JPH08316873A - Time division multiplex fdd radio equipment and time division multiplex fdd/tdd dual mode radio equipment - Google Patents

Time division multiplex fdd radio equipment and time division multiplex fdd/tdd dual mode radio equipment

Info

Publication number
JPH08316873A
JPH08316873A JP7117536A JP11753695A JPH08316873A JP H08316873 A JPH08316873 A JP H08316873A JP 7117536 A JP7117536 A JP 7117536A JP 11753695 A JP11753695 A JP 11753695A JP H08316873 A JPH08316873 A JP H08316873A
Authority
JP
Japan
Prior art keywords
frequency
output
fdd
reception
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7117536A
Other languages
Japanese (ja)
Other versions
JP3393954B2 (en
Inventor
Kaoru Ishida
石田  薫
Hiroaki Kosugi
裕昭 小杉
Fujio Sasaki
冨士男 佐々木
Yoichi Morinaga
洋一 森永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP11753695A priority Critical patent/JP3393954B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to US08/648,416 priority patent/US5926466A/en
Priority to EP01106159A priority patent/EP1146638B1/en
Priority to EP96107777A priority patent/EP0744831B1/en
Priority to DE69615914T priority patent/DE69615914T2/en
Priority to EP03016825A priority patent/EP1355420A2/en
Priority to DE69630546T priority patent/DE69630546T2/en
Priority to KR1019960016506A priority patent/KR100378158B1/en
Publication of JPH08316873A publication Critical patent/JPH08316873A/en
Priority to KR1020020047027A priority patent/KR100395249B1/en
Application granted granted Critical
Publication of JP3393954B2 publication Critical patent/JP3393954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To simplify the circuit configuration by decreasing number of oscillators in the time division multiplex FDD radio equipment and the time division multiplex FDD/TDD dual mode radio equipment. CONSTITUTION: A converter 6 mixes a reception signal with a 1st local oscillation frequency signal in the case of reception to convert the reception signal into a 1st intermediate frequency signal, it is amplified by a 1st intermediate frequency amplifier 10, a converter 11 mixes an output of a 2nd local oscillator 12 with a signal multiplied by a multiple of (n) at an n-multiplier 14 to generate a 2nd intermediate frequency signal, and it is demodulated by a demodulator 16. On the other hand, an output of the 2nd local oscillator 12 is multiplied by a multiple of (m) at an m-multiplier 18, a modulator 19 modulates digitally the result, it is amplified by a transmission intermediate frequency amplifier 20 in the case of transmission and a converter 22 is used to mix the amplified signal with an output of the 1st local oscillator 8 to convert the signal into a transmission frequency signal different from a reception frequency signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、移動通信などに用いら
れる時分割多重(Time Division Mul
tiple Access,以下TDMAと略称)方式
の無線機に関し、さらに詳しくは、このTDMA方式に
おいて送信と受信に異なった周波数を用いるFrequ
ency Division Duplex(以下FD
Dと略称)方式の無線機、及び、このFDD方式と、送
信と受信の分離を時分割で行うTime Divisi
on Duplex(以下TDDと略称)方式との2方
式を1台の機器で用いることのできるデュアルモード無
線機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to time division multiplex (Time Division Mul) used for mobile communication and the like.
The present invention relates to a wireless device of a triple access (hereinafter abbreviated as TDMA) system, and more specifically, a Freq that uses different frequencies for transmission and reception in this TDMA system.
energy Division Duplex (hereinafter FD
D) abbreviated wireless device, and this FDD system, and Time Divisi that separates transmission and reception by time division.
The present invention relates to a dual-mode wireless device that can use two systems, an on-duplex (hereinafter abbreviated as TDD) system, in one device.

【0002】[0002]

【従来の技術】近年、自動車電話・携帯電話を始め船舶
電話・航空機電話・列車電話等の移動通信サービスの需
要が高まり、さまざまな方式の通信システムが提案され
ている。その一つであるTDMA方式は基地局に対して
複数の移動局が同一周波数の電波を時分割によって共用
するものであって、たとえば科学新聞社刊、桑原守二監
修「ディジタル移動通信」pp62〜69に示されてい
るので、ここではTDMA方式そのものの詳細な説明は
省略する。
2. Description of the Related Art In recent years, demand for mobile communication services such as car telephones, mobile telephones, ship telephones, aircraft telephones, train telephones, etc. has increased, and various types of communication systems have been proposed. The TDMA system, which is one of them, is one in which a plurality of mobile stations share a radio wave of the same frequency with a base station by time division. For example, Kagaku Shimbun published by Moriji Kuwahara, "Digital Mobile Communications" pp62- 69, the detailed description of the TDMA system itself is omitted here.

【0003】以下、図面を用いてTDMA方式であっ
て、かつTDD方式で送信と受信を分離している従来例
の無線機について説明する。図7は、従来例のTDMA
方式であって、かつTDD方式の無線機のブロックダイ
ヤグラムである。図7において、受信時にはアンテナ1
から入力した高周波信号は、高周波バンドパスフィルタ
3によって1895.15〜1917.95MHzの自
局の受信周波数fR が選択され、2r側に接続されてい
るアンテナ切り換えスイッチ2を介して高周波増幅器4
に入力されて増幅され、高周波バンドパスフィルタ5で
更に選択度を高められた後、コンバータ6で第1局部発
振器8から送受切り換えスイッチ7の接点7rを経て入
力された1646.85〜1669.65MHzの第1
局部発振周波数fL1 と混合されて248.3MHzの
第1中間周波数fR1 に変換され、第1中間周波バンド
パスフィルタ9で選択度を高められて第1中間周波増幅
器10で増幅される。さらに第2局部発振器12からの
259.1MHzの第2局部発振周波数fL2とコンバー
タ11で混合されて10.8MHzの第2中間周波数f
R2に変換され、第2中間周波バンドパスフィルタ15で
選択度を高られめた後、デモジュレータ16によって復
調されて受信出力を得る。
A conventional radio equipment of the TDMA system and separating the transmission and the reception by the TDD system will be described below with reference to the drawings. FIG. 7 shows a conventional TDMA.
2 is a block diagram of a wireless device of the TDD system which is a system. In FIG. 7, the antenna 1 is used for reception.
The high-frequency signal input from the high-frequency bandpass filter 3 selects the reception frequency fR of its own station from 1895.15 to 1917.95 MHz, and the high-frequency amplifier 4 via the antenna changeover switch 2 connected to the 2r side.
164.85 to 1669.65 MHz input from the first local oscillator 8 via the contact 7r of the transmission / reception changeover switch 7 in the converter 6 after being further amplified by the high frequency band pass filter 5 and amplified. First of
It is mixed with the local oscillation frequency fL1 and converted into the first intermediate frequency fR1 of 248.3 MHz, the selectivity is increased by the first intermediate frequency bandpass filter 9 and amplified by the first intermediate frequency amplifier 10. Furthermore, the second local oscillation frequency fL2 of 259.1 MHz from the second local oscillator 12 is mixed in the converter 11 and the second intermediate frequency f of 10.8 MHz is mixed.
After being converted into R2, the second intermediate frequency band pass filter 15 increases the selectivity, and then demodulated by the demodulator 16 to obtain a reception output.

【0004】一方、送信時には第1中間周波数fR1と同
一周波数248.3MHzの搬送波発振器17の出力f
L をモジュレータ19で変調信号I,Qによりデジタル
変調した送信中間周波数の信号fT1を送信中間周波増幅
器20で増幅し、送信中間周波バンドパスフィルタ21
で選択度を高められた後、送受切り換えスイッチ7の接
点7tより第1局部発振器8からの1646.85〜1
669.65MHzの第1局部発振周波数fL1を受けた
コンバータ22へ入力され、ここで受信時と同一周波数
の高周波信号fT に変換され、高周波バンドパスフィル
タ23で選択度を高められ、高周波増幅器24、高周波
電力増幅器25で増幅され、アンテナ切り換えスイッチ
2の接点2tを経て、高周波バンドパスフィルタ3で選
択度を高められてアンテナ1から送信される。
On the other hand, during transmission, the output f of the carrier oscillator 17 having the same frequency 248.3 MHz as the first intermediate frequency fR1
The transmission intermediate frequency signal fT1 obtained by digitally modulating L with the modulation signals I and Q by the modulator 19 is amplified by the transmission intermediate frequency amplifier 20, and is transmitted by the transmission intermediate frequency band pass filter 21.
After the selectivity is increased by, the contact point 7t of the transmission / reception changeover switch 7 is used to output 1646.85-1 from the first local oscillator 8.
The first local oscillation frequency fL1 of 669.65 MHz is input to the converter 22, where it is converted into a high frequency signal fT having the same frequency as at the time of reception, and the high frequency band pass filter 23 increases the selectivity, and the high frequency amplifier 24, The signal is amplified by the high frequency power amplifier 25, passes through the contact 2t of the antenna changeover switch 2, is increased in selectivity by the high frequency band pass filter 3, and is transmitted from the antenna 1.

【0005】ここで、受信と送信とはアンテナ切り換え
スイッチ2と送受切り換えスイッチ7とを、音声信号に
比してきわめて短い周期で切り換えて送信・受信を時分
割することによって同時送受話が可能となる。
Here, reception and transmission are performed by switching the antenna changeover switch 2 and the transmission / reception changeover switch 7 at a cycle extremely shorter than that of a voice signal and performing time division of transmission / reception, thereby enabling simultaneous transmission / reception. Become.

【0006】つぎにTDMA方式であって、かつFDD
方式で送信と受信とを分離している従来例の無線機につ
いて説明する。図8は、従来例のTDMA方式であっ
て、かつFDD方式の無線機のブロックダイヤグラムで
ある。図8において、受信時にはアンテナ1から入力し
た高周波信号は、2r側に接続されているアンテナ切り
換えスイッチ2を経て、高周波バンドパスフィルタ3に
よって810〜826MHzの自局の受信周波数fR が
選択され、高周波増幅器4に入力して、ここで増幅さ
れ、高周波バンドパスフィルタ5でさらに選択度を高め
られた後、コンバータ6で第1局部発振器8から送受切
り換えスイッチ7の接点7rを経て入力した680〜6
96MHzの第1局部発振周波数fL1と混合されて13
0MHzの第1中間周波数fR1に変換され、第1中間周
波バンドパスフィルタ9で選択度を高められた後、第1
中間周波増幅器10で増幅される。さらに第2局部発振
器12からの129.55MHzの第2局部発振周波数
fL2とコンバータ11で混合されて450kHzの第2
中間周波数fR2に変換され、第2中間周波バンドパスフ
ィルタ15で選択度を高められた後、デモジュレータ1
6によって復調されて受信出力が得られる。
Next, the TDMA method and the FDD
A conventional wireless device in which transmission and reception are separated by the method will be described. FIG. 8 is a block diagram of a conventional TDMA and FDD wireless device. In FIG. 8, the high frequency signal input from the antenna 1 at the time of reception passes through the antenna changeover switch 2 connected to the 2r side, and the high frequency band pass filter 3 selects the reception frequency fR of the local station of 810 to 826 MHz, The signal is input to the amplifier 4, amplified here, and further increased in selectivity by the high-frequency bandpass filter 5, and then input from the first local oscillator 8 via the contact 7r of the transmission / reception changeover switch 7 by the converter 6 to 680-6.
13 when mixed with the first local oscillation frequency fL1 of 96 MHz
After being converted to a first intermediate frequency fR1 of 0 MHz and having increased selectivity by the first intermediate frequency bandpass filter 9,
It is amplified by the intermediate frequency amplifier 10. Further, the second local oscillation frequency fL2 of 129.55 MHz from the second local oscillator 12 and the second local oscillation frequency of 450 kHz are mixed by the converter 11.
After being converted to the intermediate frequency fR2 and having the selectivity increased by the second intermediate frequency bandpass filter 15, the demodulator 1
It is demodulated by 6 to obtain the reception output.

【0007】一方、送信時には第1中間周波数とは異な
った260MHzの搬送波周波数fL を発生する搬送波
発振器17の出力を、モジュレータ19で変調信号I,
Qによりデジタル変調して送信中間周波数fT1の変調波
を発生させ、送信中間周波増幅器20で増幅し、送信中
間周波バンドパスフィルタ21で選択度を高められた
後、送受切り換えスイッチ7の接点7tより680〜6
96MHzの第1局部発振器8からの第1局部発振周波
数fL1を受けたコンバータ22へ入力され、ここで自局
の送信周波数fT の940〜956MHzの高周波信号
に変換され、高周波バンドパスフィルタ23で選択度を
高められ、高周波増幅器24、高周波電力増幅器25で
増幅され、高周波バンドパスフィルタ26で選択度を高
められてアンテナ切り換えスイッチ2の接点2tを通じ
てアンテナ1から送信される。
On the other hand, at the time of transmission, the modulator 19 outputs the output of the carrier oscillator 17 which generates a carrier frequency fL of 260 MHz different from the first intermediate frequency to the modulated signal I,
After being digitally modulated by Q, a modulated wave of the transmission intermediate frequency fT1 is generated, amplified by the transmission intermediate frequency amplifier 20, and increased in selectivity by the transmission intermediate frequency bandpass filter 21, and then from the contact 7t of the transmission / reception changeover switch 7. 680-6
The signal is input to the converter 22 which receives the first local oscillation frequency fL1 from the first local oscillator 8 of 96 MHz, converted into a high frequency signal of 940 to 956 MHz of the transmission frequency fT of the own station, and selected by the high frequency band pass filter 23. The frequency is increased, amplified by the high-frequency amplifier 24 and the high-frequency power amplifier 25, increased in selectivity by the high-frequency bandpass filter 26, and transmitted from the antenna 1 through the contact 2t of the antenna changeover switch 2.

【0008】図7と同様に、受信と送信とはアンテナ切
り換えスイッチ2と送受切り換えスイッチ7とを、音声
信号に比して短い周期で切り換え送信・受信周波数を切
り換えることによって同時送受話を行うことができる。
Similar to FIG. 7, for reception and transmission, the antenna changeover switch 2 and the transmission / reception changeover switch 7 are switched at a cycle shorter than that of a voice signal to perform simultaneous transmission / reception. You can

【0009】つぎに図7のTDD方式および図8のFD
D方式を1台の無線機に一体に収容したデュアルモード
無線機について説明する。図9は、従来例のデュアルモ
ード無線機のブロックダイヤグラムである。図9におい
ては、図7のTDD方式および図8のFDD方式のブロ
ックダイヤグラムを組み合わせてアンテナ1とそれぞれ
のアンテナ端子間にモード切り換えスイッチ28を挿入
したもので、図7、図8と同一機能の構成要素には同一
記号を付して、その詳細な説明を省略する。また図9中
の各部の周波数関係も図7、図8と同様である。
Next, the TDD system of FIG. 7 and the FD of FIG.
A dual mode radio in which the D system is integrally housed in one radio will be described. FIG. 9 is a block diagram of a conventional dual mode radio device. 9, a block diagram of the TDD system of FIG. 7 and the block diagram of the FDD system of FIG. 8 are combined and a mode change switch 28 is inserted between the antenna 1 and each antenna terminal. The same symbols are given to the constituent elements, and detailed description thereof will be omitted. Further, the frequency relationship of each part in FIG. 9 is similar to that in FIGS. 7 and 8.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、従来例
に示すように、図7のTDD方式および図8のFDD方
式では、第1局部発振器8、第2局部発振器12および
搬送波発振器17が必要であり、又、図9のデュアルモ
ード無線機では、周波数関係が複雑なために、図7およ
び図8に用いられている回路を単に組み合わせただけで
あり、各種発振器の数は図7および図8の発振器の数を
すべて加えたものになり、発振器の数が多く、かつ回路
構成も複雑なものとなるという課題がある。
However, as shown in the conventional example, the TDD system of FIG. 7 and the FDD system of FIG. 8 require the first local oscillator 8, the second local oscillator 12, and the carrier oscillator 17. Further, in the dual mode radio device of FIG. 9, since the frequency relationship is complicated, the circuits used in FIGS. 7 and 8 are simply combined, and the number of various oscillators is the same as those of FIGS. Since all the oscillators are added, there is a problem that the number of oscillators is large and the circuit configuration is complicated.

【0011】本発明は、上記従来例の時分割多重無線機
のこのような課題を考慮し、発振器の数を少なくでき、
回路構成を簡素化できる時分割多重FDD無線機および
時分割多重FDD/TDDデュアルモード無線機を提供
することを目的とするものである。
In consideration of such a problem of the above-mentioned conventional time division multiplex radio equipment, the present invention can reduce the number of oscillators,
An object of the present invention is to provide a time division multiplexing FDD radio and a time division multiplexing FDD / TDD dual mode radio that can simplify the circuit configuration.

【0012】[0012]

【課題を解決するための手段】請求項1の本発明は、第
1の周波数を発振する第1の発振手段と、第2の周波数
を発振する第2の発振手段と、その第2の周波数をn逓
倍又はn分周する第1の周波数変換手段と、第2の周波
数をm逓倍又はm分周する第2の周波数変換手段と、受
信信号と第1の発振手段の出力との差の周波数を出力す
る第1の受信信号変換手段と、その第1の受信信号変換
手段の出力と第1の周波数変換手段の出力との和又は差
の周波数を出力する第2の受信信号変換手段と、第2の
周波数変換手段の出力を変調する変調手段と、その変調
手段の出力と第1の発振手段の出力との和の周波数を出
力する送信信号変換手段とを備え、送信信号変換手段か
ら出力される周波数は、受信信号の周波数とは異なるも
のである時分割多重FDD無線機である。
According to the present invention of claim 1, there is provided a first oscillating means for oscillating a first frequency, a second oscillating means for oscillating a second frequency, and a second frequency thereof. Of the difference between the received signal and the output of the first oscillating means, the first frequency converting means for multiplying or dividing the frequency by n, the second frequency converting means for multiplying or dividing the second frequency by m. A first received signal converting means for outputting a frequency, and a second received signal converting means for outputting a frequency of a sum or a difference between an output of the first received signal converting means and an output of the first frequency converting means. , A modulation means for modulating the output of the second frequency conversion means, and a transmission signal conversion means for outputting the sum frequency of the output of the modulation means and the output of the first oscillation means. The frequency output is different from the frequency of the received signal. It is a FDD radio.

【0013】請求項4の本発明は、第1の周波数を発振
する第1の発振手段と、第2の周波数を発振する第2の
発振手段と、その第2の周波数をn逓倍又はn分周する
第1の周波数変換手段と、第2の周波数をm逓倍又はm
分周する第2の周波数変換手段と、第3の周波数を発振
する第3の発振手段と、受信信号と第1の発振手段の出
力との差の周波数を出力する第1のFDD用受信信号変
換手段と、その第1のFDD用受信信号変換手段の出力
と第1の周波数変換手段の出力との和又は差の周波数を
出力する第2のFDD用受信信号変換手段と、受信信号
と第3の発振手段の出力との差の周波数を出力する第1
のTDD用受信信号変換手段と、その第1のTDD用受
信信号変換手段の出力と第2の周波数変換手段の出力と
の和又は差の周波数を出力する第2のTDD用受信信号
変換手段と、第2の周波数変換手段の出力を変調する変
調手段と、第1の発振手段の出力及び第3の発振手段の
出力のうち一方を、FDD方式及びTDD方式に応じて
選択する選択手段と、その選択された出力と変調手段の
出力との和の周波数を出力する送信信号変換手段と、受
信信号を、FDD方式の場合は第1のFDD用受信信号
変換手段側へ切り換え、TDD方式の場合は第1のTD
D用受信信号変換手段側へ切り換える方式切り換え手段
とを備えた時分割多重FDD/TDDデュアルモード無
線機である。
According to a fourth aspect of the present invention, the first oscillating means for oscillating the first frequency, the second oscillating means for oscillating the second frequency, and the second frequency are multiplied by n or n minutes. The first frequency conversion means that circulates and the second frequency is multiplied by m or m.
Second frequency converting means for frequency division, third oscillating means for oscillating the third frequency, and first reception signal for FDD for outputting the frequency of the difference between the reception signal and the output of the first oscillating means. Converting means and second receiving signal converting means for FDD for outputting the sum or difference frequency of the output of the first receiving signal converting means for FDD and the output of the first frequency converting means; A first frequency that outputs a frequency difference from the output of the oscillating means
Receiving signal converting means for TDD, and second receiving signal converting means for TDD for outputting the frequency of the sum or difference between the output of the first receiving signal converting means for TDD and the output of the second frequency converting means. A modulating means for modulating the output of the second frequency converting means, and a selecting means for selecting one of the output of the first oscillating means and the output of the third oscillating means according to the FDD system and the TDD system. In the case of the FDD method, the transmission signal converting means for outputting the sum frequency of the selected output and the output of the modulating means and the reception signal are switched to the first reception signal converting means for FDD, and in the case of the TDD method. Is the first TD
It is a time division multiplexing FDD / TDD dual mode radio equipped with a system switching means for switching to the D reception signal converting means side.

【0014】[0014]

【作用】本発明は、第1の周波数変換手段が、第2の発
振手段からの第2の周波数をn逓倍又はn分周し、第2
の周波数変換手段が、第2の周波数をm逓倍又はm分周
し、受信時には、第1の受信信号変換手段が、受信信号
と第1の発振手段の出力との差の周波数を出力し、第2
の受信信号変換手段が、第1の受信信号変換手段の出力
と第1の周波数変換手段の出力との和又は差の周波数を
出力し、又、送信時には、変調手段が、、第2の周波数
変換手段の出力を変調し、送信信号変換手段が、受信信
号の周波数とは異なる、変調手段の出力と第1の発振手
段の出力との和の周波数を出力する。
According to the present invention, the first frequency converting means multiplies or divides the second frequency from the second oscillating means by n.
The frequency conversion means of (1) multiplies or divides the second frequency by m, and at the time of reception, the first reception signal conversion means outputs the frequency of the difference between the reception signal and the output of the first oscillation means, Second
Receiving signal converting means outputs the sum or difference frequency of the output of the first receiving signal converting means and the output of the first frequency converting means, and at the time of transmission, the modulating means outputs the second frequency. The output of the conversion means is modulated, and the transmission signal conversion means outputs a frequency different from the frequency of the received signal, which is the sum of the output of the modulation means and the output of the first oscillation means.

【0015】また本発明は、第1の周波数変換手段が、
第2の発振手段からの第2の周波数をn逓倍又はn分周
し、第2の周波数変換手段が、第2の周波数をm逓倍又
はm分周し、方式切り換え手段が、受信信号を、FDD
用受信信号変換手段側又は第1のTDD用受信信号変換
手段側へ切り換え、FDD方式において、受信時には、
第1のFDD用受信信号変換手段が、受信信号と第1の
発振手段の出力との差の周波数を出力し、第2のFDD
用受信信号変換手段が、第1のFDD用受信信号変換手
段の出力と第1の周波数変換手段の出力との和又は差の
周波数を出力し、送信時には、変調手段が、第2の周波
数変換手段の出力を変調し、送信信号変換手段が、選択
手段により選択された第1の発振手段の出力と変調手段
の出力との和の周波数を出力し、又、TDD方式におい
て、受信時には、第1のTDD用受信信号変換手段が、
受信信号と第3の発振手段の出力との差の周波数を出力
し、第2のTDD用受信信号変換手段が、第1のTDD
用受信信号変換手段の出力と第2の周波数変換手段の出
力との和又は差の周波数を出力し、送信時には、変調手
段が、第2の周波数変換手段の出力を変調し、送信信号
変換手段が、選択手段により選択された第3の発振手段
の出力と変調手段の出力との和の周波数を出力する。
According to the present invention, the first frequency conversion means is
The second frequency from the second oscillating means is multiplied by n or divided by n, the second frequency conversion means divides the second frequency by m or divided by m, and the system switching means divides the received signal by FDD
The reception signal converting means side for use or the first reception signal converting means side for TDD, and in the FDD system, at the time of reception,
The first FDD received signal conversion means outputs the frequency of the difference between the received signal and the output of the first oscillating means, and the second FDD
Reception signal converting means outputs the sum or difference frequency of the output of the first FDD reception signal converting means and the output of the first frequency converting means, and during transmission, the modulating means causes the second frequency conversion. The output of the means is modulated, and the transmission signal converting means outputs the sum frequency of the output of the first oscillating means selected by the selecting means and the output of the modulating means, and in the TDD system, at the time of reception, 1 TDD reception signal conversion means,
The frequency of the difference between the reception signal and the output of the third oscillating means is outputted, and the second TDD reception signal converting means outputs the first TDD.
Outputs a sum or difference frequency of the output of the reception signal converting means and the output of the second frequency converting means, and at the time of transmission, the modulating means modulates the output of the second frequency converting means, and the transmitting signal converting means. Outputs the sum frequency of the output of the third oscillating means and the output of the modulating means selected by the selecting means.

【0016】[0016]

【実施例】以下に、本発明をその実施例を示す図面に基
づいて説明する。 (第1の実施例)図1は、本発明にかかる第1の実施例
の時分割多重FDD無線機のブロック図である。図1に
おいて、受信回路は、空中線であるアンテナ1には送受
切り換え手段であるアンテナ切り換えスイッチ2が接続
され、その受信入力端子である接点2rにはフィルタ
3,5、高周波増幅器4からなる高周波増幅手段が接続
され、その出力には第1の受信信号変換手段であるコン
バータ6が接続され、送受切り換え手段の一部である第
1の切り換え手段としての送受切り換えスイッチ7の接
点7rを経由して第1の発振手段である第1局部発振器
8の出力に接続されている。コンバータ6の出力には第
1中間周波バンドパスフィルタ9と第1中間周波増幅器
10が接続され、第1の中間周波増幅手段を形成してい
る。その後には第2の受信信号変換手段であるコンバー
タ11が接続され、ここには第2の発振手段である第2
局部発振器12から第1の周波数変換手段としてのn逓
倍手段であるn逓倍器14を経てコンバータ11に接続
されている。そして第2中間周波バンドパスフィルタ1
5を経由して復調手段であるデモジュレータ16に接続
されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings showing its embodiments. (First Embodiment) FIG. 1 is a block diagram of a time division multiplex FDD radio according to the first embodiment of the present invention. In the receiving circuit in FIG. 1, an antenna 1 which is an antenna is connected to an antenna changeover switch 2 which is a transmission / reception switching means, and a contact 2r which is a reception input terminal thereof has a high-frequency amplifier including filters 3 and 5 and a high-frequency amplifier 4. The converter 6 is connected to the output, and the converter 6 which is the first received signal conversion means is connected to the output of the means via the contact 7r of the transmission / reception changeover switch 7 as the first changeover means which is a part of the transmission / reception changeover means. It is connected to the output of the first local oscillator 8 which is the first oscillating means. A first intermediate frequency bandpass filter 9 and a first intermediate frequency amplifier 10 are connected to the output of the converter 6 to form a first intermediate frequency amplifying means. After that, the converter 11 which is the second received signal converting means is connected, and the second oscillator which is the second oscillating means is connected here.
The local oscillator 12 is connected to the converter 11 via an n-multiplier 14 which is an n-multiplier as a first frequency converter. And the second intermediate frequency bandpass filter 1
It is connected via 5 to a demodulator 16 which is a demodulation means.

【0017】送信回路としては、第2局部発振器12の
出力を第2の周波数変換手段としてのm逓倍手段である
m逓倍器18に入力し、その出力は変調手段であるモジ
ュレータ19に、ついで送信中間周波増幅器20、送信
中間周波バンドパスフィルタ21で構成される送信中間
周波増幅手段に接続され、送信信号変換手段であるコン
バータ22に接続される。コンバータ22には、また送
受切り換えスイッチ7の接点7tを経由して第1局部発
振器8が接続され、コンバータ22の出力は高周波バン
ドパスフィルタ23,26、高周波増幅器24、高周波
電力増幅器25で構成される送信電力増幅手段を経て送
信出力端子であるアンテナスイッチ2の接点2tに接続
されている。
As the transmission circuit, the output of the second local oscillator 12 is input to the m multiplier 18 which is the m multiplication means as the second frequency conversion means, and its output is transmitted to the modulator 19 which is the modulation means. The intermediate frequency amplifier 20 and the intermediate transmission frequency bandpass filter 21 are connected to the intermediate transmission frequency amplifying means, which is connected to the converter 22 which is the transmission signal converting means. The converter 22 is also connected to the first local oscillator 8 via the contact 7t of the transmission / reception changeover switch 7, and the output of the converter 22 is composed of high frequency band pass filters 23, 26, a high frequency amplifier 24, and a high frequency power amplifier 25. It is connected to the contact 2t of the antenna switch 2 which is a transmission output terminal via the transmission power amplification means.

【0018】次に、上記第1の実施例の時分割多重FD
D無線機の動作について、図面を参照しながら説明す
る。
Next, the time division multiplexing FD of the first embodiment described above.
The operation of the D radio will be described with reference to the drawings.

【0019】まず、受信時には、アンテナ1から入力し
た高周波信号は、接点2r側に接続されたアンテナ切り
換えスイッチ2を経て、高周波バンドパスフィルタ3に
よって810〜826MHzの自局の受信周波数fR を
選択して高周波増幅器4に入力して、ここで増幅され、
高周波バンドパスフィルタ5でさらに選択度を高められ
た後、コンバータ6に入力される。ここで第1局部発振
器8から送受切り換えスイッチ7の接点7rを経て入力
した680.9〜696.9MHzの第1局部発振周波
数fL1 と混合されて129.1MHzの第1中間周波
数fR1 に変換され、第1中間周波バンドパスフィルタ
9で選択度を高められて第1中間周波増幅器10で増幅
される。さらに129.55MHzの第2局部発振周波
数fL2の第2局部発振器12から送受切り換えスイッチ
13の接点13rを経てn逓倍器14でn(この場合n
=1)逓倍されて129.55MHzとなった第2局部
発振周波数とコンバータ11で混合されて450kHz
の第2中間周波数fR2に変換され、第2中間周波バンド
パスフィルタ15で選択度を高められた後、デモジュレ
ータ16によって復調されて受信出力が得られる。
First, at the time of reception, the high frequency signal input from the antenna 1 passes through the antenna changeover switch 2 connected to the contact 2r side, and the high frequency band pass filter 3 selects the reception frequency fR of its own station of 810 to 826 MHz. Input to the high frequency amplifier 4 and amplified here,
After the selectivity is further increased by the high frequency band pass filter 5, it is input to the converter 6. Here, it is mixed with the first local oscillation frequency fL1 of 680.9 to 696.9 MHz inputted from the first local oscillator 8 via the contact 7r of the transmission / reception changeover switch 7 and converted into the first intermediate frequency fR1 of 129.1 MHz, The selectivity is increased by the first intermediate frequency bandpass filter 9 and amplified by the first intermediate frequency amplifier 10. Further, from the second local oscillator 12 having the second local oscillation frequency fL2 of 129.55 MHz to the n multiplier 14 through the contact 13r of the transmission / reception changeover switch 13 (in this case, n
= 1) 450 kHz when mixed with the second local oscillation frequency that has been multiplied to 129.55 MHz by the converter 11
Is converted to the second intermediate frequency fR2, the selectivity is increased by the second intermediate frequency bandpass filter 15, and then demodulated by the demodulator 16 to obtain a reception output.

【0020】一方、送信時には、第2局部発振器12の
第2局部発振周波数fL2の129.55MHzを送受切
り換えスイッチ13の接点13tを経て、m逓倍器18
でm逓倍(この場合m=2)して259.1MHzとし
た出力を、モジュレータ19で変調信号I,Qによりデ
ジタル変調し、その送信中間周波数fT1を送信中間周波
増幅器20で増幅し、送信中間周波バンドパスフィルタ
21で選択度を高められた後、送受切り換えスイッチ7
の接点7tより第1局部発振器8からの680.9〜6
96.9MHzの第1局部発振周波数fL1を受けたコン
バータ22へ入力して、ここで940〜956MHzの
自局の送信周波数fT の高周波信号に変換され、高周波
バンドパスフィルタ23で選択度を高められ、高周波増
幅器24、高周波電力増幅器25で増幅され、高周波バ
ンドパスフィルタ26で選択度を高められた後、アンテ
ナ切り換えスイッチ2の送信出力端子である接点2tを
通じてアンテナ1から送信される。
On the other hand, at the time of transmission, 129.55 MHz of the second local oscillation frequency fL2 of the second local oscillator 12 is passed through the contact 13t of the transmission / reception changeover switch 13 and then the m multiplier 18
The m output (m = 2 in this case) to 259.1 MHz is digitally modulated by the modulator 19 with the modulation signals I and Q, and the transmission intermediate frequency fT1 is amplified by the transmission intermediate frequency amplifier 20 to obtain the transmission intermediate frequency. After the selectivity is increased by the frequency band pass filter 21, the transmission / reception changeover switch 7
60.9 from the first local oscillator 8 from the contact 7t of
The first local oscillation frequency fL1 of 96.9 MHz is input to the converter 22, where it is converted into a high frequency signal of the transmission frequency fT of its own station of 940 to 956 MHz, and the selectivity is increased by the high frequency band pass filter 23. The signal is amplified by the high frequency amplifier 24 and the high frequency power amplifier 25, and the selectivity is increased by the high frequency band pass filter 26, and then transmitted from the antenna 1 through the contact 2t which is the transmission output terminal of the antenna changeover switch 2.

【0021】ここで、図8の場合と同様に、受信と送信
とはアンテナ切り換えスイッチ2と送受切り換えスイッ
チ7とを、音声信号に比して短い周期で切り換えること
によって同時送受話を行うことができる。FDD方式の
場合、1例として1フレームを20mSとしたとき、た
とえば20/3mSを送信、1mSのスペースの後20
/3mS受信し、残りを待機するように構成する。
Here, as in the case of FIG. 8, simultaneous reception and transmission can be performed by switching the antenna changeover switch 2 and the transmission / reception changeover switch 7 for reception and transmission at a cycle shorter than that of the voice signal. it can. In the case of the FDD system, for example, when one frame is set to 20 mS, for example, 20/3 mS is transmitted, and after the space of 1 mS, 20
It is configured to receive / 3 ms and wait for the rest.

【0022】高周波電力増幅器25と高周波バンドパス
フィルタ26の間には必要に応じてアンテナからの高周
波電流の逆流を防止するアイソレータを挿入することが
できる。
An isolator for preventing the backflow of the high frequency current from the antenna can be inserted between the high frequency power amplifier 25 and the high frequency band pass filter 26 as required.

【0023】ここで送信周波数と受信周波数との差をΔ
f、第2の局部発振周波数をfL2、第2の受信中間周波
数をfR2 として、(数5)、
Here, the difference between the transmission frequency and the reception frequency is Δ
f, the second local oscillation frequency is fL2, and the second reception intermediate frequency is fR2 (Equation 5),

【0024】[0024]

【数5】fR2 =|(m−n)fL2 −Δf| または、(数6)となるように、## EQU00005 ## fR2 = | (m-n) fL2-.DELTA.f |

【0025】[0025]

【数6】 fR2 =|{(1/m)−(1/n)}fL2 −Δf| m逓倍器の逓倍比mまたはm分周器の分周比mと逓倍器
の逓倍比nまたはn分周器の分周比n(m,nは1以上
の整数)を設定し、かつ第1、第2の各中間周波数を適
宜設定することにより送信周波数fT 、受信周波数fR
を任意に設定できる。
[Mathematical formula-see original document] fR2 = | {(1 / m)-(1 / n)} fL2-[Delta] f | m The multiplication ratio m of the multiplier or the division ratio m of the m divider and the multiplication ratio n or n of the multiplier. The transmission frequency fT and the reception frequency fR are set by setting the frequency division ratio n (m and n are integers of 1 or more) of the frequency divider and appropriately setting the first and second intermediate frequencies.
Can be set arbitrarily.

【0026】このように本実施例では、第2局部発振器
12の発振周波数を受信のときにはn逓倍器14でn逓
倍し、送信のときにはm逓倍器18でm逓倍し、(数
5)によってmとnの値を設定することによって、図8
の従来例における搬送波発振器17を1つ減らすことが
でき、送信周波数fT 、受信周波数fR に対応すること
ができる。
As described above, in the present embodiment, the oscillation frequency of the second local oscillator 12 is multiplied by n by the n multiplier 14 at the time of reception, m is multiplied by the m multiplier 18 at the time of transmission, and m is multiplied by (Equation 5). By setting the values of
The number of carrier wave oscillators 17 in the conventional example can be reduced by one, and the transmission frequency fT and the reception frequency fR can be dealt with.

【0027】以上のように、受信時には、受信入力端子
から入力した受信周波数の高周波信号を選択的に増幅し
た出力を第1の受信信号変換手段に加え、ここで第1局
部発振器の出力の周波数との差を第1中間周波数として
出力し、この出力を第2の受信信号変換手段に加え、こ
こで第2局部発振器の発振周波数をn逓倍器でn逓倍し
たもの(またはn分周器でn分周したもの)と混合し
て、第1中間周波数とn逓倍器(またはn分周器)の出
力との和または差の周波数を第2中間周波数として出力
する。
As described above, at the time of reception, the output obtained by selectively amplifying the high frequency signal of the reception frequency input from the reception input terminal is added to the first reception signal converting means, where the frequency of the output of the first local oscillator is added. Is output as the first intermediate frequency, and this output is applied to the second received signal converting means, where the oscillation frequency of the second local oscillator is multiplied by n by the n multiplier (or by the n divider). The frequency of the sum or difference of the first intermediate frequency and the output of the n multiplier (or the n frequency divider) is output as the second intermediate frequency.

【0028】一方、送信時には、第2局部発振器の出力
をm逓倍器でm逓倍(またはm分周器でm分周)した出
力を変調器で変調し、その出力を選択的に増幅した出力
と第1局部発振器の出力との和であって、受信周波数と
は異なった送信周波数を発生する。
On the other hand, at the time of transmission, the output of the second local oscillator is m-multiplied by the m-multiplier (or m-divided by the m-divider), modulated by the modulator, and the output is selectively amplified. And the output of the first local oscillator, and a transmission frequency different from the reception frequency is generated.

【0029】このようにm逓倍器(またはm分周器)と
n逓倍器(またはn分周器)とを備えたことにより、1
個の第2局部発振器により送信と受信を行うことがで
き、発振器の数を少なくでき、回路構成を簡素にでき
る。
Since the m multiplier (or m divider) and the n multiplier (or n divider) are provided in this way,
Transmission and reception can be performed by the second local oscillators, the number of oscillators can be reduced, and the circuit configuration can be simplified.

【0030】なお、ここでは逓倍比nのn逓倍器14と
逓倍比mのm逓倍器18を用いて説明したが、これらに
代えて、(数6)を適用して分周比nのn分周器、分周
比mのm分周器を用いてもよく、逓倍器と分周器とを組
み合わせて用いてもよい。これは以下の実施例において
も同様に適用することができる。 (第2の実施例)次に、本発明の第2の実施例の時分割
多重FDD/TDDデュアルモード無線機について、そ
のブロック図である図2を用いて説明する。本実施例
が、従来例の図9と大きく異なる点は、FDD方式用と
TDD方式用の送信部を一体とし、FDD方式用とTD
D方式用の受信部を一体とした上で第1局部発振回路を
FDD方式用とTDD方式用と2個設け、第2局部発振
回路に関しては第1の実施例の構成と同様1個のみとし
た点である。各部の構成要素と、その組合せ接続に関し
ては、図1の第1の実施例に準じるので、詳細の説明は
省略する。
Although the n-multiplier 14 having the multiplication ratio n and the m-multiplier 18 having the multiplication ratio m are used in the description here, (Equation 6) is applied in place of these, and n of the division ratio n is applied. A frequency divider or an m frequency divider having a frequency division ratio of m may be used, or a multiplier and a frequency divider may be used in combination. This can be similarly applied to the following embodiments. (Second Embodiment) Next, a time division multiplexing FDD / TDD dual mode radio device according to a second embodiment of the present invention will be described with reference to the block diagram of FIG. The present embodiment is largely different from the conventional example shown in FIG. 9 in that the transmitters for the FDD system and the TDD system are integrated, and that for the FDD system and the TD system are integrated.
The first local oscillation circuit is provided for the FDD system and the second local oscillation circuit is provided for the TDD system in addition to the integrated receiving section for the D system, and only one second local oscillation circuit is provided as in the configuration of the first embodiment. That is the point. Constituent elements of each part and their combined connection are the same as those in the first embodiment of FIG. 1, and thus detailed description thereof will be omitted.

【0031】又、図2において、FDD用の第1局部発
振器8bが第1の発振手段を構成し、TDD用の第1局
部発振器8aが第3の発振手段を構成し、モード切り換
えスイッチ30が選択手段を構成し、モード切り換えス
イッチ29が方式切り換え手段を構成している。
In FIG. 2, the first local oscillator 8b for FDD constitutes the first oscillating means, the first local oscillator 8a for TDD constitutes the third oscillating means, and the mode selector switch 30 is The mode changeover switch 29 constitutes the selection means, and the mode changeover means constitutes the system changeover means.

【0032】図2において、その動作を説明すると、ま
ずTDDモードにおいて、モード切り換えスイッチ2
9,30,31および32を、29a、30a、31a
および32a側に切り換え、モード/送受切り換えスイ
ッチ33を接点33aに切り換えておく。
The operation will be described with reference to FIG. 2. First, in the TDD mode, the mode changeover switch 2
9, 30, 31 and 32 are replaced by 29a, 30a, 31a
And 32a, and the mode / transmission / reception switch 33 is switched to the contact 33a.

【0033】受信時には、アンテナ1から入力した高周
波信号は、2r側に接続されたアンテナ切り換えスイッ
チ2からモード切り換えスイッチ29の29aを経て、
高周波バンドパスフィルタ3aによって1895.15
〜1917.95MHzの自局の受信周波数fRaを選択
して高周波増幅器4aに入力して、ここで増幅され、高
周波バンドパスフィルタ5aでさらに選択度を高められ
た後、コンバータ6aに入力される。ここで第1局部発
振器8aから入力した1646.85〜1669.65
MHzの第1局部発振周波数fL1a と混合されて24
8.3MHzの第1中間周波数fr1a に変換され、第1
中間周波バンドパスフィルタ9aで選択度を高められて
第1中間周波増幅器10aで増幅される。さらに12
9.55MHzの第2局部発振周波数fL2の第2局部発
振器12からモード/送受切り換えスイッチ33の接点
33aを経てm逓倍器18でm(この場合m=2)逓倍
されて259.1MHzとなった第2局部発振周波数と
コンバータ11aで混合されて10.8MHzの第2中
間周波数fR2に変換され、第2中間周波バンドパスフィ
ルタ15aで選択度を高められてデモジュレータ16a
によって復調されて受信出力が得られる。
At the time of reception, the high frequency signal input from the antenna 1 passes from the antenna changeover switch 2 connected to the 2r side to the mode changeover switch 29a of 29a,
1895.15 by the high-frequency bandpass filter 3a
The reception frequency fRa of its own station of ˜191.95 MHz is selected, input to the high frequency amplifier 4a, amplified here, further increased in selectivity by the high frequency band pass filter 5a, and then input to the converter 6a. Here, 1646.85 to 1669.65 input from the first local oscillator 8a.
Mixed with the first local oscillation frequency fL1a of MHz 24
Converted to a first intermediate frequency fr1a of 8.3 MHz,
The selectivity is increased by the intermediate frequency band pass filter 9a and amplified by the first intermediate frequency amplifier 10a. 12 more
From the second local oscillator 12 having the second local oscillation frequency fL2 of 9.55 MHz, through the contact 33a of the mode / transmission / reception changeover switch 33, the m multiplier 18 multiplies m (m = 2 in this case) to obtain 259.1 MHz. The second local oscillation frequency is mixed with the converter 11a to be converted into the second intermediate frequency fR2 of 10.8 MHz, and the selectivity is increased by the second intermediate frequency bandpass filter 15a to thereby obtain the demodulator 16a.
Is demodulated to obtain a reception output.

【0034】一方、送信時には、第2局部発振器12の
第2局部発振周波数fL2、129.55MHzをモード
/送受切り換えスイッチ33の接点33aを経て、m逓
倍器18でm逓倍(この場合m=2)して259.1M
Hzとした出力をモジュレータ19で変調信号I,Qに
よりデジタル変調した送信中間周波数fT1を送信中間周
波増幅器20で増幅し、送信中間周波バンドパスフィル
タ21で選択度を高められた後、モード切り換えスイッ
チ30の接点30aより第1局部発振器8aから、受信
時とは異なった周波数範囲の1636.05〜165
8.85MHzの第1局部発振周波数fL1a (この切り
換えは図示しない送受コントローラによって行う)を受
けたコンバータ22へ入力して、ここで1895.15
〜1917.95MHzの自局の送信周波数fT の高周
波信号に変換される。次に、モードスイッチ32の接点
32aから高周波バンドパスフィルタ23aで選択度を
高められ、高周波増幅器24a、高周波電力増幅器25
aで増幅され、高周波バンドパスフィルタ26aで選択
度を高められた後、モード切り換えスイッチ31の接点
31a、アンテナ切り換えスイッチ2の接点2tを通じ
てアンテナ1から送信される。
On the other hand, at the time of transmission, the second local oscillation frequency fL2, 129.55 MHz of the second local oscillator 12 is passed through the contact 33a of the mode / transmission / reception changeover switch 33, and is multiplied by m by the m multiplier 18 (m = 2 in this case). ) Then 259.1M
The transmission intermediate frequency fT1 obtained by digitally modulating the output in Hz with the modulation signals I and Q by the modulator 19 is amplified by the transmission intermediate frequency amplifier 20, and the selectivity is increased by the transmission intermediate frequency bandpass filter 21. From the first local oscillator 8a through the contact 30a of 30, 1636.05-165 of a frequency range different from that at the time of reception.
The first local oscillation frequency fL1a of 8.85 MHz (this switching is performed by a transmission / reception controller (not shown)) is input to the converter 22, where 1895.15.
It is converted into a high frequency signal having a transmission frequency fT of its own station of ˜191.95 MHz. Next, the selectivity from the contact 32a of the mode switch 32 is increased by the high frequency band pass filter 23a, and the high frequency amplifier 24a and the high frequency power amplifier 25 are provided.
The signal is amplified by a and increased in selectivity by the high-frequency bandpass filter 26a, and then transmitted from the antenna 1 through the contact 31a of the mode changeover switch 31 and the contact 2t of the antenna changeover switch 2.

【0035】以上の受信と送信とはアンテナ切り換えス
イッチ2を、高速で切り換える。たとえば4台の無線機
が同一周波数を共用するとき、1フレームを5mSとし
て、これを625μSの8個のタイムスロットに分け、
ある1台の無線機は第1のスロットで送信し、続く3ス
ロットの間待機し、続く第5のスロットで受信し、以後
3スロットの間待機する。その間は他の無線機が順次送
受を繰り返すことにより同時送受話を行うことができ
る。受信時には送信回路の各デバイス(増幅器、コンバ
ータ、変調器等)の動作を、図示しない送受コントロー
ラでオフとし、送信時には同様に受信回路の各デバイス
をオフとする。
The antenna changeover switch 2 is switched at high speed between the above reception and transmission. For example, when four radios share the same frequency, one frame is 5 mS, and this is divided into eight time slots of 625 μS.
One radio transmits in the first slot, waits for the next three slots, receives in the fifth slot, and waits for the next three slots. During that time, other wireless devices can perform simultaneous transmission and reception by repeating transmission and reception. At the time of reception, the operation of each device (amplifier, converter, modulator, etc.) of the transmission circuit is turned off by a transmission / reception controller not shown, and at the same time, each device of the reception circuit is turned off at the time of transmission.

【0036】次に、FDDモードについて説明する。モ
ード切り換えスイッチ29,30,31および32を、
29b、30b、31bおよび32b側に切り換え、モ
ード/送受切り換えスイッチ33を接点33bに切り換
えておく。
Next, the FDD mode will be described. Set the mode selector switches 29, 30, 31 and 32 to
Switch to the side of 29b, 30b, 31b and 32b, and switch the mode / transmission / reception switch 33 to the contact 33b.

【0037】受信時には、アンテナ1から入力した高周
波信号は、アンテナ切り換えスイッチ2が2r 側、モー
ド切り換えスイッチ29が接点29b側に接続されてい
るので、高周波バンドパスフィルタ3bによって810
〜826MHzの自局の受信周波数fR を選択して高周
波増幅器4bに入力して、ここで増幅され、高周波バン
ドパスフィルタ5bでさらに選択度を高めた後、コンバ
ータ6bに入力される。ここで第1局部発振器8bから
入力した680.9〜696.9MHzの第1局部発振
周波数fL1b と混合されて129.1MHzの第1中間
周波数fR1b に変換され、第1中間周波バンドパスフィ
ルタ9bで選択度を高められて第1中間周波増幅器10
bで増幅される。さらに129.55MHzの第2局部
発振周波数fL2の第2局部発振器12からモード/送受
切り換えスイッチ33の接点33bを経てn逓倍器14
でn(この場合n=1)逓倍された129.55MHz
の第2局部発振周波数とコンバータ11bで混合されて
450kHzの第2中間周波数fR2b に変換され、第2
中間周波バンドパスフィルタ15bで選択度を高められ
た後、デモジュレータ16bによって復調されて受信出
力が得られる。
At the time of reception, the high frequency signal input from the antenna 1 is 810 by the high frequency band pass filter 3b because the antenna changeover switch 2 is connected to the 2r side and the mode changeover switch 29 is connected to the contact 29b side.
The receiving frequency fR of its own station of ˜826 MHz is selected and input to the high frequency amplifier 4b, amplified here, further increased in selectivity by the high frequency band pass filter 5b, and then input to the converter 6b. Here, it is mixed with the first local oscillation frequency fL1b of 680.9 to 696.9 MHz inputted from the first local oscillator 8b and converted into the first intermediate frequency fR1b of 129.1 MHz, and is converted by the first intermediate frequency bandpass filter 9b. The first intermediate frequency amplifier 10 having improved selectivity
It is amplified in b. Further, from the second local oscillator 12 having the second local oscillation frequency fL2 of 129.55 MHz, through the contact 33b of the mode / transmission / reception changeover switch 33, the n multiplier 14
129.55 MHz multiplied by n (n = 1 in this case)
Is mixed with the second local oscillation frequency of the converter 11b and converted into the second intermediate frequency fR2b of 450 kHz,
After the selectivity is increased by the intermediate frequency band pass filter 15b, it is demodulated by the demodulator 16b to obtain a reception output.

【0038】一方、送信時には、モード/送受切り換え
スイッチ33を33a側に切り換え、第2局部発振器1
2の第2局部発振周波数fL2の129.55MHzをモ
ード/送受切り換えスイッチ33の接点33aを経て、
m逓倍器18でm逓倍(この場合m=2)して259.
1MHzとした出力をモジュレータ19で変調信号I,
Qによりデジタル変調した送信中間周波数fT1を送信中
間周波増幅器20で増幅し、送信中間周波バンドパスフ
ィルタ21で選択度を高めた後、モード切り換えスイッ
チ30の接点30bより第1局部発振器8bから68
0.9〜696.9MHzの第1局部発振周波数fL1b
を受けたコンバータ22へ入力して、ここで940〜9
56MHzの自局の送信周波数fTbの高周波信号に変換
される。次に、モードスイッチ32の接点32bから高
周波バンドパスフィルタ23bで選択度を高められ、高
周波増幅器24b、高周波電力増幅器25bで増幅さ
れ、高周波バンドパスフィルタ26bで選択度を高めら
れた後、モード切り換えスイッチ31の接点31b、ア
ンテナ切り換えスイッチ2の接点2tを通じてアンテナ
1から送信される。
On the other hand, at the time of transmission, the mode / transmission / reception changeover switch 33 is switched to the side of 33a, and the second local oscillator 1
2nd local oscillation frequency fL2 of 129.55 MHz is passed through the contact 33a of the mode / transmission / reception changeover switch 33,
The m-multiplier 18 performs m-multiplication (m = 2 in this case) 259.
The output which is set to 1 MHz is modulated by the modulator 19 with the modulated signal I,
After the transmission intermediate frequency fT1 digitally modulated by Q is amplified by the transmission intermediate frequency amplifier 20 and the selectivity is increased by the transmission intermediate frequency bandpass filter 21, the first local oscillators 8b to 68 are fed from the contact 30b of the mode changeover switch 30.
First local oscillation frequency fL1b of 0.9 to 696.9 MHz
It is input to the converter 22 which has received the
It is converted into a high frequency signal of the transmission frequency fTb of the own station of 56 MHz. Next, the high-frequency bandpass filter 23b increases the selectivity from the contact 32b of the mode switch 32, the high-frequency amplifier 24b and the high-frequency power amplifier 25b amplify the selectivity, and the high-frequency bandpass filter 26b increases the selectivity. The signal is transmitted from the antenna 1 through the contact 31b of the switch 31 and the contact 2t of the antenna changeover switch 2.

【0039】以上の受信と送信とはアンテナ切り換えス
イッチ2およびモード切り換えスイッチ33を、第1の
実施例と同様に音声信号に比して短い周期により切り換
えることによって同時送受話を行うことができる。
The above reception and transmission can be carried out simultaneously by switching the antenna changeover switch 2 and the mode changeover switch 33 at a cycle shorter than that of the voice signal as in the first embodiment.

【0040】本実施例においても実施例1の(数5)ま
たは(数6)によって、FDD方式における送信・受信
の周波数を決定するためのm逓倍器18、n逓倍器14
の逓倍比または、それに代わる分周器の分周比を決定す
れば、同様に動作させることができる。このように第2
の実施例においては、TDMA方式の無線機においてF
DD方式とTDD方式の送信部を一体とし、FDD方式
とTDD方式の受信部を一体とした上で第1局部発振回
路を2個設け、そのうち1個はTDD方式の送信、受信
に用い、他の1個はFDD方式の送信、受信に用い、ま
た第2局部発振回路に関しては第1の実施例と同様の構
成を取り入れたうえで、TDD方式にはm逓倍器を用い
て送信と受信を行い、FDD方式には送信時にはm逓倍
器を用い、受信時にはn逓倍器を用いることによって従
来例のデュアルモード無線機に比べて搬送波発振器を3
個省略して発振器の数を少なくすることができる。 (第3の実施例)次に、本発明の第3の実施例の時分割
多重FDD/TDDデュアルモード無線機について、そ
のブロック図である図3を用いて説明する。本実施例が
第2の実施例の図2と異なる点は、モードスイッチ3
4,35を加えることによって第2の実施例における送
信用の高周波増幅器24a,24bおよび高周波電力増
幅器25a,25bを、それぞれ1個の高周波増幅器2
4cおよび高周波電力増幅器25cにまとめて送信高周
波回路を簡略にした点と、および実施例2における2つ
の第1局部発振回路8a,8bに代えて2つの周波数帯
域にわたって出力できる1個の2バンドシンセサイザ8
cを用いることによって、第1局部発振器を1個少なく
した点である。尚、2バンドシンセサイザ8cは、図示
しないコントローラによってモードおよび送・受信に応
じて切り換えられる。その他の部分について第2の実施
例と同一機能の部分については同一符号を付けて、その
詳細な説明は省略する。
Also in the present embodiment, the m-multiplier 18 and the n-multiplier 14 for determining the transmission / reception frequency in the FDD system according to (Equation 5) or (Equation 6) of the first embodiment.
The same operation can be performed by determining the multiplication ratio of or the frequency division ratio of the frequency divider that substitutes for it. Second like this
In this embodiment, in the TDMA type radio device, F
The DD system and the TDD system transmitter are integrated, the FDD system and the TDD system receiver are integrated, and two first local oscillation circuits are provided, one of which is used for TDD system transmission and reception, and the other. One is used for transmission and reception of the FDD system, and the second local oscillator circuit has the same configuration as that of the first embodiment, and the TDD system uses an m-multiplier for transmission and reception. In the FDD system, an m multiplier is used at the time of transmission and an n multiplier is used at the time of reception, so that the carrier wave oscillator is set to 3 compared to the conventional dual mode radio.
This can be omitted to reduce the number of oscillators. (Third Embodiment) Next, a time division multiplexing FDD / TDD dual mode radio device according to a third embodiment of the present invention will be described with reference to the block diagram of FIG. This embodiment is different from the second embodiment in FIG. 2 in that the mode switch 3
By adding 4, 35, the high-frequency amplifiers 24a, 24b for transmission and the high-frequency power amplifiers 25a, 25b in the second embodiment are respectively provided as one high-frequency amplifier 2.
4c and the high-frequency power amplifier 25c to simplify the transmission high-frequency circuit, and one 2-band synthesizer capable of outputting over two frequency bands instead of the two first local oscillation circuits 8a and 8b in the second embodiment. 8
By using c, the number of the first local oscillators is reduced by one. The 2-band synthesizer 8c is switched by a controller (not shown) depending on the mode and transmission / reception. With respect to other parts, parts having the same functions as those in the second embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

【0041】本実施例においては、送信時に、TDD方
式の場合は、モード切り換えスイッチ31,32,3
4,35が接点31a,32a,34a,35a側に切
り換えられて、コンバータ22、高周波バンドパスフィ
ルタ23a、高周波増幅器24c、高周波電力増幅器2
5c、高周波バンドパスフィルタ26aの回路が形成さ
れ、FDD方式の場合は、モード切り換えスイッチ3
1,32,34,35が接点31b,32b,34b,
35b側に切り換えられて、コンバータ22、高周波バ
ンドパスフィルタ23b、高周波増幅器24c、高周波
電力増幅器25c、高周波バンドパスフィルタ26bの
回路が形成される。
In this embodiment, at the time of transmission, in the case of the TDD system, the mode changeover switches 31, 32, 3
4, 35 are switched to the contacts 31a, 32a, 34a, 35a side, and the converter 22, the high frequency band pass filter 23a, the high frequency amplifier 24c, the high frequency power amplifier 2
5c, the circuit of the high frequency band pass filter 26a is formed, and in the case of the FDD system, the mode changeover switch 3
1, 32, 34, 35 are contact points 31b, 32b, 34b,
By switching to the 35b side, circuits of the converter 22, the high frequency band pass filter 23b, the high frequency amplifier 24c, the high frequency power amplifier 25c, and the high frequency band pass filter 26b are formed.

【0042】本実施例の2つの改良は同時に実施しても
よく、またそれぞれ単独で実施しても差し支えない。ま
た本実施例においては送信部について例示したが高周波
バンドパスフィルタ3a、3bの後、高周波バンドパス
フィルタ5a,5bの前後にモードスイッチを付加すれ
ば受信部においても実施できるのは当然である。 (第4の実施例)次に、本発明の第4の実施例の時分割
多重FDD/TDDデュアルモード無線機について、そ
のブロック図である図4を用いて説明する。本実施例が
第3の実施例の図3と異なる点は、モードスイッチ3
1,34を廃止して、高周波バンドパスフィルタ26
a,26bに代えて、高周波電力増幅器25cとアンテ
ナ切り換えスイッチ2との間に2バンド切り換えローパ
スフィルタ36を挿入した点である。これによってフィ
ルタを1個少なく、モード切り換えスイッチも簡単にす
ることができる。その他の部分は第3の実施例の図3と
同様であり、同一機能の部分には同一符号をつけて、そ
の詳細な説明を省略する。2バンド切り換えローパスフ
ィルタはこの位置に限定されず、他の部分にも用いて部
品数を少なくすることができる。 (第5の実施例)次に、本発明の第5の実施例の時分割
多重FDD/TDDデュアルモード無線機について、そ
のブロック図である図5を用いて説明する。本実施例が
第2の実施例の図2と異なる点は、第1中間周波フィル
タ9a,9bの後にモード切り換えスイッチ37を設
け、以後の受信回路の第2中間周波フィルタ15a,1
5b、デモジュレータ16a,16bに代えて、中間周
波増幅器38、乗算器39,40、90度移相器41、
ベースバンドローパスフィルタ43,44からなる同期
検波回路を設け、90度移相器41にm逓倍器18また
はn逓倍器14の出力を選択して入力するモード切り換
えスイッチ42を加えた点である。
The two improvements of this embodiment may be carried out simultaneously, or each may be carried out independently. Further, although the transmitting unit is exemplified in this embodiment, it is natural that the receiving unit can be implemented by adding a mode switch after the high frequency band pass filters 3a and 3b and before and after the high frequency band pass filters 5a and 5b. (Fourth Embodiment) Next, a time division multiplexing FDD / TDD dual mode radio device according to a fourth embodiment of the present invention will be described with reference to the block diagram of FIG. The present embodiment is different from the third embodiment in FIG. 3 in that the mode switch 3
1, 34 are eliminated and the high frequency band pass filter 26
The point is that a two-band switching low-pass filter 36 is inserted between the high-frequency power amplifier 25c and the antenna switching switch 2 instead of a and 26b. This reduces the number of filters by one and simplifies the mode changeover switch. The other parts are the same as those in the third embodiment shown in FIG. 3, and the parts having the same functions are designated by the same reference numerals and detailed description thereof will be omitted. The two-band switching low-pass filter is not limited to this position and can be used in other parts to reduce the number of parts. (Fifth Embodiment) Next, a time division multiplexing FDD / TDD dual mode radio device according to a fifth embodiment of the present invention will be described with reference to the block diagram of FIG. The present embodiment is different from the second embodiment shown in FIG. 2 in that a mode changeover switch 37 is provided after the first intermediate frequency filters 9a and 9b, and the second intermediate frequency filters 15a and 1 of the receiving circuit thereafter are provided.
5b, instead of the demodulators 16a and 16b, an intermediate frequency amplifier 38, multipliers 39 and 40, a 90-degree phase shifter 41,
The point is that a synchronous detection circuit including baseband low-pass filters 43 and 44 is provided, and a mode changeover switch 42 for selecting and inputting the output of the m-multiplier 18 or the n-multiplier 14 is added to the 90-degree phase shifter 41.

【0043】このように構成することによって、第2中
間周波回路とデモジュレータの役割を同期検波回路で置
き換えることができる。この場合第2局部発振器12の
発振周波数を130MHz、TDD受信回路の中間周波
数を260MHz、FDD受信回路の中間周波数を13
0MHzとして、実施例2に示した送信および受信周波
数に適合するようにそれぞれのモードと送信・受信時に
応じて第1中間周波数発振器8a,8bの発振周波数を
コントロールすればよい。同期検波回路の構成は図示の
もの以外に種々の構成を用いても差し支えなく、同期検
波回路そのものについては周知の技術であるからその詳
細な説明は省略する。
With this configuration, the roles of the second intermediate frequency circuit and the demodulator can be replaced with the synchronous detection circuit. In this case, the oscillation frequency of the second local oscillator 12 is 130 MHz, the intermediate frequency of the TDD receiving circuit is 260 MHz, and the intermediate frequency of the FDD receiving circuit is 13 MHz.
The oscillation frequency of the first intermediate frequency oscillators 8a and 8b may be controlled according to each mode and transmission / reception so as to match the transmission and reception frequencies shown in the second embodiment. As the configuration of the synchronous detection circuit, various configurations other than those shown in the figure may be used, and the synchronous detection circuit itself is a well-known technique, and therefore its detailed description is omitted.

【0044】本実施例は、このように第2の実施例にお
ける第2中間周波回路とデモジュレータに代えて同期検
波回路を用いることによって回路構成を簡素にすること
ができる。 (第6の実施例)次に、本発明の第6の実施例の時分割
多重FDD/TDDデュアルモード無線機について、そ
のブロック図である図6を用いて説明する。本実施例が
第2の実施例の図2と異なる点は、アンテナ1に代えて
アンテナ1Aおよび1Bとダイバーシティスイッチ45
を設けた点である。図示しないが、受信時におけるアン
テナ1Aと1Bの受信感度を比較してダイバーシティス
イッチ45を接点45aまたは45bに切り換えること
によって、良好な送信および受信感度を確保する。ダイ
バーシティ技術そのものは周知のものであるから、その
詳細な説明は省略する。
In this embodiment, the circuit structure can be simplified by using the synchronous detection circuit instead of the second intermediate frequency circuit and demodulator in the second embodiment. (Sixth Embodiment) Next, a time division multiplexing FDD / TDD dual mode radio device according to a sixth embodiment of the present invention will be described with reference to the block diagram of FIG. This embodiment is different from the second embodiment in FIG. 2 in that the antenna 1 is replaced by antennas 1A and 1B and a diversity switch 45.
That is the point. Although not shown, by comparing the reception sensitivities of the antennas 1A and 1B at the time of reception and switching the diversity switch 45 to the contact 45a or 45b, good transmission and reception sensitivities are secured. Since the diversity technology itself is well known, its detailed description is omitted.

【0045】以上のように、本発明の時分割多重FDD
/TDDデュアルモード無線機は、TDD方式受信時に
は、n逓倍器(またはn分周器)の出力をTDD方式用
の第2局部発振器に入力し、FDD方式受信時には、m
逓倍器(またはm分周器)の出力をFDD方式用の第2
局部発振器に入力し、TDD送信時、FDD送信時とも
に、m逓倍器(またはm分周器)の出力をモジュレータ
に入力することによって、更に発振器の数を少なくで
き、回路構成を簡素にできる。
As described above, the time division multiplexing FDD of the present invention
The / TDD dual mode radio inputs the output of the n multiplier (or n frequency divider) to the second local oscillator for the TDD system at the time of receiving the TDD system, and outputs m at the time of receiving the FDD system.
The output of the multiplier (or m divider) is the second for the FDD system.
By inputting the output of the m-multiplier (or m-divider) to the modulator both during TDD transmission and FDD transmission, the number of oscillators can be further reduced and the circuit configuration can be simplified.

【0046】以上、第1ないし第6の実施例によって説
明したように、本発明によれば発振器やフィルタ等の数
が少なくでき、また回路構成を簡単にできる。
As described above with reference to the first to sixth embodiments, according to the present invention, the number of oscillators, filters and the like can be reduced and the circuit structure can be simplified.

【0047】なお、上記各実施例において例示した送信
・受信周波数、回路各部の周波数設定や逓倍比等の数
値、増幅段の数、フィルタの数、また搬送波の変調方法
等は一例であって、必要に応じて変更して用いることが
できるのはいうまでもない。たとえばFDD方式の方が
大出力を必要とするときはFDD方式の高周波電力増幅
器の後にさらに高出力電力増幅器を加えてもよい。また
高周波バンドパスフィルタで例示しているところは電力
増幅器の出力側のものはローパスフィルタに代えてもよ
い。また、上記各実施例で例示している個々の技術は、
それぞれ単独で実施してもよく、またそれぞれ組み合わ
せて用いてもよいものである。さらに回路構成の細部に
ついては本発明の基本的な考え方からはずれない範囲で
変更して用いて差し支えない。
It should be noted that the transmission / reception frequencies, the numerical values such as the frequency setting and the multiplication ratio of each circuit portion, the number of amplification stages, the number of filters, the carrier modulation method, and the like illustrated in each of the above embodiments are merely examples. It goes without saying that it can be changed and used as necessary. For example, when the FDD system requires a larger output, a high output power amplifier may be added after the FDD system high frequency power amplifier. In the example of the high frequency band pass filter, the output side of the power amplifier may be replaced with a low pass filter. In addition, the individual technologies illustrated in the above embodiments are
These may be carried out individually or in combination. Further, the details of the circuit configuration may be changed and used within the range not departing from the basic idea of the present invention.

【0048】[0048]

【発明の効果】以上述べたところから明らかなように本
発明は、時分割多重FDD無線機においては、第2の周
波数を発振する第2の発振手段と、その第2の周波数を
n逓倍又はn分周する第1の周波数変換手段と、第2の
周波数をm逓倍又はm分周する第2の周波数変換手段と
を備えているので、発振器の数を少なくでき、回路構成
を簡素にすることができるという長所を有する。
As is apparent from the above description, according to the present invention, in the time division multiplexing FDD radio, the second oscillating means for oscillating the second frequency and the second frequency are multiplied by n or Since the first frequency converting means for dividing the frequency by n and the second frequency converting means for multiplying or dividing the second frequency by m are provided, the number of oscillators can be reduced and the circuit configuration can be simplified. It has the advantage of being able to.

【0049】また、時分割多重FDD/TDDデュアル
モード無線機においては、発振器の数をさらに減少する
ことができるという利点がある。
Further, in the time division multiplexing FDD / TDD dual mode radio, there is an advantage that the number of oscillators can be further reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる第1の実施例の時分割多重FD
D無線機のブロック図である。
FIG. 1 is a time division multiplexing FD according to a first embodiment of the invention.
It is a block diagram of a D wireless device.

【図2】本発明にかかる第2の実施例の時分割多重FD
D/TDDデュアルモード無線機のブロック図である。
FIG. 2 is a time division multiplexing FD according to a second embodiment of the present invention.
It is a block diagram of a D / TDD dual mode radio.

【図3】本発明にかかる第3の実施例の時分割多重FD
D/TDDデュアルモード無線機のブロック図である。
FIG. 3 is a time division multiplexing FD according to a third embodiment of the present invention.
It is a block diagram of a D / TDD dual mode radio.

【図4】本発明にかかる第4の実施例の時分割多重FD
D/TDDデュアルモード無線機のブロック図である。
FIG. 4 is a time division multiplexing FD according to a fourth embodiment of the present invention.
It is a block diagram of a D / TDD dual mode radio.

【図5】本発明にかかる第5の実施例の時分割多重FD
D/TDDデュアルモード無線機のブロック図である。
FIG. 5 is a time division multiplexing FD according to a fifth embodiment of the present invention.
It is a block diagram of a D / TDD dual mode radio.

【図6】本発明にかかる第6の実施例の時分割多重FD
D/TDDデュアルモード無線機のブロック図である。
FIG. 6 is a time division multiplexing FD according to a sixth embodiment of the present invention.
It is a block diagram of a D / TDD dual mode radio.

【図7】従来例の時分割多重TDD無線機のブロック図
である。
FIG. 7 is a block diagram of a conventional time division multiplexing TDD radio device.

【図8】従来例の時分割多重FDD無線機のブロック図
である。
FIG. 8 is a block diagram of a conventional time division multiplexing FDD radio device.

【図9】従来例の時分割多重FDD/TDDデュアルモ
ード無線機を示すブロック図である。
FIG. 9 is a block diagram showing a conventional time division multiplexing FDD / TDD dual mode radio.

【符号の説明】[Explanation of symbols]

1 アンテナ 2 アンテナ切り換えスイッチ 3,5,23,26 高周波バンドパスフィルタ 4 高周波増幅器 6,11,22 コンバータ 7,13 送受切り換えスイッチ 8 第1局部発振器 9 第1中間周波バンドパスフィルタ 10 第1中間周波増幅器 12 第2局部発振器 14 n逓倍器 15 第2中間周波バンドパスフィルタ 16 デモジュレータ 18 m逓倍器 19 モジュレータ 20 送信中間周波増幅器 21 送信中間周波バンドパスフィルタ 24 高周波増幅器 25 高周波電力増幅器 29,30,31,32 モード切り換えスイッチ 1 antenna 2 antenna changeover switch 3,5,23,26 high frequency band pass filter 4 high frequency amplifier 6,11,22 converter 7,13 transmission / reception changeover switch 8 1st local oscillator 9 1st intermediate frequency bandpass filter 10 1st intermediate frequency Amplifier 12 Second local oscillator 14 n Multiplier 15 Second intermediate frequency bandpass filter 16 Demodulator 18 m Multiplier 19 Modulator 20 Transmission intermediate frequency amplifier 21 Transmission intermediate frequency bandpass filter 24 High frequency amplifier 25 High frequency power amplifier 29, 30, 31, 32 mode switch

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森永 洋一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoichi Morinaga 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 第1の周波数を発振する第1の発振手段
と、第2の周波数を発振する第2の発振手段と、その第
2の周波数をn逓倍又はn分周する第1の周波数変換手
段と、前記第2の周波数をm逓倍又はm分周する第2の
周波数変換手段と、受信信号と前記第1の発振手段の出
力との差の周波数を出力する第1の受信信号変換手段
と、その第1の受信信号変換手段の出力と前記第1の周
波数変換手段の出力との和又は差の周波数を出力する第
2の受信信号変換手段と、前記第2の周波数変換手段の
出力を変調する変調手段と、その変調手段の出力と前記
第1の発振手段の出力との和の周波数を出力する送信信
号変換手段とを備え、前記送信信号変換手段から出力さ
れる周波数は、前記受信信号の周波数とは異なるもので
あることを特徴とする時分割多重FDD無線機。
1. A first oscillating means for oscillating a first frequency, a second oscillating means for oscillating a second frequency, and a first frequency for multiplying or dividing the second frequency by n. Conversion means, second frequency conversion means for multiplying or dividing the second frequency by m, and first reception signal conversion for outputting a frequency of a difference between a reception signal and an output of the first oscillating means Means, a second received signal conversion means for outputting a frequency of a sum or a difference between the output of the first received signal conversion means and the output of the first frequency conversion means, and the second frequency conversion means. The transmission device includes a modulation unit that modulates the output, and a transmission signal conversion unit that outputs a frequency that is the sum of the output of the modulation unit and the output of the first oscillation unit. The frequency output from the transmission signal conversion unit is Characterized by being different from the frequency of the received signal Time division multiplexing FDD radio.
【請求項2】 第1の発振手段の出力を、受信時は前記
第1の受信信号変換手段側へ切り換え、送信時は前記送
信信号変換手段側へ切り換える第1の切り換え手段と、
前記第2の発振手段の出力を、受信時は前記第1の周波
数変換手段側へ切り換え、送信時は前記第2の周波数変
換手段側へ切り換える第2の切り換え手段とを備えたこ
とを特徴とする請求項1記載の時分割多重FDD無線
機。
2. A first switching means for switching the output of the first oscillating means to the side of the first received signal converting means during reception and to the side of the transmitting signal converting means during transmission.
A second switching means for switching the output of the second oscillating means to the side of the first frequency converting means during reception and to the side of the second frequency converting means during transmission. The time division multiplexing FDD radio device according to claim 1.
【請求項3】 送信周波数と受信周波数との差をΔf、
前記第2の発振手段の周波数をfL2 、前記第2の受信
信号変換手段の出力周波数をfR2 とすると、前記第1
の周波数変換手段がn逓倍器、前記第2の周波数変換手
段がm逓倍器の場合は、それら逓倍比nと逓倍比mとの
関係は(m,nは1以上の整数)、(数1)であり、 【数1】fR2 =|(m−n)fL2 −Δf| または、前記第1の周波数変換手段がn分周器、前記第
2の周波数変換手段がm分周器の場合は、それら分周比
nと分周比mとの関係は(m,nは1以上の整数)、
(数2)であることを特徴とする請求項1、又は2記載
の時分割多重FDD無線機。 【数2】 fR2 =|{(1/m)−(1/n)}fL2 −Δf|
3. The difference between the transmission frequency and the reception frequency is Δf,
When the frequency of the second oscillating means is fL2 and the output frequency of the second received signal converting means is fR2, the first
When the frequency conversion means of the above is an n multiplier and the second frequency conversion means is an m multiplier, the relationship between the multiplication ratio n and the multiplication ratio m is (m and n are integers of 1 or more), (Equation 1 ) And fR2 = | (m−n) fL2−Δf | or if the first frequency conversion means is an n frequency divider and the second frequency conversion means is an m frequency divider, , The relationship between the frequency division ratio n and the frequency division ratio m is (m and n are integers of 1 or more),
The time division multiplexing FDD radio device according to claim 1 or 2, characterized in that (Equation 2). ## EQU00002 ## fR2 = | {(1 / m)-(1 / n)} fL2-.DELTA.f |
【請求項4】 第1の周波数を発振する第1の発振手段
と、第2の周波数を発振する第2の発振手段と、その第
2の周波数をn逓倍又はn分周する第1の周波数変換手
段と、前記第2の周波数をm逓倍又はm分周する第2の
周波数変換手段と、第3の周波数を発振する第3の発振
手段と、受信信号と前記第1の発振手段の出力との差の
周波数を出力する第1のFDD用受信信号変換手段と、
その第1のFDD用受信信号変換手段の出力と前記第1
の周波数変換手段の出力との和又は差の周波数を出力す
る第2のFDD用受信信号変換手段と、前記受信信号と
前記第3の発振手段の出力との差の周波数を出力する第
1のTDD用受信信号変換手段と、その第1のTDD用
受信信号変換手段の出力と前記第2の周波数変換手段の
出力との和又は差の周波数を出力する第2のTDD用受
信信号変換手段と、前記第2の周波数変換手段の出力を
変調する変調手段と、前記第1の発振手段の出力及び前
記第3の発振手段の出力のうち一方を、FDD方式及び
TDD方式に応じて選択する選択手段と、その選択され
た出力と前記変調手段の出力との和の周波数を出力する
送信信号変換手段と、前記受信信号を、前記FDD方式
の場合は前記第1のFDD用受信信号変換手段側へ切り
換え、前記TDD方式の場合は前記第1のTDD用受信
信号変換手段側へ切り換える方式切り換え手段とを備え
たことを特徴とする時分割多重FDD/TDDデュアル
モード無線機。
4. A first oscillating means for oscillating a first frequency, a second oscillating means for oscillating a second frequency, and a first frequency for multiplying or dividing the second frequency by n. Converting means, second frequency converting means for multiplying or dividing the second frequency by m, third oscillating means for oscillating a third frequency, received signal and output of the first oscillating means A first FDD received signal converting means for outputting a frequency of a difference between
The output of the first received signal converting means for FDD and the first
Second FDD reception signal converting means for outputting a sum or difference frequency with the output of the frequency converting means, and a first frequency for outputting a difference frequency between the reception signal and the output of the third oscillating means. TDD reception signal converting means, and second TDD reception signal converting means for outputting the frequency of the sum or difference between the output of the first TDD reception signal converting means and the output of the second frequency converting means. A selection for selecting one of the output of the first oscillating means and the output of the first oscillating means according to the FDD system and the TDD system. Means, a transmission signal converting means for outputting a frequency of the sum of the selected output and the output of the modulating means, and the reception signal, in the case of the FDD method, the first reception signal converting means for FDD Switch to the TDD Division multiplexing FDD / TDD dual mode wireless device when characterized by comprising a mode switching means for switching to said first TDD reception signal conversion means side in the case of formula.
【請求項5】 第1の発振手段及び前記第3の発振手段
に代えて、前記第1の周波数及び前記第3の周波数の2
つの周波数を切り換え出力可能な2バンドシンセサイザ
を備えたことを特徴とする請求項4記載の時分割多重F
DD/TDDデュアルモード無線機。
5. Instead of the first oscillating means and the third oscillating means, two of the first frequency and the third frequency are used.
5. The time division multiplexing F according to claim 4, further comprising a two-band synthesizer capable of switching and outputting two frequencies.
DD / TDD dual mode radio.
【請求項6】 FDD方式の場合に、送信周波数と受信
周波数との差をΔf、前記第2の発振手段の周波数をf
L2、前記第2のFDD用受信信号変換手段の出力周波数
をfR2とすると、前記第1の周波数変換手段がn逓倍
器、前記第2の周波数変換手段がm逓倍器の場合は、そ
れら逓倍比nと逓倍比mとの関係は(m,nは1以上の
整数)、(数3)であり、 【数3】fR2 =|(m−n)fL2 −Δf| または、前記第1の周波数変換手段がn分周器、前記第
2の周波数変換手段がm分周器の場合は、それら分周比
nと分周比mとの関係は(m,nは1以上の整数)、
(数4)であることを特徴とする請求項4、又は5記載
の時分割多重FDD/TDDデュアルモード無線機。 【数4】 fR2 =|{(1/m)−(1/n)}fL2 −Δf|
6. In the case of the FDD system, the difference between the transmission frequency and the reception frequency is Δf, and the frequency of the second oscillating means is f.
L2, and the output frequency of the second FDD received signal converting means is fR2, and when the first frequency converting means is an n multiplier and the second frequency converting means is an m multiplier, their multiplication ratios The relationship between n and the multiplication ratio m is (m and n are integers of 1 or more), (Equation 3), and fR2 = | (m−n) fL2−Δf | or the first frequency When the conversion means is an n frequency divider and the second frequency conversion means is an m frequency divider, the relationship between the frequency division ratio n and the frequency division ratio m is (m and n are integers of 1 or more),
The time division multiplex FDD / TDD dual mode radio device according to claim 4 or 5, characterized in that (Equation 4). ## EQU00004 ## fR2 = | {(1 / m)-(1 / n)} fL2-.DELTA.f |
【請求項7】 送信信号変換手段の出力に接続された電
力増幅手段を備え、前記電力増幅手段は、前記FDD方
式及びTDD方式に共用で用いられることを特徴とする
請求項5、又は6記載の時分割多重FDD/TDDデュ
アルモード無線機。
7. The power amplifying means connected to the output of the transmitting signal converting means, wherein the power amplifying means is commonly used for the FDD system and the TDD system. Time division multiplexing FDD / TDD dual mode radio.
【請求項8】 FDD方式及びTDD方式の送信周波数
を通過させる2バンド切り換えローパスフィルタが前記
送信信号の出力段の出力側に接続されていることを特徴
とする請求項5、6、又は7記載の時分割多重FDD/
TDDデュアルモード無線機。
8. A double-band switching low-pass filter that allows transmission frequencies of the FDD system and the TDD system to pass therethrough is connected to the output side of the output stage of the transmission signal. Time division multiplexing FDD /
TDD dual mode radio.
【請求項9】 同期検波手段と、その同期検波手段に、
前記FDD方式による信号受信時には、前記第1の周波
数変換手段の出力を接続し、又、前記TDD方式による
信号受信時には、前記第2の周波数変換手段の出力を接
続する周波数切り換え手段とを備えたことを特徴とする
請求項4〜8のいずれかに記載の時分割多重FDD/T
DDデュアルモード無線機。
9. The synchronous detection means and the synchronous detection means,
When the signal is received by the FDD method, the output of the first frequency conversion means is connected, and when the signal is received by the TDD method, the frequency switching means is connected to the output of the second frequency conversion means. 9. The time division multiplexing FDD / T according to any one of claims 4 to 8.
DD dual mode radio.
【請求項10】 複数の空中線と、その複数の空中線を
通信状態に応じて切り換えるダイバーシティ切り換え手
段とを備えたことを特徴とする請求項4〜9のいずれか
に記載の時分割多重FDD/TDDデュアルモード無線
機。
10. The time division multiplexing FDD / TDD according to claim 4, further comprising a plurality of antennas and diversity switching means for switching the plurality of antennas according to a communication state. Dual mode radio.
JP11753695A 1995-05-16 1995-05-16 Time division multiplexed FDD / TDD dual mode radio Expired - Fee Related JP3393954B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP11753695A JP3393954B2 (en) 1995-05-16 1995-05-16 Time division multiplexed FDD / TDD dual mode radio
EP01106159A EP1146638B1 (en) 1995-05-16 1996-05-15 Wireless unit for a time division multiple access system
EP96107777A EP0744831B1 (en) 1995-05-16 1996-05-15 Wireless unit for a time division multiple access system
DE69615914T DE69615914T2 (en) 1995-05-16 1996-05-15 Radio transmission device for time division multiple access system
US08/648,416 US5926466A (en) 1995-05-16 1996-05-15 Time division multiple access FDD wireless unit and time division multiple access FDD/TDD dual mode wireless unit
EP03016825A EP1355420A2 (en) 1995-05-16 1996-05-15 Two-frequency band-pass filter, two-frequency branching filter and combiner
DE69630546T DE69630546T2 (en) 1995-05-16 1996-05-15 Voltage controlled oscillator with controllable frequency band
KR1019960016506A KR100378158B1 (en) 1995-05-16 1996-05-16 Time Division Multiple Access FDD Wireless Unit and Time Division Multiple Access FDD / TDD Dual Mode Wireless Unit for Mobile Communication
KR1020020047027A KR100395249B1 (en) 1995-05-16 2002-08-09 Two-frequency band-pass filter, two-frequency branching filter, and two-frequency combiner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11753695A JP3393954B2 (en) 1995-05-16 1995-05-16 Time division multiplexed FDD / TDD dual mode radio

Publications (2)

Publication Number Publication Date
JPH08316873A true JPH08316873A (en) 1996-11-29
JP3393954B2 JP3393954B2 (en) 2003-04-07

Family

ID=14714234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11753695A Expired - Fee Related JP3393954B2 (en) 1995-05-16 1995-05-16 Time division multiplexed FDD / TDD dual mode radio

Country Status (1)

Country Link
JP (1) JP3393954B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990047207A (en) * 1997-12-03 1999-07-05 이형도 Radio transmitter and receiver of mixed time and frequency division communication
US6222831B1 (en) 1997-03-25 2001-04-24 Alps Electric Co., Ltd. Receiving circuit of cellular telephone set
JP2001177396A (en) * 1999-11-13 2001-06-29 Koninkl Philips Electronics Nv Electrical communication apparatus including clock generating unit
JP2001185902A (en) * 1999-12-27 2001-07-06 Murata Mfg Co Ltd Composite high-frequency component and communication device using same
WO2002078203A1 (en) * 2001-03-27 2002-10-03 Sanyo Electric Co., Ltd. Composite high-frequency part and information terminal apparatus using the same
WO2003092181A1 (en) * 2002-04-25 2003-11-06 Matsushita Electric Industrial Co., Ltd. Mobile communication device
WO2003096561A1 (en) * 2002-05-09 2003-11-20 Matsushita Electric Industrial Co., Ltd. Mobile communication apparatus
US6987951B2 (en) 2000-04-18 2006-01-17 Infineon Technologies Ag Transceiver for duplex operation
KR100796083B1 (en) * 2000-07-17 2008-01-21 소니 가부시끼 가이샤 Radio communication apparatus and wireless communication equipment
JP2013093756A (en) * 2011-10-26 2013-05-16 Sharp Corp Transmission device, reception device and communication system
US9287918B2 (en) 2011-04-14 2016-03-15 Murata Manufacturing Co., Ltd. High-frequency front-end circuit
CN107508617A (en) * 2017-09-26 2017-12-22 洪清喜 A kind of cab integrated radio communication of 450MHz DA compatibilities

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222831B1 (en) 1997-03-25 2001-04-24 Alps Electric Co., Ltd. Receiving circuit of cellular telephone set
KR19990047207A (en) * 1997-12-03 1999-07-05 이형도 Radio transmitter and receiver of mixed time and frequency division communication
JP2001177396A (en) * 1999-11-13 2001-06-29 Koninkl Philips Electronics Nv Electrical communication apparatus including clock generating unit
JP2001185902A (en) * 1999-12-27 2001-07-06 Murata Mfg Co Ltd Composite high-frequency component and communication device using same
US6987951B2 (en) 2000-04-18 2006-01-17 Infineon Technologies Ag Transceiver for duplex operation
KR100890098B1 (en) * 2000-07-17 2009-03-24 소니 가부시끼 가이샤 Radio communication apparatus and wireless communication equipment
KR100796083B1 (en) * 2000-07-17 2008-01-21 소니 가부시끼 가이샤 Radio communication apparatus and wireless communication equipment
WO2002078203A1 (en) * 2001-03-27 2002-10-03 Sanyo Electric Co., Ltd. Composite high-frequency part and information terminal apparatus using the same
WO2003092181A1 (en) * 2002-04-25 2003-11-06 Matsushita Electric Industrial Co., Ltd. Mobile communication device
WO2003096561A1 (en) * 2002-05-09 2003-11-20 Matsushita Electric Industrial Co., Ltd. Mobile communication apparatus
US9287918B2 (en) 2011-04-14 2016-03-15 Murata Manufacturing Co., Ltd. High-frequency front-end circuit
JP2013093756A (en) * 2011-10-26 2013-05-16 Sharp Corp Transmission device, reception device and communication system
CN107508617A (en) * 2017-09-26 2017-12-22 洪清喜 A kind of cab integrated radio communication of 450MHz DA compatibilities
CN107508617B (en) * 2017-09-26 2023-03-17 洪清喜 450MHz digital-analog compatible locomotive integrated wireless communication equipment

Also Published As

Publication number Publication date
JP3393954B2 (en) 2003-04-07

Similar Documents

Publication Publication Date Title
US8755834B2 (en) Method and arrangement for transmitting and receiving RF signals through various radio interfaces of communication systems
JP3255843B2 (en) Digital / Analog Dual Circuit in Dual Mode Radio Equipment
US7058380B2 (en) Multiband radio signal transmitter/receiver
JP3848445B2 (en) Radio equipment compatible with multiple communication systems
US6735426B1 (en) Multiple-band wireless transceiver with quadrature conversion transmitter and receiver circuits
US7302236B2 (en) Radio communication method and system for performing communication among a plurality of radio communication terminals
JPH1084299A (en) Time division multiplex fdd/tdd dual mode radio equipment and time division multiplex dual band radio equipment
US6754508B1 (en) Multiple-band wireless transceiver with quadrature conversion transmitter and receiver circuits
JPH1032520A (en) Transmitter-receiver sending/receiving radio frequency signal for two frequency bands
JP3393954B2 (en) Time division multiplexed FDD / TDD dual mode radio
KR20050029237A (en) Radio transceiver architectures and methods
US7130603B2 (en) Radio equipment communicatable in two frequency bands and method for generating local oscillator signal in radio equipment
EP0807344B1 (en) Method and apparatus for generating plural quadrature modulated carriers
US20010014596A1 (en) Radio set and frequency converting method therefor
EP0529767B1 (en) Digital radio communication apparatus
US20020021762A1 (en) Multi-band transmission & reception-signal-generating apparatus, multi-band transmission & reception-signal-generating method and multi-band-radio-signal-transmitting & receiving apparatus
JPH0575495A (en) Mobile communication equipment
KR20050009477A (en) High Frequency Transceiver
US6021164A (en) Digital radio communication system having reduced phase-locked loop, and its synchronization
KR20040032890A (en) Multi-band transceivers with reduced frequency sources for digital transmissions
JP3287015B2 (en) Auxiliary signal transmission method
JPH05259934A (en) Transmitting/receiving device
WO2002009378A1 (en) Radio communication apparatus and radio communication method
JPH1032519A (en) Radio communication equipment
JP3387112B2 (en) Transmission device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees