JPH08338007A - Stacked h-steel bridge - Google Patents

Stacked h-steel bridge

Info

Publication number
JPH08338007A
JPH08338007A JP14731795A JP14731795A JPH08338007A JP H08338007 A JPH08338007 A JP H08338007A JP 14731795 A JP14731795 A JP 14731795A JP 14731795 A JP14731795 A JP 14731795A JP H08338007 A JPH08338007 A JP H08338007A
Authority
JP
Japan
Prior art keywords
steel
bridge
main girder
flanges
stacked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14731795A
Other languages
Japanese (ja)
Inventor
Akinobu Kishi
明信 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14731795A priority Critical patent/JPH08338007A/en
Publication of JPH08338007A publication Critical patent/JPH08338007A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To simplify transport, machining, assembly, etc., and to decrease the number of parts by forming a main girder for a bridge by superposing a plurality of H-steel as standard articles in the direction of maximum bending moment as they are and mutually connecting flange sections. CONSTITUTION: A main girder for a large-scale bridge structure is formed by stacking H-steel 1 as standard articles so that the web sections of the H-steel 1 are continued and mutually coupling flanges 1b by high-strength bolts 3 and unifying the flanges 1b. The flanges are connected in the longitudinal direction through splicing materials 2, 2a, 2c, while being joined by welding if required. Stud bolts and slab anchors are installed to the flange at an uppermost stage, and adhesion with concrete is improved. The mounting of stiffening ribs for preventing buckling is eliminated in the webs (web plates) 1a while H-steel 1 is carried as single bodies, and coupled on a field in response to spans. Accordingly, the number of parts is decreased while carrying, assembly, etc., are simplified, and the cost of the whole products can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、橋梁構造物の主桁にH
形鋼を段積みして用いる段積みH形鋼橋梁に関する。
BACKGROUND OF THE INVENTION The present invention is applicable to the main girders of bridge structures.
The present invention relates to a stacked H-shaped steel bridge in which section steels are stacked and used.

【0002】[0002]

【従来の技術】従来、橋梁構造物は、薄肉構造で図7に
(a),(b)の2例を示すように、鋼板を溶接にて組
み合わせて部材を製作している。又、鋼重を軽くするた
め、鋼板を薄くし、リブで補剛する構造となっているた
め、製作工数が大きく、コストアップの要因となってい
る。又、一品一様の単品製品で全て単品で設計する必要
がある。
2. Description of the Related Art Conventionally, a bridge structure has a thin structure, and as shown in FIGS. 7A and 7B, two members are manufactured by welding together steel plates. Further, in order to reduce the weight of steel, the steel plate is thinned and the structure is stiffened by ribs, which requires a large number of manufacturing steps and causes a cost increase. In addition, it is necessary to design a single product, which is a uniform product.

【0003】因みに図7(a),(b)は何れも左下か
ら右上方向が橋梁の長手方向で(a)は大型の橋梁に、
(b)は中型の橋梁に用いられる典形的構造を示す。
7 (a) and 7 (b), the direction from the lower left to the upper right is the longitudinal direction of the bridge, and (a) is a large bridge.
(B) shows a typical structure used for a medium-sized bridge.

【0004】(a)において、01は縦リブ、02は垂
直補剛材、03は水平補剛材、04は縦リブ、05はボ
トムプレート、06はウェブ、07は耳桁、08はデッ
キプレート、09は継手部である。
In (a), 01 is a vertical rib, 02 is a vertical stiffener, 03 is a horizontal stiffener, 04 is a vertical rib, 05 is a bottom plate, 06 is a web, 07 is a spar, and 08 is a deck plate. , 09 are joint parts.

【0005】(b)において、011は水平補剛材、0
12は垂直補剛材、013はガセットプレート、014
はジベル、015は上フランジ、016は中間対傾構、
017は横構、018は底板、019はくつ、020は
腹板、021は下フランジ、022は端対傾構、023
は主げたである。
In (b), 011 is a horizontal stiffener, and 0
12 is a vertical stiffener, 013 is a gusset plate, 014
Is a bell, 015 is an upper flange, 016 is an intermediate tilt structure,
017 is a horizontal structure, 018 is a bottom plate, 019 is shoes, 020 is an abdominal plate, 021 is a lower flange, 022 is an end-to-tilt structure, 023.
Is a lord.

【0006】[0006]

【発明が解決しようとする課題】上記従来の橋梁構造物
には解決すべき次の課題があった。
The conventional bridge structure described above has the following problems to be solved.

【0007】即ち、従来の橋梁構造物では、橋桁のサイ
ズが一品一様となっており、一品一品製作図面を作成
し、材料を加工し組み立てるため、製作に手間がかか
り、大きくコストアップするという問題がある。
That is, in the conventional bridge structure, the size of the bridge girder is uniform for each item, and since it is necessary to make a drawing for each item and process and assemble the materials, it takes a lot of time and effort to manufacture the structure, resulting in a large cost increase. There's a problem.

【0008】又、橋桁の部品を一品一品工場で製作する
ため、品質管理が複雑で製作誤差が発生し易いという問
題がある。
Further, since the bridge girder parts are manufactured one by one in a one-by-one factory, there is a problem that quality control is complicated and a manufacturing error easily occurs.

【0009】又、大形橋梁構造物では、橋桁のサイズが
非常に大きくなるため、工場から架設場所への輸送が制
限される場合が生じるという問題がある。又、大形橋梁
ではそれを架設するための重機に大型のものを使う必要
性があるため、コストアップの一因となるという問題が
ある。
Further, in the large bridge structure, the size of the bridge girder becomes very large, so that there is a problem that transportation from the factory to the erection place may be restricted. In addition, large bridges require the use of large heavy equipment for constructing them, which causes a problem of cost increase.

【0010】又、大形の橋桁を製作する場合、腹板高が
非常に大きくなるため、腹板の座屈防止のための補剛リ
ブが多数必要となるが、補剛リブの溶接により、変形が
生じたり、溶接量の増加により製作日数が増加したりす
るという問題もある。
Further, when manufacturing a large bridge girder, the height of the abdominal plate becomes so large that a large number of stiffening ribs are necessary to prevent buckling of the abdominal plate. There are also problems that deformation occurs and the number of manufacturing days increases due to an increase in the amount of welding.

【0011】本発明は上記問題を解決した段積みH形鋼
橋梁を提供することを目的とする。
An object of the present invention is to provide a stacked H-shaped steel bridge that solves the above problems.

【0012】[0012]

【課題を解決するための手段】本発明は上記課題の解決
手段として、橋梁構造物の主桁がH形鋼をH形鋼の最大
曲げモーメント方向に複数段積みして相互に締結された
段積みH形鋼よりなることを特徴とする段積みH形鋼橋
梁、を提供しようとするものである。
As a means for solving the above problems, the present invention provides a main structure girder of a bridge structure in which a plurality of H-shaped steels are stacked in the maximum bending moment direction of the H-shaped steel and are fastened to each other. An object of the present invention is to provide a stacked H-shaped steel bridge characterized by being composed of stacked H-shaped steel.

【0013】[0013]

【作用】本発明は上記のように構成されるので次の作用
を有する。
Since the present invention is constructed as described above, it has the following actions.

【0014】即ち、橋梁構造物の主桁がH形鋼を、その
最大曲げモーメント方向に複数、段積みして相互に締結
された段積みH形鋼よりなるため、最高強度部材である
主桁を、ミルメーカ等で量産される低価格の規格品であ
るH形鋼を複数段積みし、相互に締結するだけで得られ
るので、きわめて汎用性が高く、しかも低コストで得ら
れる。
That is, since the main girder of the bridge structure is composed of a plurality of H-section steels stacked in the direction of the maximum bending moment and stacked on each other and fastened to each other, the main girder is the highest strength member. Can be obtained by simply stacking a plurality of H-section steels, which are low-priced standard products mass-produced by a mill maker, etc., and fastening them to each other, so that it is extremely versatile and can be obtained at low cost.

【0015】従って、従来のように一品一様の単品製品
が不要となるばかりか規格量産品を用いるのであるから
資材調達、組立て共著しく迅速化する。即ち、従来、橋
桁のフランジ(横材)と腹板を溶接で組立てていたプロ
セス及び製作時間は一切不要となり、かつ、従来は溶接
歪発生を防止するため、様々な工夫を凝らし、万一、歪
が発生した場合は歪取り作業を新たに付加する等の煩が
あったのが一切解消する。
Accordingly, not only the conventional single product is unnecessary, but also standard mass-produced products are used, so that material procurement and assembly can be significantly speeded up. In other words, the process and manufacturing time of assembling the bridge girder flange (transverse member) and the abdominal plate by welding are no longer necessary, and in the past, various measures were taken in order to prevent welding distortion, When the problem occurs, there is no need to add a strain removing work, etc.

【0016】[0016]

【実施例】本発明の第1〜第3実施例を図1〜図6によ
り説明する。なお、先の実施例と同様の構成部材には同
符号を付し、必要ある場合を除き説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First to third embodiments of the present invention will be described with reference to FIGS. The same components as those in the previous embodiment are designated by the same reference numerals, and the description thereof will be omitted unless necessary.

【0017】(第1実施例)第1実施例を図1〜図4に
より説明する。
(First Embodiment) A first embodiment will be described with reference to FIGS.

【0018】本実施例は主桁の基本構成の例に係り、図
1、図2では理解を容易にするため、先に従来例を示
し、次いでそれに対応する本実施例を示す。
This embodiment relates to an example of the basic structure of the main girder. In order to facilitate understanding in FIGS. 1 and 2, a conventional example is shown first, and then a corresponding example is shown.

【0019】図1は本実施例に係る橋梁の主桁の段積み
H形鋼の鉛直断面の図で、(a)は従来例の図、(b)
は(a)に対応する本実施例の3段積みH形鋼の例の
図、(c)は(a)より小型の従来例の図、(d)は
(c)に対応する本実施例の2段積みH形鋼の例の図、
図2は図1の(c),(d)の斜視図で、(a)が従来
例の図(但し、補剛材を付して示す)、(b)が(a)
に対応する本実施例の図、図3は図1(d)(図2
(b))の詳細図で、(a)は図1(d)に対応する
図、(b)は(a)のB−B矢視断面図(但し、90°
回転示)、図4は図1(d)の主桁の長手方向の継手部
の図で、(a)は図1(d)に対応する図、(b)は
(a)の側面図である。
FIG. 1 is a view of a vertical cross section of a stacked H-section steel of main girders of a bridge according to this embodiment, (a) is a view of a conventional example, and (b) is a view.
Is a diagram of an example of a three-stage H-section steel of this embodiment corresponding to (a), (c) is a diagram of a conventional example smaller than (a), and (d) is this embodiment corresponding to (c). Figure of an example of two-tiered H-section steel,
FIG. 2 is a perspective view of FIGS. 1 (c) and 1 (d), in which (a) is a view of a conventional example (however, a stiffening material is shown), and (b) is (a).
FIG. 3 is a diagram of this embodiment corresponding to FIG.
In the detailed view of (b), (a) is a view corresponding to FIG. 1 (d), (b) is a cross-sectional view taken along the line BB of (a) (however, 90 °).
FIG. 4 is a view of a joint portion in the longitudinal direction of the main girder of FIG. 1D, FIG. 4A is a view corresponding to FIG. 1D, and FIG. 4B is a side view of FIG. is there.

【0020】図1において1は規格品のH形鋼、1aは
H形鋼1の腹部、1bはH形鋼1のフランジ、3は段積
みされたH形鋼1同志をそれぞれフランジ1bを上下に
貫通して締結する高力ボルトである。
In FIG. 1, 1 is a standard H-section steel, 1a is an abdomen of the H-section steel 1, 1b is a flange of the H-section steel 1, 3 is a stack of H-section steels 1, and the flanges 1b are moved up and down respectively. It is a high-strength bolt that penetrates and is fastened.

【0021】(a)は従来の桁高の主桁を示し、腹板0
20の上フランジ015、下フランジ021よりなる構
成に対し、(b)の本実施例ではフランジ1bを上下に
有する腹部1aよりなるH形鋼1を3個段積みしてフラ
ンジ1b同志を左右対称に高力ボルト3で締結して構成
した例である。
(A) shows a conventional main girder with a girder height of 0.
In contrast to the configuration of 20 upper flanges 015 and lower flanges 021, in this embodiment (b), three H-shaped steels 1 each having an abdomen 1a having upper and lower flanges 1b are stacked and the flanges 1b are symmetrical. This is an example in which the high-strength bolt 3 is used for fastening.

【0022】(d)は同要領でH形鋼1を2個段積みし
た例であり、従来例の(c)に対応する。以降、本実施
例ではこの(d)の例で説明する。
(D) is an example in which two H-shaped steels 1 are stacked in the same manner and corresponds to (c) of the conventional example. Hereinafter, in this embodiment, the example of (d) will be described.

【0023】次に上記、図1(d)の構成の作用につい
て従来例と比較して説明する。
Next, the operation of the configuration shown in FIG. 1D will be described in comparison with the conventional example.

【0024】図2において、従来例の(a)の場合、橋
梁で最大曲げモーメントの生じる上下方向に対し、荷重
によって曲げが生じる場合、水平方向の上側には中立軸
からの距離に比例した圧縮応力が、下側には同じく引張
応力が各生じるが、同時に上下方向には大きな力(圧縮
荷重)が作用し、腹板020には座屈応力が生じる。こ
の座屈応力は細長比の2乗に比例して大きくなる。図の
奥行き(長手方向)は一様断面が連続するので断面のみ
についてみると、腹板020の高さを板厚で除した細長
比がきわめて大きい腹板020では、わずかな荷重に対
して大きな座屈応力が発生するので曲げに耐える前に上
下方向に座屈しないよう、先ず、垂直補剛材012を適
所に溶接しなければならない。また、曲げの圧縮側、即
ち、両端支持となる橋梁の場合、主桁の中立軸より上側
となる位置の適切な高さに、圧縮による水平方向の座屈
(以降、「水平座屈」という)を防ぐ目的で、水平方向
に水平補剛材011を溶接しなければならない。
In FIG. 2, in the case of the conventional example (a), when bending occurs due to a load in the vertical direction in which the maximum bending moment occurs in the bridge, the upper side in the horizontal direction is compressed in proportion to the distance from the neutral axis. The stress is the same as the tensile stress on the lower side, but at the same time, a large force (compressive load) acts in the vertical direction, and buckling stress occurs on the abdominal plate 020. This buckling stress increases in proportion to the square of the slenderness ratio. The depth (longitudinal direction) of the figure is such that uniform cross-sections are continuous, and looking only at the cross-sections, the abdominal plate 020, which has an extremely large slenderness ratio obtained by dividing the height of the abdominal plate 020 by the plate thickness, is large for a slight load. The vertical stiffener 012 must first be welded in place so that it will not buckle up and down before withstanding bending, as buckling stress will occur. In the case of a bridge that supports compression on the bending side, that is, at both ends, horizontal buckling due to compression (hereinafter referred to as "horizontal buckling") occurs at an appropriate height above the neutral axis of the main girder. The horizontal stiffener 011 must be welded horizontally in order to prevent

【0025】しかも、このような、いわゆる薄物溶接は
きわめて高頻度で溶接歪を生じやすいので、状況によっ
ては適所に冷し金を当て、或は堅固な治具で固定して溶
接しなければならないという煩雑な作業が付随する。
Moreover, since such so-called thin welding is apt to cause welding distortion at a very high frequency, depending on the situation, it may be necessary to apply a chill in place or fix it with a solid jig to perform welding. It is accompanied by complicated work.

【0026】これに対し、本実施例の図2(b)の場
合、図3(a),(b)にも示すように2段の(2個
の)H形鋼1を高力ボルト3で締結しさえすればよい。
これを強度的に見ると、桁高の中央には2枚のフランジ
1bが合体していて各腹部1aの細長比は従来例の1/
2であり、従って座屈応力は板厚を同じとした場合の1
/4にしかすぎない。また、水平座屈についてみても、
桁高を2分する位置に2枚のフランジ1bが縦通してい
るので、腹部1aの水平方向の波打ち(のたくり)の自
由度は0に近く、従って水平座屈も生じる懸念はない。
On the other hand, in the case of FIG. 2 (b) of this embodiment, as shown in FIGS. 3 (a) and 3 (b), the two-stage (two) H-shaped steels 1 are attached to the high-strength bolts 3. All you have to do is
From the viewpoint of strength, two flanges 1b are united at the center of the girder height, and the slenderness ratio of each abdomen 1a is 1/1 of that of the conventional example.
Therefore, the buckling stress is 1 when the plate thickness is the same.
Only / 4. Also, regarding horizontal buckling,
Since the two flanges 1b are longitudinally provided at positions that divide the girder height in two, the degree of freedom of the corrugation of the abdomen 1a in the horizontal direction is close to 0, and therefore there is no fear of horizontal buckling.

【0027】しかも溶接個所は絶無で溶接作業を必要と
せず、従って溶接歪も絶無であるばかりか溶接歪を防止
するための冷し金や治具を必要とせず、それらに伴う煩
雑な作業も絶無である。
Moreover, the welding points are absolutely necessary and welding work is not necessary. Therefore, not only welding distortion is inevitable, but also a chill plate or jig for preventing welding distortion is not required, and complicated work accompanying them is also unnecessary. There is nothing.

【0028】また、残留歪もないため、架橋後の経時的
な応力腐蝕破壊の発生も生じない。
Further, since there is no residual strain, stress corrosion damage does not occur with time after crosslinking.

【0029】因みに応力腐蝕破壊とは、たとえば溶接に
よる残留応力(引張応力)が存在すると、その応力方向
に垂直な方向には雨水等による腐蝕が著しく進行しやす
い現象を云う。
Incidentally, the stress corrosion fracture means a phenomenon in which, for example, when residual stress (tensile stress) due to welding exists, corrosion due to rainwater or the like is likely to proceed in a direction perpendicular to the stress direction.

【0030】図4は本実施例の長手方向の継手の図で、
(a)は、たとえば図1(d)に対応する図、(b)は
(a)の側面図である。(b)に示すように左右双方か
ら当接し合った各H形鋼1の端部には(a)に示すよう
に腹部1aの両側から添接板2が当てられ、最上下端の
フランジ1bには添接板2a,2cが当てられて各、高
力ボルト3で締結されている。桁高の中央となる部位の
重ね合わさったフランジ1bは曲げにおける略中立軸線
上となり、曲げに際して格別の引張、圧縮応力が生じな
いので、特に添接板を当てる必要はない。但し、たとえ
ば主桁の上側に、主桁(従って2段のH形鋼1)の断面
係数に影響を与える程の対圧縮性の大きな路盤等が、水
平方向に滑りを生じないよう固設された場合は中立軸が
上方に移動するので引張応力分担用に左右に各1枚程度
の添接板を入れた方が、より強大な荷重に耐えられると
いう意味で望ましい。
FIG. 4 is a view of the longitudinal joint of this embodiment.
1A is a diagram corresponding to, for example, FIG. 1D, and FIG. 1B is a side view of FIG. As shown in (b), as shown in (a), the splicing plates 2 are applied from both sides of the abdomen 1a to the end portions of the H-shaped steels 1 that are in contact with each other from the left and right sides, and the flanges 1b at the upper and lower ends are attached to the end plates. Are attached to the attachment plates 2a and 2c and fastened with high-strength bolts 3, respectively. The flange 1b in which the central portion of the girder height is superposed is on the substantially neutral axis in bending, and no particular tensile or compressive stress is generated during bending, so it is not necessary to apply a splicing plate. However, for example, on the upper side of the main girder, a roadbed or the like having a large compressibility that affects the section modulus of the main girder (hence, the two-stage H-section steel 1) is fixed so as to prevent horizontal slippage. In this case, since the neutral shaft moves upward, it is desirable to insert about one splicing plate on each of the left and right sides for sharing the tensile stress in the sense that it can withstand a larger load.

【0031】(第2実施例)第2実施例を図5により説
明する。
(Second Embodiment) A second embodiment will be described with reference to FIG.

【0032】本実施例は第1実施例の2段積みH形鋼の
主桁の上に路盤として、RC床版(鉄筋コンクリート床
板)をボルト(スタッド)止めして橋梁を架設する例で
ある。
The present embodiment is an example in which an RC floor slab (reinforced concrete floor board) is bolted (stud) to a bridge as a roadbed on the main girders of the two-stage H-section steel of the first embodiment.

【0033】図5は本実施例の図で、(a)は側面図、
(b)は主桁とスタッドのみの斜視図である。
FIG. 5 is a view of this embodiment, (a) is a side view,
(B) is a perspective view of only a main girder and a stud.

【0034】図において、4は支承5の直上となる主桁
(各H形鋼1)の部位で集中荷重を効率的に桁高方向に
分散させるよう各H形鋼1の腹部1aに沿って溶接され
た端支点上補剛材、5は橋梁の両端を支える支承、6は
主桁の上に路盤として敷設されるRC床版、7はRC床
版6を主桁にネジ止めするため、主桁であるH形鋼1の
上部のフランジ1bに多数、植設されたスタッドであ
る。
In the figure, 4 is a portion of the main girder (each H-section steel 1) immediately above the support 5 along the abdomen 1a of each H-section steel 1 so as to efficiently disperse the concentrated load in the girder height direction. Welded stiffeners on the end fulcrums, 5 supports for supporting both ends of the bridge, 6 RC floor slabs laid as roadbed on the main girder, 7 for fixing RC floor slab 6 to the main girder, A large number of studs are planted on the upper flange 1b of the H-shaped steel 1 which is the main girder.

【0035】因みにこのような構成は、主桁とRC床版
6とはいわば別部材同志をスタッド7で締結したに留ま
り、スタッド7を密植し、強力にネジ止めした場合は別
として、一般に曲げ歪(撓み)の発生に際し、RC床版
6と主桁との間に微細な滑りを容認するもので両方の部
材が合して断面の慣性モーメント(I)を高め合うこと
がなく(絶無ではないが)、従って、剛性(E・I…E
は材質によって決まるヤング係数)は両部材の個々の剛
性を合した程度に留まるところから、単純合成桁と呼ば
れる。
By the way, in such a structure, the main girder and the RC floor slab 6 are, so to speak, different members fastened together by the studs 7, and the studs 7 are densely planted and are generally bent unless otherwise strongly screwed. When distortion (deflection) occurs, it allows fine sliding between the RC floor slab 6 and the main girder, and both members do not combine to increase the moment of inertia (I) of the cross section (indefinitely, However, the rigidity (E ・ I ... E)
Is a Young's modulus determined by the material) is called a simple composite girder because it stays at the level of combining the individual rigidity of both members.

【0036】なお、RC床版6には、床版の下方近傍で
長手方向の鉄筋にプリテンションを負荷してコンクリー
トで固めたPC床版が用いられても勿論よく、強度上の
みからは寧ろその方が望ましい。
As the RC floor slab 6, a PC floor slab of which the longitudinal reinforcing bars are pretensioned and hardened with concrete near the bottom of the floor slab may of course be used. That is preferable.

【0037】(第3実施例)第3実施例を図6により説
明する。
(Third Embodiment) A third embodiment will be described with reference to FIG.

【0038】本実施例は第1実施例の3段積みH形鋼の
主桁の上に直接、コンクリートを流して固め路盤とする
橋梁の例である。
The present embodiment is an example of a bridge in which concrete is poured directly onto the main girders of the H-section steel of three-tiered structure of the first embodiment to form a consolidation roadbed.

【0039】図6は本実施例の図で、(a)は側面図、
(b)は主桁とスラブアンカーのみの斜視図である。
FIG. 6 is a view of this embodiment, (a) is a side view,
(B) is a perspective view of only a main girder and a slab anchor.

【0040】本実施例の場合は主桁をなすH形鋼1の上
部のフランジ1bにコンクリート捕捉用のスラブアンカ
ー8が多数、植設され、別に路盤状の適切な鉄筋コンク
リート用の篭体を流動コンクリート受容箱と共に載置固
定してコンクリートを流し込み、いわば路盤と主桁とを
一体的に構成するもので圧縮に強いコンクリートが、曲
げに際して圧縮側となる上面に滑りなく一体的に固設さ
れることにより強度、剛性共に高まるという利点があ
る。因みにかかる構造を連続非合成桁と呼んでいる。
In the case of this embodiment, a large number of slab anchors 8 for catching concrete are planted on the upper flange 1b of the H-shaped steel 1 forming the main girder, and a suitable roadbed-shaped cage for reinforced concrete is flowed separately. Concrete that is placed and fixed together with a concrete receiving box and poured into it, so to speak, that is, the roadbed and main girder are integrally configured, and the concrete that is resistant to compression is fixed integrally on the upper surface that is the compression side when bending without slipping. This has the advantage of increasing both strength and rigidity. The related structure is called continuous non-composite digit.

【0041】なお、本構成は一般に大型橋梁に用いら
れ、スパン中間に中間支承5aが、その上方に中間支点
上補剛材4aが各付設されることが多い。
This structure is generally used for large bridges, and in many cases, an intermediate bearing 5a is provided in the middle of the span, and a stiffening member 4a on the intermediate fulcrum is provided above it.

【0042】以上、第1実施例ではH形鋼1同志の締結
に高力ボルト3を用いたがボルト締結に限定されるもの
ではなく状況に応じて溶接が用いられてもよい。
As described above, in the first embodiment, the high-strength bolt 3 is used to fasten the H-shaped steels 1 to each other, but the present invention is not limited to bolt fastening, and welding may be used depending on the situation.

【0043】以上の通り、第1〜第3実施例によれば、
主桁にミルメーカ等で量産されるH形鋼を段積みし締結
して用いるので、資材調達がきわめて容易という利点が
ある。
As described above, according to the first to third embodiments,
Since H-shaped steels, which are mass-produced by mill makers, are stacked and fastened to the main girders and used, there is an advantage that material procurement is extremely easy.

【0044】また、ミルメーカ等で量産、製品検査され
た規格品のH形鋼を殆どそのままの形で使うので2次加
工に伴う製品欠陥が生じないという利点がある。
Further, since the standard H-section steel that has been mass-produced and product-inspected by a mill maker is used as it is, there is an advantage that product defects due to secondary processing do not occur.

【0045】また、規格品であるがため、部品点数が著
しく少なく、部品管理がきわめて容易という利点があ
る。
Further, since it is a standard product, it has an advantage that the number of parts is remarkably small and part management is extremely easy.

【0046】また、多種の部品作りや溶接を必要としな
いので工期が著しく短縮されるという利点がある。
Further, there is an advantage that the construction period is remarkably shortened because it is not necessary to make various kinds of parts and welding.

【0047】また、溶接を必要としないので溶接歪対策
の問題がなく、かつ、応力腐蝕の問題が生じないという
利点がある。
Further, since welding is not required, there is an advantage that there is no problem of measures against welding distortion and no problem of stress corrosion.

【0048】また、軽量のH形鋼を段積みして主桁を構
成するので、建設現場へ資材を運ぶ運搬手段、現場にお
ける取扱い手段に大型の車輛、クレーン等の手段を用い
る必要がないという利点がある。
Also, since the main girders are constructed by stacking lightweight H-shaped steels in layers, it is not necessary to use means such as large vehicles or cranes as a means of transporting materials to the construction site or a means of handling them at the site. There are advantages.

【0049】また、規格品を殆どそのまま段積みして構
成するので寸法精度をきわめて高くできるという利点が
ある。
Further, since the standard products are stacked almost as they are, there is an advantage that the dimensional accuracy can be made extremely high.

【0050】また、量産規格品を殆どそのまま用い、多
部品の製作を必要とせず、部品加工時間を殆ど必要とせ
ず、溶接もなく資材費、製作時間が共に極小化するので
製作コストが著しく低減されるという著しい利点があ
る。
Further, almost all mass-produced standard products are used as they are, there is no need to manufacture a large number of parts, there is almost no need to process parts, and there is no welding. There is a significant advantage of being done.

【0051】また、部材運搬に特殊な大型トレーラー等
を用いる必要がないので輸送制限を受けることがないと
いう利点がある。
Further, since it is not necessary to use a special large trailer or the like for carrying the members, there is an advantage that the transportation is not restricted.

【0052】[0052]

【発明の効果】本発明は上記のように構成されるので次
の効果を有する。
The present invention has the following effects because it is configured as described above.

【0053】(1).ミルメーカーで形成されたH形鋼
を使用するため、部材の加工、組立、製作に要する時間
を著しく低減できる。
(1). Since the H-shaped steel formed by the mill maker is used, the time required for processing, assembling and manufacturing the members can be significantly reduced.

【0054】(2).上記(1)の理由で部材を高精度
に製作できる。
(2). Due to the reason (1) above, the member can be manufactured with high accuracy.

【0055】(3).製作部材数を少くできる。(3). The number of manufacturing members can be reduced.

【0056】(4).規格のH形鋼を使用するため、部
材形状を全く規格化できるため、製作、架設が容易とな
り、将来の製作・架設の機械化、橋梁本体及び付属物の
標準化を行うことができ、製品全体がコストダウンす
る。
(4). Since the standard H-section steel is used, the shape of the members can be completely standardized, facilitating production and erection, mechanization of future production and erection, standardization of bridge bodies and accessories, and overall product Reduce costs.

【0057】(5).規格品で軽量のため全ての部材を
トラック輸送できるため、輸送制限の影響を受けない。
(5). Because it is a standard product and lightweight, all parts can be transported by truck, so it is not affected by transportation restrictions.

【0058】(6).スパンの変化に対し、規格部材の
みで対応できる。
(6). Only standard members can handle changes in span.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る橋梁の主桁の段積み
H形鋼の鉛直断面の図で、(a)は比較用の従来例の
図、(b)は(a)に対応する本実施例の3段積みH形
鋼の例の図、(c)は(a)より小型の従来例の図、
(d)は(c)に対応する本実施例の2段積みH形鋼の
例の図、
FIG. 1 is a vertical cross-sectional view of a stacked H-section steel of main girders of a bridge according to a first embodiment of the present invention, in which (a) is a conventional example for comparison and (b) is (a). The corresponding figure of the example of the three-stage H-section steel of this embodiment, (c) is the figure of the conventional example smaller than (a),
(D) is a diagram of an example of the double-stacked H-section steel of this embodiment corresponding to (c),

【図2】第1実施例に係る、図1の(c),(d)の斜
視図で、(a)が従来例の図、(b)が(a)に対応す
る本実施例の図、
2A and 2B are perspective views of FIGS. 1C and 1D according to the first embodiment, in which FIG. 2A is a diagram of a conventional example and FIG. 2B is a diagram of the present embodiment corresponding to FIG. ,

【図3】第1実施例に係る図1(d)の詳細図で、
(a)は図1(d)に対応する図、(b)は(a)のB
−B矢視断面図(但し、90°回転示)、
FIG. 3 is a detailed view of FIG. 1D according to the first embodiment,
1A is a diagram corresponding to FIG. 1D, and FIG. 1B is B of FIG.
-B arrow cross-sectional view (however, 90 ° rotation shown),

【図4】第1実施例に係る図1(d)の主桁の長手方向
の継手部の図で、(a)は図1(d)に対応する図、
(b)は(a)の側面図、
FIG. 4 is a view of a longitudinal joint portion of the main girder of FIG. 1 (d) according to the first embodiment, FIG. 4 (a) corresponding to FIG. 1 (d);
(B) is a side view of (a),

【図5】本発明の第2実施例に係る図で、(a)は側面
図、(b)は(a)の主桁等の斜視図、
5A and 5B are views according to a second embodiment of the present invention, in which FIG. 5A is a side view, FIG. 5B is a perspective view of a main girder and the like in FIG.

【図6】本発明の第3実施例に係る図で、(a)は側面
図、(b)は(a)の主桁等の斜視図、
6A and 6B are views according to a third embodiment of the present invention, in which FIG. 6A is a side view, FIG. 6B is a perspective view of a main girder and the like in FIG.

【図7】従来の橋梁構造物の要部斜視図で、(a)は大
型橋梁の例の図、(b)は中型橋梁の例の図である。
FIG. 7 is a perspective view of a main part of a conventional bridge structure, in which (a) is a diagram of an example of a large bridge and (b) is a diagram of an example of a medium-sized bridge.

【符号の説明】[Explanation of symbols]

1 H形鋼 1a 腹部 1b フランジ 2,2a,2c 添接材 3 高力ボルト 4 端支点上補剛材 4a 中間支点上補剛材 5 支承 5a 中間支承 6 RC床版 6a コンクリート 7 スタッド 8 スラブアンカー 1 H-section steel 1a Abdomen 1b Flange 2, 2a, 2c Splice material 3 High-strength bolt 4 Stiffener on end fulcrum 4a Intermediate stiffener on fulcrum 5 Support 5a Intermediate support 6 RC floor slab 6a Concrete 7 Stud 8 Slab anchor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 橋梁構造物の主桁がH形鋼をH形鋼の最
大曲げモーメント方向に複数段積みして相互に締結され
た段積みH形鋼よりなることを特徴とする段積みH形鋼
橋梁。
1. A stacked H-shaped steel structure, wherein a main girder of a bridge structure is composed of stacked H-shaped steels in which a plurality of H-shaped steels are stacked in the maximum bending moment direction of the H-shaped steels and fastened to each other. Shaped steel bridge.
JP14731795A 1995-06-14 1995-06-14 Stacked h-steel bridge Pending JPH08338007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14731795A JPH08338007A (en) 1995-06-14 1995-06-14 Stacked h-steel bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14731795A JPH08338007A (en) 1995-06-14 1995-06-14 Stacked h-steel bridge

Publications (1)

Publication Number Publication Date
JPH08338007A true JPH08338007A (en) 1996-12-24

Family

ID=15427460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14731795A Pending JPH08338007A (en) 1995-06-14 1995-06-14 Stacked h-steel bridge

Country Status (1)

Country Link
JP (1) JPH08338007A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194704A (en) * 2000-12-26 2002-07-10 Taisei Corp Method for constructing girder
JP2008014101A (en) * 2006-07-10 2008-01-24 Jfe Steel Kk Slab shape structure and segment for tunnel, floor slab and reinforced concrete pier using the same
WO2008029753A1 (en) * 2006-09-08 2008-03-13 Metropolitan Expressway Company Limited Dislocation preventing bolt, and longitudinal rib composite floor panel having the dislocation preventing bolt
JP2008144380A (en) * 2006-12-06 2008-06-26 Mitsui Eng & Shipbuild Co Ltd Bridge using a small number of main girders
JP2014234583A (en) * 2013-05-30 2014-12-15 Jfeスチール株式会社 Bridge structure
JP2017150289A (en) * 2016-02-28 2017-08-31 株式会社巴製作所 Reinforcement/repair structure and method for steel structure
JP2018123484A (en) * 2017-01-30 2018-08-09 積水ハウス株式会社 Load bearing member
CN113136781A (en) * 2021-03-16 2021-07-20 东南大学 Steel-concrete composite beam bridge structure adopting high-strength bolts to connect steel webs and construction method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194704A (en) * 2000-12-26 2002-07-10 Taisei Corp Method for constructing girder
JP2008014101A (en) * 2006-07-10 2008-01-24 Jfe Steel Kk Slab shape structure and segment for tunnel, floor slab and reinforced concrete pier using the same
JP4661709B2 (en) * 2006-07-10 2011-03-30 Jfeスチール株式会社 Plate structure, tunnel segment, floor slab and reinforced concrete pier using the same
WO2008029753A1 (en) * 2006-09-08 2008-03-13 Metropolitan Expressway Company Limited Dislocation preventing bolt, and longitudinal rib composite floor panel having the dislocation preventing bolt
JP2008144380A (en) * 2006-12-06 2008-06-26 Mitsui Eng & Shipbuild Co Ltd Bridge using a small number of main girders
JP2014234583A (en) * 2013-05-30 2014-12-15 Jfeスチール株式会社 Bridge structure
JP2017150289A (en) * 2016-02-28 2017-08-31 株式会社巴製作所 Reinforcement/repair structure and method for steel structure
JP2018123484A (en) * 2017-01-30 2018-08-09 積水ハウス株式会社 Load bearing member
CN113136781A (en) * 2021-03-16 2021-07-20 东南大学 Steel-concrete composite beam bridge structure adopting high-strength bolts to connect steel webs and construction method

Similar Documents

Publication Publication Date Title
US20040128939A1 (en) Composite bearing deck comprising deck panel and concrete
US10626611B2 (en) Modular truss joint
KR100609304B1 (en) Precast Composition I-Beam with Concrete Panel and Corrugated Steel Web Girder
WO2008133460A1 (en) Composite concrete column and construction method using the same
CA2271403A1 (en) Bolted metal joist
JP2007023714A (en) Composite floor slab using shape steel, composite floor slab bridge or composite girder bridge and its construction method
JPH08338007A (en) Stacked h-steel bridge
US20210164244A1 (en) Heavy duty spanning forms and related systems and methods
KR101049963B1 (en) Steel plate structure and construction method of wall-slab joint structure using same
JP2002266317A (en) Continuous girder for bridge
KR101957237B1 (en) Composite rigid-frame bridge with steel girder for having prestress-induced coner part, and construction method for he same
JPH11229329A (en) Constructing method for steel-concrete composite floor board bridge
KR20170131922A (en) The compositeness girder
JP2886364B2 (en) PC composite truss beam and its construction method
JP3788310B2 (en) Composite main tower and its construction method
KR101825580B1 (en) Steel and precast concrete hybrid beam
KR101732724B1 (en) Hybrid PEB having tube-type flanges
JP2009221714A (en) Composite girder bridge of prestressing steel concrete, and its erection method
JPH1121819A (en) Steel floor board
WO2012151612A1 (en) Bearer arrangement
KR20200137334A (en) Advanced Interlocking Girder adapt to Load Factor Resistance Design Method
JP6539914B2 (en) Steel girder joint structure and steel girder joint method
CN211080091U (en) Assembled steel-concrete coincide panel structure
KR102003286B1 (en) Wide composite structure for reinforcing the connecting part of girders and column
JP2002155507A (en) Bridge

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010327