JPH08338864A - Magnetic sensor - Google Patents

Magnetic sensor

Info

Publication number
JPH08338864A
JPH08338864A JP16933495A JP16933495A JPH08338864A JP H08338864 A JPH08338864 A JP H08338864A JP 16933495 A JP16933495 A JP 16933495A JP 16933495 A JP16933495 A JP 16933495A JP H08338864 A JPH08338864 A JP H08338864A
Authority
JP
Japan
Prior art keywords
coil
magnetic
exciting
compensation
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16933495A
Other languages
Japanese (ja)
Other versions
JP3580905B2 (en
Inventor
Ichiro Mizukami
一郎 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatsu Electric Co Ltd
Original Assignee
Iwatsu Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatsu Electric Co Ltd filed Critical Iwatsu Electric Co Ltd
Priority to JP16933495A priority Critical patent/JP3580905B2/en
Publication of JPH08338864A publication Critical patent/JPH08338864A/en
Application granted granted Critical
Publication of JP3580905B2 publication Critical patent/JP3580905B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To attain magnetic balance easily by disposing compensation and detection coils at the opposite ends of an excitation coil, shifting any one coil through the exciting coil in the axial direction and fixing the coil. CONSTITUTION: An exciting coil 1 is wound around a circular coil bobbin 10 and bobbins 10a, 10b applied with a compensation coil 7 and a detection coil 3 are disposed on the inside thereof. The surface of bobbin 10a and the inner wall of bobbin 10 are threaded 11 so that they can be shifted as the coil 7 is turned. The coils 7, 3 are disposed at the opposite ends of the coil 1 where the coil 7 can be shifted through the coil in the axial direction and secured at an arbitrary position. The coils 7, 3 are turned reversely with same number of turns and the components of exciting field can be balanced by simply shifting the coil 7 slightly. Since the field components are balanced perfectly, even a faint variation of flux density produced from a magnetic body 4 to be measured disposed closely to the coil 3 can be detected with high sensitivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁性体の磁気特性を測
定するために用いる磁気センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic sensor used to measure the magnetic properties of magnetic materials.

【0002】[0002]

【従来の技術】従来、磁性体の磁気特性(主にB−H特
性)を測定する方式として静磁場方式と交流磁場方式が
ある。静磁場方式は、図5(a)に示すように、直流電
源22から励磁コイル21に直流を流すことにより得ら
れる強力な一対の磁石21aを近接させ、空隙21bに
生じる磁界中に被測定磁性体24を置き、この磁性体2
4を振動させることによって生じる磁束変化を検知コイ
ル23と増幅器25とで検知増幅し、検出信号をとり出
すものである(VSM方式)。この方式の欠点は装置が
大がかりになるため、簡単に交流磁気特性が得られない
ことである。次に、交流磁場方式は、図5(b)に示す
ように、励磁コイル21に交流電源26から交流電流を
流し、それによって生ずる磁界中に被測定磁性体24を
置き、励磁電流の変化によって生ずる磁界強度変化に対
応した磁束密度を検知コイル23と増幅器25とで検知
増幅するものであり、前方式に比べ装置が比較的簡単で
あるが薄膜のように磁化の強さが小さなものを測定する
には特殊な検知コイルを必要としている。
2. Description of the Related Art Conventionally, there are a static magnetic field method and an alternating magnetic field method as methods for measuring the magnetic characteristics (mainly BH characteristics) of magnetic materials. In the static magnetic field method, as shown in FIG. 5 (a), a pair of strong magnets 21a obtained by passing a direct current from a direct current power source 22 to an exciting coil 21 are brought close to each other and a magnetic field to be measured is generated in a magnetic field generated in a gap 21b. Place the body 24, this magnetic body 2
A magnetic flux change caused by vibrating 4 is detected and amplified by the detection coil 23 and the amplifier 25, and a detection signal is taken out (VSM system). The drawback of this method is that the apparatus is large-scaled, and therefore AC magnetic characteristics cannot be easily obtained. Next, in the AC magnetic field method, as shown in FIG. 5B, an AC current is supplied from the AC power supply 26 to the exciting coil 21, the magnetic substance 24 to be measured is placed in the magnetic field generated by the exciting current, and the exciting current changes. The magnetic flux density corresponding to the change in the generated magnetic field strength is detected and amplified by the detection coil 23 and the amplifier 25. The apparatus is relatively simple compared to the previous method, but the one having a small magnetization strength such as a thin film is measured. Requires a special detection coil.

【0003】この交流磁場方式には補償コイル無し方式
と有り方式がある。補償コイル無し方式では図5(b)
に示すコアのような比較的大きな磁性体を測定するため
に用いられ、励磁コイル21を被測定磁性体24に巻き
付けるかまたは検知コイル23も同様に被測定磁性体2
4に巻き付けて磁性材の磁気特性を測定している。この
方式では比較的簡単に磁気特性が測定できるが、一方コ
イルを巻く手間と、被測定磁性体24にある程度大きな
質量を必要とする欠点がある。
This AC magnetic field system includes a system without a compensation coil and a system with a compensation coil. Figure 5 (b) for the method without compensation coil
It is used to measure a relatively large magnetic material such as the core shown in FIG. 1, and the exciting coil 21 is wound around the magnetic material 24 to be measured, or the detection coil 23 is similarly measured.
The magnetic properties of the magnetic material are measured by wrapping it around No. 4. With this method, the magnetic characteristics can be measured relatively easily, but on the other hand, there is a drawback in that it takes time to wind the coil and the measured magnetic body 24 needs a large amount of mass.

【0004】次に、補償コイル有りの方式は図6に示す
ように、励磁コイル21の中に一対の空芯コイルBを有
し、一方は励磁成分を相殺するための補償コイル27と
して、もう一方は被測定磁性体24を入れる検知コイル
23として使用される。この補償コイル有りの方式の欠
点は、空芯コイルBを励磁手段としているため強い磁界
を得ることが難しく、磁性薄膜や、磁気インク等の磁化
が小さなものに対しては測定が困難である。また、被測
定磁性体24を磁場内部に挿入する構成をとっているた
め、紙,プラスチックのカードやシートの如き媒体中に
埋め込まれるか又はその媒体の表面に付けられた磁性体
をその媒体に付着したままで測定することが困難であ
る。
As shown in FIG. 6, the method with a compensation coil has a pair of air-core coils B in the excitation coil 21, one of which serves as a compensation coil 27 for canceling the excitation component, and the other. One is used as the detection coil 23 in which the magnetic material 24 to be measured is inserted. The drawback of this method with the compensation coil is that it is difficult to obtain a strong magnetic field because the air-core coil B is used as the excitation means, and it is difficult to measure a magnetic thin film or magnetic ink having a small magnetization. Further, since the magnetic material to be measured 24 is inserted into the magnetic field, the magnetic material embedded in the medium such as paper or plastic card or sheet or attached to the surface of the medium is used as the medium. It is difficult to measure with it attached.

【0005】[0005]

【発明が解決しようとする課題】以上のように、従来の
磁気特性測定器においては、磁化の小さな磁性体の磁気
特性を簡単に測定することは困難である。即ち、交流磁
場方式においては比較的簡単に磁気特性の測定が行なえ
るが、励磁コイル,検知コイルを被測定物に巻く必要が
あるため、膜状のものや粉末状の被測定磁性体の磁気特
性を測定することが出来ないという欠点がある。また、
補償コイルを有する交流磁場方式では、検知コイル内部
に被測定磁性体を挿入する必要があるため、磁気材料サ
ンプルを検知コイル内部に入れうる大きさに切り出す必
要がある。この欠点を防止するために、検知コイルの周
辺に被測定磁性体を近づけて測定することも考えられ
る。しかし、この方式では励磁磁界が弱くなり、しか
も、検知感度も低くなるために、磁性体そのものを検出
する磁気検出器のようなものには使用できるが磁性体の
特性を検出する磁気特性検出器としては実用的ではない
という欠点がある。
As described above, in the conventional magnetic characteristic measuring device, it is difficult to easily measure the magnetic characteristic of a magnetic material having a small magnetization. That is, in the AC magnetic field method, the magnetic characteristics can be measured relatively easily, but since it is necessary to wind the excitation coil and the detection coil around the object to be measured, the magnetic properties of the film-shaped or powder-shaped magnetic material to be measured can be measured. There is a drawback that the characteristics cannot be measured. Also,
In the AC magnetic field method having the compensation coil, it is necessary to insert the magnetic material to be measured inside the detection coil, and therefore it is necessary to cut out the magnetic material sample into a size that can be put inside the detection coil. In order to prevent this drawback, it is conceivable to bring the magnetic material to be measured close to the periphery of the detection coil for measurement. However, in this method, the exciting magnetic field is weak and the detection sensitivity is also low, so it can be used for things such as a magnetic detector that detects the magnetic substance itself, but a magnetic characteristic detector that detects the characteristics of the magnetic substance. However, there is a drawback that it is not practical.

【0006】本発明の目的は、簡単な構造でかつ検知感
度が高く、膜,粉末状の被測定磁性体であっても、被測
定磁性体を切り出すことなく磁気特性を測定することが
できる磁気センサを提供することにある。
An object of the present invention is to provide a magnetic structure that has a simple structure and high detection sensitivity, and can measure the magnetic characteristics of a film or powdery magnetic substance to be measured without cutting out the magnetic substance to be measured. To provide a sensor.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に、本発明による磁気センサは、補償コイルと検知コイ
ルが励磁コイルの両端に位置し、かつ補償コイルまたは
検知コイルが励磁コイルの内部を軸方向に沿って移動で
きかつその移動範囲の任意の位置で固定することができ
る構造を持っている。
To achieve this object, in a magnetic sensor according to the present invention, a compensation coil and a detection coil are located at both ends of an excitation coil, and a compensation coil or a detection coil is placed inside the excitation coil. It has a structure that can move along the axial direction and can be fixed at any position within the range of movement.

【0008】[0008]

【作用】この磁気センサは補償コイルと、検知コイルを
同じ巻き数で、かつ巻き方向が逆であれば励磁コイルに
よって励磁された起電力は被測定磁性体が存在しないと
きに、検知コイルの出力側で殆ど相殺することができ
る。しかも、空芯励磁コイルの磁界分布特性から励磁コ
イル端面付近の磁界は単調変化するため、補償コイルあ
るいは検知コイルをわずかに移動させるだけで励磁磁界
の成分について0に極めて近い完全なバランスをとるこ
とができる。このように完全に近いバランスのとれたこ
のような磁気センサによれば、検知コイルの近傍に置か
れた被測定磁性体によるわずかな磁束密度の変化をも感
度よく検出することができる。
In this magnetic sensor, if the compensation coil and the detection coil have the same number of turns and the winding directions are opposite, the electromotive force excited by the exciting coil outputs the output of the detecting coil when there is no magnetic substance to be measured. It can be almost offset on the side. Moreover, since the magnetic field near the end face of the exciting coil changes monotonously due to the magnetic field distribution characteristics of the air-core exciting coil, it is necessary to make a perfect balance of the components of the exciting magnetic field by moving the compensation coil or the detection coil slightly. You can With such a magnetic sensor that is almost perfectly balanced, even a slight change in the magnetic flux density due to the magnetic material to be measured placed in the vicinity of the detection coil can be detected with high sensitivity.

【0009】[0009]

【原理】本発明の理解を容易にするために補償コイル付
き磁気センサの原理について図1,図2を参照して説明
する。強磁性体の磁化特性は次のように表わされる。
[Principle] In order to facilitate understanding of the present invention, the principle of a magnetic sensor with a compensation coil will be described with reference to FIGS. The magnetization characteristic of a ferromagnetic material is expressed as follows.

【数1】 B=μH (1) B:磁束密度、 H:磁界の強さ、 μ:透磁率 ただし、μは一般に線形ではなく磁性材固有の非線形特
性を有している。
## EQU1 ## B = μH (1) B: magnetic flux density, H: magnetic field strength, μ: magnetic permeability However, μ is generally not linear but has a non-linear characteristic peculiar to a magnetic material.

【0010】この特性は、磁界の強さを変化させながら
磁束密度を測定することによって得られる。極めて薄い
(厚さ1μm以下)磁性膜や、磁性材が薄く塗布された
磁気テープ,磁気インク等の磁気特性を測定する場合に
は、この場合の磁性材料の磁化が極めて小さいため測定
が困難である。式(1)は次の式(2)のように書き直
すことができる。
This characteristic is obtained by measuring the magnetic flux density while changing the strength of the magnetic field. When measuring the magnetic properties of extremely thin (thickness of 1 μm or less) magnetic tape, magnetic tape thinly coated with magnetic material, magnetic ink, etc., it is difficult to measure because the magnetization of the magnetic material in this case is extremely small. is there. Expression (1) can be rewritten as Expression (2) below.

【数2】 B=μ0 H+J (2) H:磁界の強さ、 J:磁性体の変化の強さ、 μ0
真空透磁率 ここで、μ0 は極めて小さいので B≒Jとおくことが
できる。
[Equation 2] B = μ 0 H + J (2) H: strength of magnetic field, J: strength of change of magnetic substance, μ 0 :
Vacuum permeability Here, since μ 0 is extremely small, B≈J can be set.

【0011】検知コイル3により検知される電圧eはThe voltage e detected by the detection coil 3 is

【数3】 e=−dφ/dt (3) φ:検知コイルを貫く磁束## EQU00003 ## e = -d.phi. / Dt (3) .phi .: magnetic flux penetrating the detection coil.

【数4】 φ=∫Jdv (4) であるから、微少体積dvをもつ磁性体からの検知電圧
は極めて小さいことがわかる。
Since φ = ∫Jdv (4), it can be seen that the detection voltage from the magnetic substance having a minute volume dv is extremely small.

【0012】一方、補償コイル7を接続した図1の回路
構成を有する検知コイル3に生じる電圧Ve は次のよう
に表わされる。
On the other hand, the voltage V e generated in the detection coil 3 having the circuit configuration of FIG. 1 to which the compensation coil 7 is connected is expressed as follows.

【数5】 Ve =Vb −Vd (5) Vb :検知コイルの電圧、 Vd :補償コイルの電圧 被測定磁性体4が無い場合には、Vb =Vd になるよう
に調整しているためVe =0となる。磁性体4が有る場
合には、
(5) V e = V b −V d (5) V b : voltage of detection coil, V d : voltage of compensation coil. If the magnetic body 4 to be measured is not present, V b = V d. Since it is adjusted, V e = 0. If there is a magnetic substance 4,

【数6】 Ve =Nb ・Sb ・dB/dt (6) Nb :センサコイルの巻数、Sb :センサコイルの断面
積、B:コイル内部の磁束密度
V e = N b · S b · dB / dt (6) N b : number of turns of the sensor coil, S b : cross-sectional area of the sensor coil, B: magnetic flux density inside the coil

【0013】ここで、式(2)に示すように、B=μ0
Hはキャンセルされて
Here, as shown in the equation (2), B = μ 0
H has been canceled

【数7】 Ve =Nb ・Sb ・dJ/dt (7) となり被測定磁性体4に起因する磁気特性Jが得られ
る。
## EQU7 ## V e = N b S b dJ / dt (7), and the magnetic characteristic J due to the magnetic material 4 to be measured is obtained.

【0014】[0014]

【実施例】次に、補償コイル7を移動可能とした本発明
の構造とその作用について説明する。図1は本発明によ
る磁気センサ回路の構成例であり、図2(a),(b)
はその具体的構造例である。図2(a)は補償コイル7
を有する磁気センサで、プラスチックやベークライト等
の非金属材料の円形コイルボビン10に励磁コイル1を
巻き、補償コイル7と検知コイル3を巻いたボビン10
a,10bを励磁コイル1の円形コイルボビン10の内
側に配置した構造となっている。補償コイル7のコイル
ボビン10aの表面と励磁コイル1のコイルボビン10
の内壁との間にはねじ11が切ってあり、補償コイル7
を回転させることにより、励磁コイル1の内側に沿って
補償コイル7をわずかに移動できるようになっている。
Next, the structure of the present invention in which the compensation coil 7 is movable and its operation will be described. FIG. 1 shows an example of the configuration of a magnetic sensor circuit according to the present invention, which is shown in FIGS.
Is a concrete example of the structure. FIG. 2A shows the compensation coil 7
A bobbin 10 in which an exciting coil 1 is wound around a circular coil bobbin 10 made of a non-metallic material such as plastic or bakelite, and a compensation coil 7 and a detection coil 3 are wound around the magnetic sensor.
It has a structure in which a and 10b are arranged inside the circular coil bobbin 10 of the exciting coil 1. The surface of the coil bobbin 10a of the compensation coil 7 and the coil bobbin 10 of the exciting coil 1
There is a screw 11 between the inner wall of the
By rotating the compensating coil 7, the compensating coil 7 can be slightly moved along the inside of the exciting coil 1.

【0015】図2(b)は補償コイル7を移動させるた
めの別の構成例である。ねじ付ボルト12の回転調整に
より、励磁コイル1のコイルボビン10に対する補償コ
イル7のコイルボビン10cの位置を微調整することが
できる。前記(a)の構成と異なり、補償コイル7の移
動に伴いその補償コイル7が回転しない利点がある。こ
れらはいずれもゼロ点調整用のもので励磁コイル1に電
流を流し、検知コイル3,補償コイル7を図1で示され
るような回路により出力電圧を監視して、被測定磁性体
が無い状態で、電圧最小となる位置に調整する。この例
では円形のボビン10a,10b,10cにコイルを巻
いてあるが、横長のものを測定するための長方形ボビン
や左右対象であれば目的にあった形に変形することもで
きる。また、検知コイル3、補償コイル7の代わりに、
特性の揃ったホール素子,磁気抵抗素子などの磁気検知
素子を用いても同様な効果がある。すなわち、空芯コイ
ルAの端面aにある磁性体4の磁気特性を感度良く測定
するには、被測定磁性体4に空芯コイルAによって作ら
れる磁界を効率良く加え、この磁界によって磁化される
被測定磁性体4の磁束密度のみを検知できれば良い。
FIG. 2B shows another configuration example for moving the compensation coil 7. By adjusting the rotation of the screwed bolt 12, the position of the coil bobbin 10c of the compensation coil 7 with respect to the coil bobbin 10 of the exciting coil 1 can be finely adjusted. Unlike the configuration (a), there is an advantage that the compensation coil 7 does not rotate with the movement of the compensation coil 7. All of these are for zero point adjustment, a current is passed through the exciting coil 1, the output voltage of the detecting coil 3 and the compensating coil 7 is monitored by a circuit as shown in FIG. 1, and there is no magnetic substance to be measured. Adjust to the position where the voltage is minimum. In this example, the coil is wound around the circular bobbins 10a, 10b, 10c, but a rectangular bobbin for measuring a laterally long bobbin or a left and right symmetric bobbin can be deformed into a desired shape. Also, instead of the detection coil 3 and the compensation coil 7,
The same effect can be obtained by using a magnetic sensing element such as a Hall element or a magnetoresistive element having uniform characteristics. That is, in order to measure the magnetic characteristics of the magnetic body 4 on the end face a of the air-core coil A with high sensitivity, a magnetic field generated by the air-core coil A is efficiently applied to the magnetic body 4 to be measured and magnetized by this magnetic field. It suffices if only the magnetic flux density of the magnetic body 4 to be measured can be detected.

【0016】空芯コイルAの作る磁界強度Hr は、端面
aからの距離rにより次の式(8)で表わされる。
The magnetic field strength H r produced by the air-core coil A is expressed by the following equation (8) by the distance r from the end face a.

【数8】 N:巻数、 I:電流、 L:長さ、 a:半径(Equation 8) N: number of turns, I: current, L: length, a: radius

【0017】この式(8)から端面aの磁界強度は中心
部の約半分であり、離れるにしたがって減少する。空芯
コイルAの外部にある被測定磁性体4は励磁コイル1の
端面aに近いほど強い磁界を与えられる。また、検知コ
イル3もまた端面aに近いほど磁束変化を効率よく検知
できるので、図1,図2に示される構成が最も効率が良
いことがわかる。また、この方式での磁気検知感度を高
めるには、検知コイル3と補償コイル7との起電力バラ
ンスを取る必要がある。上記の式(8)から、励磁コイ
ル1の端面aの磁界の強さは、その面aを離れるにした
がって小さくなるから、補償コイル7を移動可能な構造
とすることで零バランスを簡単にとることができる。
From the equation (8), the magnetic field strength of the end face a is about half of the central portion, and decreases with distance. The magnetic body 4 to be measured outside the air-core coil A is given a stronger magnetic field as it approaches the end face a of the exciting coil 1. Further, since the detection coil 3 can also detect the magnetic flux change more efficiently as it is closer to the end face a, it can be seen that the configuration shown in FIGS. 1 and 2 is the most efficient. Further, in order to enhance the magnetic detection sensitivity in this method, it is necessary to balance the electromotive force between the detection coil 3 and the compensation coil 7. According to the above formula (8), the magnetic field strength of the end face a of the exciting coil 1 becomes smaller as it goes away from the face a, so that the compensation coil 7 can be moved to achieve zero balance easily. be able to.

【0018】すなわち、本発明による磁気センサは、図
2に示すように、補償コイル7と検知コイル3が励磁コ
イル1の両端に位置し、かつ補償コイル7または検知コ
イル3が励磁コイル1の内部を軸方向に沿って移動でき
かつその移動範囲の任意の位置で固定することができる
構造を持っている。この磁気センサ7は補償コイルと、
検知コイル3を同じ巻き数で、かつ巻き方向が逆であれ
ば励磁コイル1によって励磁された起電力は被測定磁性
体4が存在しないときに、検知コイル3の出力側で殆ど
相殺することができる。しかも、空芯励磁コイルAの磁
界分布特性から励磁コイル端面付近の磁界は単調変化す
るため、補償コイル7あるいは検知コイル3をわずかに
移動させるだけで励磁磁界の成分について0に極めて近
い完全なバランスをとることができる。完全に近いバラ
ンスのとれたこのような磁気センサによれば、検知コイ
ル3の近傍に置かれた被測定磁性体4によるわずかな磁
束密度の変化をも感度よく検出することができる。
That is, in the magnetic sensor according to the present invention, as shown in FIG. 2, the compensation coil 7 and the detection coil 3 are located at both ends of the excitation coil 1, and the compensation coil 7 or the detection coil 3 is inside the excitation coil 1. Has a structure that can move along the axial direction and can be fixed at any position in the moving range. This magnetic sensor 7 has a compensation coil,
If the number of turns of the detection coil 3 is the same and the winding directions are opposite, the electromotive force excited by the excitation coil 1 can be almost canceled at the output side of the detection coil 3 when the magnetic body 4 to be measured does not exist. it can. Moreover, since the magnetic field near the end face of the exciting coil changes monotonously due to the magnetic field distribution characteristic of the air-core exciting coil A, the compensating coil 7 or the detecting coil 3 is slightly moved to achieve a perfect balance of the exciting magnetic field component close to 0. Can be taken. According to such a magnetic sensor that is almost perfectly balanced, even a slight change in the magnetic flux density due to the magnetic body 4 to be measured placed near the detection coil 3 can be detected with high sensitivity.

【0019】また、励磁コイル1によって作られる磁界
によって測定時に問題となる励磁ノイズを無視すること
ができ、強い磁界を被測定磁性体4に印加することがで
き、磁化の小さなものでも感度良く測定可能であるとい
う利点がある。
Further, the magnetic field generated by the exciting coil 1 can ignore the excitation noise which is a problem at the time of measurement, a strong magnetic field can be applied to the magnetic material 4 to be measured, and even a small magnetization can be measured with high sensitivity. It has the advantage of being possible.

【0020】次に、ゼロ点補償バンドの作用について説
明する。この場合の図3は、本発明の一実施例を示す部
分構造図であり、補償用バンド13を有する磁気センサ
である。図2の構造で零バランスを取っていても、使用
目的により近くに鉄のような磁性体があると、装置に取
付けた状態でバランスが崩れることがある。
Next, the operation of the zero point compensation band will be described. FIG. 3 in this case is a partial structural view showing an embodiment of the present invention, and is a magnetic sensor having a compensating band 13. Even if the structure of FIG. 2 is zero-balanced, if a magnetic material such as iron is nearby due to the purpose of use, the balance may be lost when it is attached to the device.

【0021】このバランス崩れを簡単に修復する本発明
の構成について検討する。バランスが崩れた状態では、
被測定磁性体4が存在しない状態での検知コイルの出力
e0は、
The configuration of the present invention for easily repairing this imbalance will be examined. When the balance is lost,
The output V e0 of the detection coil in the absence of the magnetic body 4 to be measured is

【数9】Ve0=ΔN・d(μ0 H)/dt (9) ΔN:バランス変化分 であり、励磁磁界強度Hに比例した電圧が検知される。
この電圧は被測定磁性体4に無関係でS/N比を悪くす
る原因となる。
V e0 = ΔN · d (μ 0 H) / dt (9) ΔN: Balance change amount, and a voltage proportional to the exciting magnetic field strength H is detected.
This voltage is a factor that deteriorates the S / N ratio regardless of the magnetic material 4 to be measured.

【0022】透磁率μ1 なる補償用磁性バンド13を、
次の関係になるように補償コイル7に追加する。
The compensating magnetic band 13 having magnetic permeability μ 1 is
The compensation coil 7 is added to have the following relationship.

【数10】 Ve0=ΔN・d(μ0 H)/dt−ΔV・d(μ1 H)/dt (10) ΔV:磁性バンドの磁束変化分 μ1 ,ΔVを適当に選び、励磁空芯コイル1は位置によ
りHが異なることを利用し、Ve0=0になるように磁性
バンド13の位置を調整することでにより零調整をする
ことができる。
[ Equation 10] V e0 = ΔN · d (μ 0 H) / dt−ΔV · d (μ 1 H) / dt (10) ΔV: The magnetic flux variation μ 1 and ΔV of the magnetic band are appropriately selected and the excitation space is reduced. The core coil 1 can be adjusted to zero by adjusting the position of the magnetic band 13 so that V e0 = 0 by utilizing the fact that H is different depending on the position.

【0023】具体的構造について述べると補償用バンド
13を有する磁気センサである。補償用バンド13は強
磁性体でできた板状のバンドである。補償用バンド13
はわずかではあるがゼロバランスを調整することがで
き、しかも簡単に調整できるため、例えばある機器に磁
気センサを取り付けた後、地磁気の影響、機器周辺から
の磁界の影響を取り除くために使用して便利である。本
実施例ではバンド13は溝用筒15上に螺旋状に形成さ
れた移動溝14に沿って移動できる構造となっており、
より簡単に調整することができる。またバンドの太さ、
磁性体の磁化強度(透磁率)を変えることで調整の度合
いを変えることができる。従って、取付位置が可変のゼ
ロ点補償用磁性体バンド3は、さらに簡単に励磁磁界に
対するバランスを取ることができる利点がある。
A specific structure is a magnetic sensor having a compensation band 13. The compensation band 13 is a plate-shaped band made of a ferromagnetic material. Compensation band 13
It is possible to adjust the zero balance, although it is slight, and it can be easily adjusted.For example, after mounting a magnetic sensor on a certain device, use it to remove the influence of the earth's magnetism and the magnetic field from the periphery of the device. It is convenient. In this embodiment, the band 13 has a structure capable of moving along a moving groove 14 formed in a spiral shape on the groove tube 15.
It can be adjusted more easily. Also the thickness of the band,
The degree of adjustment can be changed by changing the magnetization intensity (magnetic permeability) of the magnetic body. Therefore, the zero-point compensating magnetic band 3 having a variable mounting position has an advantage that it is possible to easily balance the magnetic field with the exciting magnetic field.

【0024】さらに、空芯コイルAに空隙16のある強
磁性材(磁性体心棒)17を入れた構造の作用について
説明する。図4は、本発明の一実施例を示す部分構造図
であり、磁性体心棒17入りの磁気センサの例である。
磁性材の特性を測定する場合、Bm (飽和磁束密度)や
r (保持磁束密度)の大きな材料では励磁磁界強度H
を強くする必要がある。空芯コイルAのみでは
The operation of the structure in which the air-core coil A is filled with a ferromagnetic material (magnetic mandrel) 17 having a gap 16 will be described. FIG. 4 is a partial structural view showing an embodiment of the present invention, which is an example of a magnetic sensor containing a magnetic mandrel 17.
When measuring characteristics of a magnetic material, a material having a large B m (saturation flux density) and B r (retention flux density) excitation field strength H
Need to be strengthened. Air core coil A alone

【数11】 H=N・I (11) N:巻数、 I:電流 なる関係から、大きな磁界強度HをもたせるにはN及び
Iを大きくする必要がある。N及びIをそのままの大き
さにしてHを大きくするには、透磁率μの大きな強磁性
材を磁界中に置き、強磁性体の端面a’近傍の磁界を利
用することができる。式(1)に示すB=μHから、大
きな透磁率μをもつ材料の内部磁束密度Bは大きくする
ことができる。大きな磁束密度Bを持った材料が空気中
で相接している場合、端面a’の磁界強度Hは端面近傍
においてはBと等しくなり、大きな磁界強度が得られ
る。
H = N · I (11) N: number of turns, I: current From the relationship, it is necessary to increase N and I in order to have a large magnetic field strength H. In order to increase H while N and I are kept as they are, it is possible to place a ferromagnetic material having a large magnetic permeability μ in a magnetic field and use the magnetic field near the end face a ′ of the ferromagnetic material. From B = μH shown in the equation (1), the internal magnetic flux density B of a material having a large magnetic permeability μ can be increased. When materials having a large magnetic flux density B are in contact with each other in the air, the magnetic field strength H of the end face a ′ becomes equal to B near the end face, and a large magnetic field strength is obtained.

【0025】この場合、補償コイルと検知コイルを含む
磁気センサ本体20を連続で貫通する強磁性体の心棒1
7であれば、被測定磁性体4によって変化する検知コイ
ル近傍の磁束密度Bの変化はそのまま補償コイル近傍の
磁束密度Bを変化させることになる。そのため磁性材の
特性が検知できない。この影響をなくするためには心棒
17の中心位置で空隙16を設けると
In this case, the ferromagnetic mandrel 1 continuously penetrates the magnetic sensor body 20 including the compensation coil and the detection coil.
If the value is 7, the change in the magnetic flux density B in the vicinity of the detection coil, which changes depending on the magnetic material 4 to be measured, directly changes the magnetic flux density B in the vicinity of the compensation coil. Therefore, the characteristics of the magnetic material cannot be detected. In order to eliminate this effect, a gap 16 is provided at the center of the mandrel 17.

【数12】 Rm =R0 +R1 +R2 (12) Rm :心棒全体の磁気抵抗、R0 :空隙の磁気抵抗、R
1 =R2 :左右の心棒間の磁気抵抗ただし、
R m = R 0 + R 1 + R 2 (12) R m : magnetic resistance of the entire mandrel, R 0 : magnetic resistance of air gap, R
1 = R 2: magnetic resistance between the right and left of the mandrel, however,

【数13】 R0 >>R1 ,R2 (13) であるから、測定側の磁束密度変化が補償コイル側へ伝
達される量は極めて小さい。
Since R 0 >> R 1 and R 2 (13), the amount of change in the magnetic flux density on the measurement side is transmitted to the compensation coil side is extremely small.

【0026】具体的構造について述べると、励磁コイル
1の空芯部に挿入された磁性体心棒17はその端面にお
いて非常に強い磁界を作り出すことができる。そのため
保持磁界Hc ,飽和磁界Bm が大きな磁性材料の特性を
測定する場合に便利である。但し、補償コイルと検知コ
イルとの間の磁気干渉を充分に無視できるだけの空隙1
6を心棒17の中央部に設けることが望ましい。このよ
うに、励磁コイルの空芯部の中央部に空隙を有する強磁
性体を挿入したものは励磁時間をより効率よく被測定物
に印加することができ、より広範囲の磁化レンジにわた
って特性を測定することができる。以上のように感度の
高い交流磁気特性を簡単に測定できる磁気センサが実現
できれば、既に塗布あるいは挿入されている微少な磁気
材料の磁気特性を検知することができ、しかも、製造工
程にある磁性体を製造工程を中断することなしに随時又
は連続的に測定することができる。また、特殊な磁性材
を用いたセキュリティタグの検知センサとして利用する
ことができる。
To describe the specific structure, the magnetic mandrel 17 inserted into the air core of the exciting coil 1 can produce a very strong magnetic field at its end face. Therefore, it is convenient when measuring the characteristics of a magnetic material having a large holding magnetic field H c and saturation magnetic field B m . However, the air gap 1 is sufficient to ignore magnetic interference between the compensation coil and the detection coil.
It is desirable to provide 6 at the center of the mandrel 17. In this way, the one with the ferromagnetic material with the air gap inserted in the center of the air-core part of the excitation coil can apply the excitation time to the DUT more efficiently, and the characteristics can be measured over a wider magnetization range. can do. As described above, if a magnetic sensor that can easily measure high-sensitivity AC magnetic characteristics can be realized, it is possible to detect the magnetic characteristics of minute magnetic materials that have already been coated or inserted, and the magnetic material that is in the manufacturing process can be detected. Can be measured at any time or continuously without interrupting the manufacturing process. In addition, it can be used as a detection sensor for a security tag using a special magnetic material.

【0027】[0027]

【発明の効果】以上詳細に説明したように、本発明によ
る磁気センサは、検出コイルの出力側で励磁磁界成分に
対するバランスをとることが容易であり、また磁性材で
できた励磁コイル上を移動可能なバンドを有した磁気セ
ンサは外部磁界に対するバランスをとることも容易であ
あって、磁気センス感度が極めて高い。また、励磁コイ
ルの空芯部に空隙を有する強磁性体心棒をもたせ場合に
は、被測定磁性体に強い磁界を与えることができ、より
広範囲の測定レンジでの磁性特性を測定することができ
る。
As described in detail above, in the magnetic sensor according to the present invention, it is easy to balance the exciting magnetic field component on the output side of the detecting coil, and the magnetic sensor moves on the exciting coil made of a magnetic material. A magnetic sensor with possible bands is easy to balance against an external magnetic field, and has a very high magnetic sensing sensitivity. Further, when a ferromagnetic mandrel having an air gap is provided in the air-core part of the exciting coil, a strong magnetic field can be applied to the magnetic material to be measured, and magnetic characteristics can be measured in a wider measurement range. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を説明するための回路図である。FIG. 1 is a circuit diagram for explaining the principle of the present invention.

【図2】本発明による磁気センサの構造例を示す縦断面
図である。
FIG. 2 is a vertical sectional view showing a structural example of a magnetic sensor according to the present invention.

【図3】補償用バンドを用いた本発明の実施例を説明す
るための斜視略図である。
FIG. 3 is a schematic perspective view illustrating an embodiment of the present invention using a compensation band.

【図4】本発明による磁性心棒入り磁気センサの構造例
を示す縦断面略図である。
FIG. 4 is a schematic vertical sectional view showing a structural example of a magnetic sensor with a magnetic core according to the present invention.

【図5】従来の静磁場方式(a)及び交流磁場方式
(b)による磁気センサを説明するための接続図であ
る。
FIG. 5 is a connection diagram for explaining a magnetic sensor according to a conventional static magnetic field method (a) and an alternating magnetic field method (b).

【図6】補償コイルを有する従来の磁気センサを示す斜
視略図である。
FIG. 6 is a schematic perspective view showing a conventional magnetic sensor having a compensation coil.

【符号の説明】[Explanation of symbols]

1 励磁コイル 2 直流電源 3 検知コイル 4 被測定磁性体 5 増幅器 6 交流電源 7 補償コイル 8 励磁電源 9 差動増幅器 10,10a,10b,10c コイルボビン 11 ねじ 12 ボルト 13 補償用バンド 14 移動用溝 15 溝用筒 16 空隙 17 磁性心棒 20 磁気センサ本体 21 励磁コイル 21a 磁石 21b 空隙 22 直流電源 23 検知コイル 24 被測定磁性体 25 増幅器 26 交流電源 27 補償コイル DESCRIPTION OF SYMBOLS 1 Excitation coil 2 DC power supply 3 Detection coil 4 Magnetic material to be measured 5 Amplifier 6 AC power supply 7 Compensation coil 8 Excitation power supply 9 Differential amplifier 10, 10a, 10b, 10c Coil bobbin 11 Screw 12 Volt 13 Compensation band 14 Moving groove 15 Groove cylinder 16 Air gap 17 Magnetic mandrel 20 Magnetic sensor body 21 Excitation coil 21a Magnet 21b Air gap 22 DC power supply 23 Detection coil 24 Magnetic material to be measured 25 Amplifier 26 AC power supply 27 Compensation coil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 検出コイルと補償コイルが空芯の励磁コ
イルの両端に同心で位置する状態で磁束検出用コイルと
補償用コイルとが励磁コイルの内側で該励磁コイルと一
体構造をなしており、前記補償コイルが前記励磁コイル
の空芯内部を移動してその移動範囲内の任意の位置に固
定できる構造を備えた磁気センサ。
1. The magnetic flux detecting coil and the compensating coil are integrally formed with the exciting coil inside the exciting coil in a state where the detecting coil and the compensating coil are concentrically located at both ends of the air-core exciting coil. A magnetic sensor having a structure in which the compensation coil can move inside the air core of the exciting coil and be fixed at an arbitrary position within the moving range.
【請求項2】 前記励磁コイルの外側近傍に該励磁コイ
ルと同心関係で任意の位置に取付可能なゼロ点補償用磁
性体バンドをさらに備えたことを特徴とする請求項1に
記載の磁気センサ。
2. The magnetic sensor according to claim 1, further comprising a zero-point compensating magnetic band that can be attached at an arbitrary position in a concentric relationship with the exciting coil near the outside of the exciting coil. .
【請求項3】 前記励磁コイルの空芯部に中央位置に空
隙を有する強磁性体心棒がさらに挿入配置されているこ
とを特徴とする請求項1又は2に記載の磁気センサ。
3. The magnetic sensor according to claim 1, wherein a ferromagnetic mandrel having an air gap at a central position is further inserted and arranged in an air-core portion of the exciting coil.
JP16933495A 1995-06-13 1995-06-13 Magnetic sensor Expired - Lifetime JP3580905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16933495A JP3580905B2 (en) 1995-06-13 1995-06-13 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16933495A JP3580905B2 (en) 1995-06-13 1995-06-13 Magnetic sensor

Publications (2)

Publication Number Publication Date
JPH08338864A true JPH08338864A (en) 1996-12-24
JP3580905B2 JP3580905B2 (en) 2004-10-27

Family

ID=15884634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16933495A Expired - Lifetime JP3580905B2 (en) 1995-06-13 1995-06-13 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP3580905B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005519287A (en) * 2002-03-04 2005-06-30 シクパ・ホールディング・ソシエテ・アノニム Measuring probe and proving device having the same
JP2011081012A (en) * 2010-12-16 2011-04-21 Sicpa Holding Sa Measuring probe and device for proving the same
JP2011149850A (en) * 2010-01-22 2011-08-04 General Environmental Technos Co Ltd Conductivity measuring method and device by balanced induction
JP2013050390A (en) * 2011-08-31 2013-03-14 Oita-Ken Sangyosozokiko Magnetic characteristic measurement sensor, and magnetic characteristic measurement method using the same sensor
JP2015516086A (en) * 2012-05-10 2015-06-04 サンドビック マイニング アンド コンストラクション リパブリック オブ サウス アフリカ(プロプライアタリー)リミティド Ore analysis system
US9234877B2 (en) 2013-03-13 2016-01-12 Endomagnetics Ltd. Magnetic detector
US9239314B2 (en) 2013-03-13 2016-01-19 Endomagnetics Ltd. Magnetic detector
US9427186B2 (en) 2009-12-04 2016-08-30 Endomagnetics Ltd. Magnetic probe apparatus
US9808539B2 (en) 2013-03-11 2017-11-07 Endomagnetics Ltd. Hypoosmotic solutions for lymph node detection
CN109541507A (en) * 2018-12-17 2019-03-29 武汉钢铁有限公司 Monolithic ferrometer, detection device and detection method for grain-oriented Si steel sheet performance detection
JP2019066408A (en) * 2017-10-04 2019-04-25 新日鐵住金株式会社 Single-sheet magnetic property tester and single-sheet magnetic property testing system
US10595957B2 (en) 2015-06-04 2020-03-24 Endomagnetics Ltd Marker materials and forms for magnetic marker localization (MML)
US10634741B2 (en) 2009-12-04 2020-04-28 Endomagnetics Ltd. Magnetic probe apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005519287A (en) * 2002-03-04 2005-06-30 シクパ・ホールディング・ソシエテ・アノニム Measuring probe and proving device having the same
US11592501B2 (en) 2009-12-04 2023-02-28 Endomagnetics Ltd. Magnetic probe apparatus
US10634741B2 (en) 2009-12-04 2020-04-28 Endomagnetics Ltd. Magnetic probe apparatus
US9427186B2 (en) 2009-12-04 2016-08-30 Endomagnetics Ltd. Magnetic probe apparatus
JP2011149850A (en) * 2010-01-22 2011-08-04 General Environmental Technos Co Ltd Conductivity measuring method and device by balanced induction
JP2011081012A (en) * 2010-12-16 2011-04-21 Sicpa Holding Sa Measuring probe and device for proving the same
JP2013050390A (en) * 2011-08-31 2013-03-14 Oita-Ken Sangyosozokiko Magnetic characteristic measurement sensor, and magnetic characteristic measurement method using the same sensor
JP2015516086A (en) * 2012-05-10 2015-06-04 サンドビック マイニング アンド コンストラクション リパブリック オブ サウス アフリカ(プロプライアタリー)リミティド Ore analysis system
US9808539B2 (en) 2013-03-11 2017-11-07 Endomagnetics Ltd. Hypoosmotic solutions for lymph node detection
US9523748B2 (en) 2013-03-13 2016-12-20 Endomagnetics Ltd Magnetic detector
US9239314B2 (en) 2013-03-13 2016-01-19 Endomagnetics Ltd. Magnetic detector
US9234877B2 (en) 2013-03-13 2016-01-12 Endomagnetics Ltd. Magnetic detector
US10595957B2 (en) 2015-06-04 2020-03-24 Endomagnetics Ltd Marker materials and forms for magnetic marker localization (MML)
US11504207B2 (en) 2015-06-04 2022-11-22 Endomagnetics Ltd Marker materials and forms for magnetic marker localization (MML)
JP2019066408A (en) * 2017-10-04 2019-04-25 新日鐵住金株式会社 Single-sheet magnetic property tester and single-sheet magnetic property testing system
CN109541507A (en) * 2018-12-17 2019-03-29 武汉钢铁有限公司 Monolithic ferrometer, detection device and detection method for grain-oriented Si steel sheet performance detection
CN109541507B (en) * 2018-12-17 2021-01-08 武汉钢铁有限公司 Single-sheet permeameter for detecting performance of oriented silicon steel sheet, detection device and detection method

Also Published As

Publication number Publication date
JP3580905B2 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
EP1810046B1 (en) Sensor for measuring magnetic flux
JP3580905B2 (en) Magnetic sensor
US5757183A (en) Device to shield a magnetic field in a given plane
JPH01187424A (en) Torque sensor
US4891992A (en) Torque detecting apparatus
US3800213A (en) Three axis toroidal fluxgate type magnetic sensor
US20010026154A1 (en) Magnetic sensor and position transducer
JP2001141701A (en) Method for measuring coercive force
Ripka Race-track fluxgate with adjustable feedthrough
JPS5839283B2 (en) Thickness gauge for measuring sheet-like objects
JP2615342B2 (en) Variable magnetoresistance magnetometer for measuring parameters of magnetic materials
JPH07218472A (en) Method and equipment for measuring saturated magnetic flux density
JPH06294850A (en) Method and apparatus for measuring weak magnetism and non-destructive inspecting method using the same
JP3651268B2 (en) Magnetic measurement method and apparatus
US5574363A (en) Stability method and apparatus for nondestructive measure of magnetic saturation flux density in magnetic materials
KR20120009691A (en) System for signal detection of specimen using magnetic resistance sensor and Detecting Method of the same
JP3618425B2 (en) Magnetic sensor
JP2004038611A (en) Device for detecting magnetic materials
Garcia et al. Biaxial magnetometer sensor
EP0595915B1 (en) Method and device for measuring the distance between two mutually opposing surfaces by means of the reluctance method
KR100267612B1 (en) Apparatus for measuring the thickness of non magnetic coating
JPH0750711Y2 (en) Magnetic flaw detector for thin steel strip
JP3512250B2 (en) Magnetic image detection device and detection method
JPH023445B2 (en)
Szudarek et al. Static field magnetic flux thickness gauge

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040721

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

EXPY Cancellation because of completion of term