
特徴とする請求項1記載の走査型光学顕微鏡。
2. The scanning optical microscope according to claim 1, wherein a storage area of data obtained by scanning the sample is changed every time the scanning start position changes.
【請求項3】 前記第1の方向がX方向であり、第2方
向がY方向であり、第3方向がZ方向であることを特徴
とする請求項1または2記載の走査型光学顕微鏡。
3. The scanning optical microscope according to claim 1, wherein the first direction is the X direction, the second direction is the Y direction, and the third direction is the Z direction.
JP18147794A 1994-08-02 1994-08-02 Scanning optical microscope Withdrawn JPH0843017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18147794A JPH0843017A (en) 1994-08-02 1994-08-02 Scanning optical microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18147794A JPH0843017A (en) 1994-08-02 1994-08-02 Scanning optical microscope

Publications (1)

Publication Number Publication Date
JPH0843017A true JPH0843017A (en) 1996-02-16

Family

ID=16101446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18147794A Withdrawn JPH0843017A (en) 1994-08-02 1994-08-02 Scanning optical microscope

Country Status (1)

Country Link
JP (1) JPH0843017A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000057231A1 (en) * 1999-03-19 2000-09-28 Olympus Optical Co., Ltd. Scanning confocal microscope
GB2364610A (en) * 2000-05-19 2002-01-30 Leica Microsystems Triggering an event dependent upon scanning beam position
GB2416449A (en) * 2004-07-16 2006-01-25 Zeiss Carl Jena Gmbh Method of detecting a sample region in a laser scanning microscope with point like light source distribution and movement between the sample and light
GB2416448A (en) * 2004-07-16 2006-01-25 Zeiss Carl Jena Gmbh Method of detecting a sample region in a laser scanning microscope with linear scanning and movement between the sample and light

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000057231A1 (en) * 1999-03-19 2000-09-28 Olympus Optical Co., Ltd. Scanning confocal microscope
US6317258B1 (en) 1999-03-19 2001-11-13 Olympus Optical Co., Ltd. Scanning confocal microscope
US6437910B1 (en) 1999-03-19 2002-08-20 Olympus Optical Co., Ltd. Scanning confocal microscope
GB2364610A (en) * 2000-05-19 2002-01-30 Leica Microsystems Triggering an event dependent upon scanning beam position
GB2364610B (en) * 2000-05-19 2002-10-23 Leica Microsystems Method and apparatus for scanning an object
GB2416449A (en) * 2004-07-16 2006-01-25 Zeiss Carl Jena Gmbh Method of detecting a sample region in a laser scanning microscope with point like light source distribution and movement between the sample and light
GB2416448A (en) * 2004-07-16 2006-01-25 Zeiss Carl Jena Gmbh Method of detecting a sample region in a laser scanning microscope with linear scanning and movement between the sample and light
US7271382B2 (en) 2004-07-16 2007-09-18 Carl Zeiss Jena Gmbh Process for the observation of at least one sample region with a light raster microscope with light distribution in the form of a point

Similar Documents

Publication Publication Date Title
US6825454B2 (en) Automatic focusing device for an optical appliance
JP5043629B2 (en) Laser scanning microscope and measuring method of surface shape thereof
US5932871A (en) Microscope having a confocal point and a non-confocal point, and a confocal point detect method applied thereto
US5506725A (en) Transmission type confocal laser microscope
JPH08211282A (en) Autofocus microscope
JPH08160305A (en) Laser scanning microscope
JP3579166B2 (en) Scanning laser microscope
JP2002131646A (en) Method and apparatus for phase compensation of position signal and detection signal in scanning microscopic method and scanning microscope
JP3568286B2 (en) Confocal scanning optical microscope and measuring method using this microscope
JP4547526B2 (en) Microscope Farcus Control Device and Control Method
JP3722535B2 (en) Scanning confocal microscope and measuring method using this microscope
JPH0843017A (en) Scanning optical microscope
JP4229573B2 (en) Confocal scanning microscope, image display method in confocal scanning microscope, and recording medium recording processing program for image display processing
JP3847422B2 (en) Height measuring method and apparatus
JP4603177B2 (en) Scanning laser microscope
JP2007304058A (en) Micro height measuring device
JP3518923B2 (en) Automatic image forming equipment for confocal scanning optical microscope
JP3573508B2 (en) Confocal scanning optical microscope
JP2004102032A (en) Scanning type confocal microscope system
JP2000509825A (en) Optical scanning device
JP4398183B2 (en) Confocal microscope
JP2001091844A (en) Confocal scanning type microscope
JP2002039722A (en) Device and method for data acquisition in film thickness measurement and recording medium stored with program for data acquisition
JPH09230250A (en) Automatic focusing device for optical microscope
EP0718656A1 (en) Transmission type confocal laser microscope

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002