JPH0831286A - Substrate type resistor and thermal fuse operation method - Google Patents

Substrate type resistor and thermal fuse operation method

Info

Publication number
JPH0831286A
JPH0831286A JP18995594A JP18995594A JPH0831286A JP H0831286 A JPH0831286 A JP H0831286A JP 18995594 A JP18995594 A JP 18995594A JP 18995594 A JP18995594 A JP 18995594A JP H0831286 A JPH0831286 A JP H0831286A
Authority
JP
Japan
Prior art keywords
melting point
metal piece
low melting
point metal
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18995594A
Other languages
Japanese (ja)
Inventor
Mitsuaki Uemura
充明 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP18995594A priority Critical patent/JPH0831286A/en
Publication of JPH0831286A publication Critical patent/JPH0831286A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuses (AREA)

Abstract

PURPOSE:To surely conduct current-carrying breaking by fusing a low melting point metal piece by Joule's heat caused by excess current. CONSTITUTION:A film conductor 2 and a low melting point metal piece 3 are arranged on one surface of an insulating substrate 1 such as a ceramic board, and they are connected with film conductors 4 in series, the low melting point metal piece is coated with flux 30, lead wires 5 are connected to each lead wire connecting land of the film conductors 4 respectively, and an insulating covering layer 6 is formed on one surface of the insulating substrate. When excess current is supplied, the low melting point metal piece 3 is fused by Joule' s heat of the low melting point metal piece 3 caused by excess current to break current flow. Generation of cracks of the film resistor 2 caused by Joule's heat by excess current can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子または電気機器の
保全に使用する基板型抵抗・温度ヒュ−ズの作動方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a substrate type resistance / temperature fuse used for maintenance of electronic or electric equipment.

【0002】[0002]

【従来の技術】基板型抵抗・温度ヒュ−ズは、セラミッ
クス基板等の絶縁基板に所定のパタ−ンの膜導体を形成
し、膜導体の中間に膜抵抗体と低融点金属片を互いに直
列に挿入接続し、低融点金属片にフラックスを塗布し、
絶縁基板にエポキシ樹脂等の絶縁被覆層を設けた構成で
ある。
2. Description of the Related Art A substrate type resistance / temperature fuse is one in which a film conductor having a predetermined pattern is formed on an insulating substrate such as a ceramics substrate, and a film resistor and a low melting point metal piece are connected in series in the middle of the film conductor. Insert and connect to, apply flux to the low melting point metal piece,
This is a configuration in which an insulating coating layer of epoxy resin or the like is provided on the insulating substrate.

【0003】この基板型抵抗・温度ヒュ−ズにおいて
は、保護すべき電子または電気機器の回路に挿入して使
用され、通常は、膜抵抗体の発生熱が低融点金属片に伝
達され、低融点金属片が溶融され、溶融フラックスとの
共存下、表面張力により球状化され、球状化の進行によ
り溶融金属が分断され、分断初期においては、分断間隔
が短いためにア−クが発生し、球状化の進行により分断
距離が増し、ア−ク消滅距離に達するとア−クが消滅
し、通電が遮断されるに至る。而して、充分な分断距離
が保証されるので、確実に通電遮断でき、再導通等を排
除できる。
This substrate type resistance / temperature fuse is used by inserting it into a circuit of an electronic or electric device to be protected, and normally, the heat generated by the film resistor is transferred to the low melting point metal piece to reduce the heat. The melting point metal piece is melted, coexisting with a molten flux, spheroidized by surface tension, the molten metal is divided by the progress of spheroidization, and at the initial stage of division, an arc occurs due to a short division interval, The spheroidization progresses to increase the division distance, and when the arc extinction distance is reached, the arc disappears and the current flow is cut off. Thus, since a sufficient disconnection distance is guaranteed, energization can be surely cut off and re-conduction can be eliminated.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、大電力
の過電流の場合、従来の基板型抵抗・温度ヒュ−ズで
は、膜抵抗体がそのジュ−ル熱による急激な温度上昇に
伴う熱歪により亀裂して通電が遮断され、膜抵抗体のジ
ュ−ル熱を受熱しての低融点金属片の溶断が発生するに
は至らない。
However, in the case of a large power overcurrent, in the conventional substrate type resistance / temperature fuse, the film resistor is affected by thermal strain due to a rapid temperature rise due to its jule heat. The current is cut off by cracking, and the melting of the low melting point metal piece by receiving the Jule heat of the film resistor does not occur.

【0005】図3は、従来の基板型抵抗・温度ヒュ−ズ
の電流遮断特性を示し、I0以下の電流範囲では、低融
点金属片が膜抵抗体のジュ−ル熱の受熱で溶断されて通
電が遮断されるが(曲線a)、I0を越える大電力のも
とでは、低融点金属片が膜抵抗体のジュ−ル熱の受熱で
溶断される(図3において、点線a’は低融点金属片が
膜抵抗体のジュ−ル熱の受熱で溶断されたと仮定して算
出した遮断特性を、bは膜抵抗体自体のジュ−ル熱に基
づく膜抵抗体の亀裂による遮断特性をそれぞれ示してい
る)以前に、膜抵抗体がそのジュ−ル熱による急激な温
度上昇に基づく熱歪で亀裂するに至っている。
FIG. 3 shows the current interruption characteristics of the conventional substrate type resistance / temperature fuse. In the current range of I 0 or less, the low melting point metal piece is melted and cut by the heat of the film resistor. The current is cut off (curve a), but under a large electric power exceeding I 0 , the low melting point metal piece is melted by the heat of the Jules heat of the film resistor (dotted line a ′ in FIG. 3). Is the cut-off characteristic calculated assuming that the low melting point metal piece was blown by the heat of the film resistor's jule heat, and b is the cut-off characteristic due to the crack of the film resistor due to the jule heat of the film resistor itself. Before), the film resistor has cracked due to thermal strain due to the rapid temperature rise due to its jule heat.

【0006】しかしながら、膜抵抗体の熱歪による亀裂
は、微細な巾のギャップであり、絶縁耐圧が低く、電圧
課電のもとで再導通が発生し易く、通電遮断状態の不確
定性が避けられない。
However, the crack due to the thermal strain of the film resistor is a gap having a fine width, has a low withstand voltage, is likely to be re-conducted under the application of voltage, and has an uncertainties of the energization interruption state. Unavoidable.

【0007】本発明の目的は、基板型抵抗・温度ヒュ−
ズにおいて、膜抵抗体のジュ−ル熱の伝達により低融点
金属片を溶断させ得ない大電力の過電流のもとで、膜抵
抗体自体のジュ−ル熱による熱歪に基づく亀裂で通電が
不確定に遮断されるのを排除して、確実な通電遮断を保
証できる基板型抵抗・温度ヒュ−ズの作動方法を提供す
ることにある。
An object of the present invention is to provide a substrate type resistance / temperature fuse.
Under a large electric power overcurrent that cannot melt the low melting point metal piece due to the transfer of the jule heat of the film resistor, the film resistor itself is energized by cracks due to thermal strain due to the jule heat. It is an object of the present invention to provide a method of operating a substrate type resistance / temperature fuse which can eliminate the indefinite interruption of electric current and guarantee a reliable electric current interruption.

【0008】[0008]

【課題を解決するための手段】本発明に係る基板型抵抗
・温度ヒュ−ズの作動方法は、絶縁基板上に膜抵抗体と
低融点金属片とを設け、これらを直列に接続し、通常
は、膜抵抗体のジュ−ル熱により低融点金属片を溶断さ
せて通電を遮断させる抵抗・温度ヒュ−ズにおいて、大
電力の過電流に対しては、その過電流に基づく低融点金
属片のジュ−ル熱でその低融点金属片を溶断させて通電
を遮断させ、当該過電流での膜抵抗体のジュ−ル熱によ
る亀裂を防止することを特徴とする構成である。
A method of operating a substrate type resistance / temperature fuse according to the present invention is a method in which a film resistor and a low melting point metal piece are provided on an insulating substrate and these are connected in series. Is a resistance-temperature fuse that melts the low melting point metal piece by means of the Jule heat of the film resistor to cut off the energization. The low melting point metal piece is melted and cut off by means of the jule heat, and the film resistance is prevented from cracking due to the jule heat due to the overcurrent.

【0009】以下、図面を参照しつつ本発明を説明す
る。図1の(イ)並びに図1の(ロ)は、本発明におい
て使用する異なる基板型抵抗・温度ヒュ−ズを示す説明
図であり、セラミックス板等の絶縁基板1の片面上に膜
抵抗体2と低融点金属片3とが設けられ、これらが膜導
体4で直列に接続され、低融点金属片3上にフラックス
30が塗布され、リ−ド線5が膜導体のリ−ド線接続用
ランドに接続され、絶縁基板片面に絶縁被覆層6が設け
られている。
The present invention will be described below with reference to the drawings. 1A and 1B are explanatory views showing different substrate type resistance / temperature fuses used in the present invention, in which a film resistor is provided on one surface of an insulating substrate 1 such as a ceramic plate. 2 and the low melting point metal piece 3 are provided, these are connected in series by the membrane conductor 4, the flux 30 is applied on the low melting point metal piece 3, and the lead wire 5 is the lead wire connection of the membrane conductor. An insulating coating layer 6 is provided on one surface of the insulating substrate, connected to the land for use.

【0010】上記基板型抵抗・温度ヒュ−ズは、絶縁基
板の片面への膜導体の形成、膜抵抗体の形成並びに抵抗
値調整、リ−ド線の接続、低融点金属片の接続、フラツ
クスの塗布、絶縁被覆層の形成の手順で製造される。上
記セラミックス板1には、厚み0.1mm〜2.0mm
好ましくは0.4mm〜1.2mmの96%アルミナ、
ベリリア、炭化珪素、窒化アルミニウム、ステアタイト
等を使用できる。上記の膜導体4は、導体ぺ−ストのス
クリ−ン印刷またはディスペンサ−並びに焼付け等によ
る厚膜法で形成することが好ましく、導体ぺ−ストに
は、Ag系、Ag−Pt系、Cu系、Pt系、Au系ペ
−スト等を使用でき、膜厚みは、通常10〜30μmと
される。
The substrate type resistance / temperature fuse is formed by forming a film conductor on one surface of an insulating substrate, forming a film resistor and adjusting a resistance value, connecting a lead wire, connecting a low melting point metal piece, and a flux. Is applied and the insulating coating layer is formed. The ceramic plate 1 has a thickness of 0.1 mm to 2.0 mm.
Preferably 0.4 mm to 1.2 mm of 96% alumina,
Beryllia, silicon carbide, aluminum nitride, steatite, etc. can be used. The above-mentioned film conductor 4 is preferably formed by a thick film method such as screen printing of a conductor paste or a dispenser, and baking. The conductor paste is made of an Ag-based material, an Ag-Pt-based material, or a Cu-based material. , Pt-based or Au-based paste can be used, and the film thickness is usually 10 to 30 μm.

【0011】上記膜抵抗体2については、抵抗ぺ−スト
を印刷・焼付けし、その上にガラスをオ−バコ−トする
ことにより形成できる。この膜抵抗体の形成には、抵抗
ペ−ストの印刷・焼き付けにより膜抵抗を形成し、その
上に第1ガラスコ−トを焼付けたうえで、レ−ザ−トリ
ミングにより所定の抵抗値に調整し、次いで第2のガラ
スコ−トを焼き付ける方法を使用することが望ましい。
抵抗ぺ−ストには、RuO2系、Ta−Tan系、Sn
2−Ta25系、LaB6系、SnO2−Ta系、Sr
RuO3系、Ag−Pd系、TaSi2系、MoSi2
ペ−スト等を使用でき、膜抵抗体の厚みは、通常10〜
40μmとされる。
The film resistor 2 can be formed by printing and baking a resistance paste, and then overcoating glass thereon. The film resistor is formed by printing and baking a resistance paste to form a film resistor, baking the first glass coat on the film resistor, and then adjusting it to a predetermined resistance value by laser trimming. Then, it is preferable to use the method of baking a second glass coat.
RuO 2 system, Ta-Tan system, Sn
O 2 -Ta 2 O 5 system, LaB 6 based, SnO 2 -Ta system, Sr
RuO 3 series, Ag—Pd series, TaSi 2 series, MoSi 2 series paste, etc. can be used, and the thickness of the film resistor is usually 10 to 10.
It is set to 40 μm.

【0012】上記低融点金属片3には、作動温度に応じ
た融点の丸線または箔状合金が使用され、通常、Sn,
Pb,In、Sb、Cd等の中から選択された2〜4成
分系の共晶合金が使用される。
For the low melting point metal piece 3, a round wire or a foil alloy having a melting point according to the operating temperature is used.
A 2- to 4-component eutectic alloy selected from Pb, In, Sb, Cd, etc. is used.

【0013】上記フラックス30については、上記低融
点金属片3の融点よりも充分に低い軟化点を有し、通
常、天然ロジンまたは合成ロジンに活性剤を添加したも
のが使用される。上記の絶縁被覆6には、フラックス3
0の軟化点よりも充分に低い温度で被覆可能なものが使
用され、例えば、エポキシ樹脂の常温下での滴下塗装を
使用できる。
The flux 30 has a softening point sufficiently lower than the melting point of the low melting point metal piece 3 and is usually a natural rosin or a synthetic rosin to which an activator is added. The insulating coating 6 has a flux 3
What can be coated at a temperature sufficiently lower than the softening point of 0 is used, and for example, a drop coating of an epoxy resin at room temperature can be used.

【0014】図2において、Bは本発明において使用す
る基板型抵抗・温度ヒュ−ズの低融点金属片のみの通電
遮断特性を、Cは同じく膜抵抗体のみの通電遮断特性を
それぞれ示し(基板型抵抗・温度ヒュ−ズの膜抵抗体の
両端または低融点金属片の両端を試験用可変電流源に接
続することにより求めることができる)、低融点金属片
のみによる通電遮断時間を膜抵抗体のみによる通電遮断
時間よりも短くしてある。
In FIG. 2, B shows the current interruption characteristic of only the low melting point metal piece of the substrate type resistance / temperature fuse used in the present invention, and C shows the electricity interruption characteristic of only the film resistor (substrate). Type resistance / temperature fuse can be obtained by connecting both ends of the film resistor or both ends of the low melting point metal piece to the variable current source for testing), and the energization interruption time only by the low melting point metal piece It is shorter than the power interruption time due to only.

【0015】膜抵抗体の膜抵抗体自体のジュ−ル熱によ
る亀裂は、膜抵抗体が加熱され、熱応力で歪まされ、そ
の歪が破断歪に達したときに生じ、この亀裂により通電
が遮断されるのであり、過電流の通電開始時から通電遮
断までの時間(遮断時間)は、加熱温度や膜抵抗体の破
断歪若しくは延性が大きく関与し、膜抵抗体の抵抗を低
くすること、または、膜抵抗体に破断歪の大きいものを
使用することにより、低融点金属片のみによる通電遮断
時間を、膜抵抗体のみによる通電遮断時間よりも短くす
ることが可能となる。
The crack of the film resistor due to the jule heat of the film resistor itself occurs when the film resistor is heated and is distorted by thermal stress, and the strain reaches a breaking strain. Since it is cut off, the time from the start of energization of the overcurrent to the interruption of the energization (breaking time) is greatly related to the heating temperature and the breaking strain or ductility of the film resistor, and lowering the resistance of the film resistor, Alternatively, by using a film resistor having a large breaking strain, the energization interruption time by only the low melting point metal piece can be made shorter than the energization interruption time by only the film resistor.

【0016】図2において、曲線Aは、膜抵抗体の発生
熱が低融点金属片に伝達され、低融点金属片が溶融さ
れ、溶融フラックスとの共存下、表面張力により球状化
され、球状化の進行により溶融金属が分断されるときの
通電遮断特性を示している。
In FIG. 2, a curve A indicates that the heat generated by the film resistor is transferred to the low-melting metal piece, the low-melting metal piece is melted, and is spheroidized by the surface tension in the coexistence with the molten flux. Shows the current interruption characteristics when the molten metal is divided by the progress of.

【0017】本発明は、基板型抵抗・温度ヒュ−ズを曲
線a1−c1−c2に従って作動させることにある。すな
わち、電流I1までの範囲では、低融点金属片を膜抵抗
体のジュ−ル熱の受熱で溶断させて通電を遮断させ、電
流I1以上の大電力の過電流に対しては、低融点金属片
を低融点金属片自体のジュ−ル熱で溶断させて通電を遮
断させるのである。この場合、膜抵抗体においては、当
該膜抵抗体のジュ−ル熱により加熱されても、熱歪を生
じて亀裂する以前に、低融点金属片が低融点金属片自体
のジュ−ル熱で溶断されてしまうから、膜抵抗体の亀裂
による通電遮断は発生せず、必ず、低融点金属片の溶断
による通電遮断となる。
The present invention resides in operating the substrate resistance / temperature fuse according to the curve a 1 -c 1 -c 2 . That is, in the range up to the current I 1, Ju of the low-melting metal piece film resistor - is blown by the heat of Le heat to cut off the energization, for a current I 1 or more large power overcurrent, low The melting point metal piece is melted by the Jules heat of the low melting point metal piece itself to cut off the electric current. In this case, in the film resistor, even if the film resistor is heated by the jule heat of the film resistor, the low-melting metal piece is heated by the jule heat of the low-melting metal piece itself before cracking due to thermal strain. Since it is melted and cut off, the current flow is not interrupted by the crack of the film resistor, and the current flow is always interrupted by the melting of the low melting point metal piece.

【0018】上記の電流遮断特性を基板型抵抗・温度ヒ
ュ−ズに付与するには、膜抵抗体の抵抗値を低くする
(例えば、低融点金属片の抵抗値1mΩ〜10mΩに対
し、膜抵抗体の抵抗値を1Ω程度にする)か、膜抵抗体
の抵抗粒子のバインダ−に可撓性のものを使用する、例
えば、ポリイミドのような耐熱性樹脂を使用することが
有効である。
In order to impart the above-mentioned current interruption characteristics to the substrate type resistance / temperature fuse, the resistance value of the film resistor is lowered (for example, the resistance value of the low melting metal piece is 1 mΩ to 10 mΩ, whereas the film resistance is 1 mΩ to 10 mΩ). It is effective to use a flexible one as the binder of the resistance particles of the film resistor, for example, to use a heat resistant resin such as polyimide.

【0019】[0019]

【作用】本発明により機器を保護するには、当該機器の
過負荷電力に対する許容負荷時間を求め、この過負荷曲
線にほぼ一致する通電遮断特性(ただし、許容負荷時間
>遮断時間の関係を満たすもの)の基板型抵抗・温度ヒ
ュ−ズを当該機器の回路に挿入する。
In order to protect a device according to the present invention, the allowable load time for the overload power of the device is determined, and the energization / interruption characteristics (however, the relationship of allowable load time> interruption time) that substantially matches the overload curve are satisfied Insert the board type resistance / temperature fuse of the one) into the circuit of the device.

【0020】この基板型抵抗・温度ヒュ−ズの遮断特性
を図2の曲線a1−c1−c2の通りとし、過負荷電力の
過電流I1まででは、低融点金属片が膜抵抗体のジュ−
ル熱を受熱して溶融し、溶融フラックスとの共存下、表
面張力により球状化され、球状化の進行により溶融金属
が分断され、分断距離がア−ク消滅距離に達すると、確
実に通電が遮断されに至る。過電流I1以上となると、
低融点金属片自体のジュ−ル熱が大となり、そのジュ−
ル熱により低融点金属片が溶断される。膜抵抗体もそれ
自体のジュ−ル熱により加熱されるが、膜抵抗体のジュ
−ル熱を抑制するように膜抵抗体の抵抗値を低くする
か、熱歪による亀裂を生じさせないように膜抵抗体に延
性を付与してあるから、膜抵抗体に亀裂が生じるのを排
除できる。
The cut-off characteristic of the substrate type resistance / temperature fuse is as shown by the curve a 1 -c 1 -c 2 in FIG. 2, and the low melting point metal piece is the film resistance up to the overcurrent I 1 of the overload power. Body ju
When it melts by receiving the heat of heat, it is spheroidized by the surface tension in the coexistence with the molten flux, the molten metal is divided by the progress of spheroidization, and when the division distance reaches the arc extinction distance, the current is surely supplied. It is cut off. When the overcurrent I 1 or more,
The juule heat of the low melting point metal piece itself becomes large,
The low melting point metal piece is melted by the heat of heat. The film resistor is also heated by its own heat, but the resistance of the film resistor should be lowered to suppress the heat of the film resistor, or cracks due to thermal strain should not occur. Since the film resistor is provided with ductility, it is possible to eliminate the occurrence of cracks in the film resistor.

【0021】而るに、低融点金属片のそれ自体のジュ−
ル熱による溶断においては、溶融フラックスとの共存
下、表面張力による球状化を伴うから、膜抵抗体の熱歪
による亀裂に較べて、分断のギャップ間隔を充分に広く
でき、その分断間の耐電圧性を充分に保証でき、再導通
を良好に防止できる。このことは、次ぎの実施例と比較
例との遮断試験結果からも確認できる。
Thus, the jute of the low melting point metal piece itself.
In the fusing by heat, the spheroidization is accompanied by the surface tension in the coexistence with the molten flux.Therefore, the gap interval of the division can be sufficiently widened and the resistance between the divisions can be increased as compared with the crack due to the thermal strain of the film resistor. The voltage property can be sufficiently ensured, and re-conduction can be effectively prevented. This can be confirmed also from the results of interruption tests of the following Examples and Comparative Examples.

【0022】[0022]

【実施例】【Example】

〔実施例〕基板型抵抗・温度ヒュ−ズには、図1の
(イ)に示す構成のものを使用した。絶縁基板には、縦
10mm、横6mm、厚み0.5mmの96%アルミナ
セラミックス板を使用し、膜導体は、Ag系ペ−ストの
印刷・焼き付けにより形成し、膜抵抗体は、RuO2
抵抗ペ−ストを印刷・焼付けし、その上に第1ガラスコ
−トを焼付けたうえで、レ−ザ−トリミングにより抵抗
値を1Ωに調整し、次いで第2のガラスコ−トを焼き付
けることにより形成した。低融点金属片には、直径0.
4mmφ、融点95℃、抵抗値10mΩの低融点可溶合
金線材を使用し、フラックスには、天然ロジンを主成分
とするものを使用した。絶縁被覆は、エポキシ樹脂液の
常温下での滴下塗装により施した。 〔比較例〕実施例に対し、抵抗値を10Ωに調整した以
外、実施例に同じとした。この実施例並びに比較例の基
板型抵抗・温度ヒュ−ズの定格電力は、0.25wであ
る。
[Embodiment] The substrate type resistance / temperature fuse having the structure shown in FIG. A 96% alumina ceramic plate having a length of 10 mm, a width of 6 mm and a thickness of 0.5 mm is used as an insulating substrate, a film conductor is formed by printing and baking an Ag-based paste, and a film resistor is made of RuO 2 system. Formed by printing and baking a resistance paste, baking a first glass coat on it, adjusting the resistance to 1Ω by laser trimming, and then baking a second glass coat. did. The low melting point metal piece has a diameter of 0.
A low melting point fusible alloy wire having a diameter of 4 mm, a melting point of 95 ° C. and a resistance value of 10 mΩ was used, and a flux containing natural rosin as a main component was used. The insulating coating was applied by dropping coating of an epoxy resin liquid at room temperature. [Comparative Example] The same as Example except that the resistance value was adjusted to 10Ω. The rated power of the substrate type resistance / temperature fuse of this example and the comparative example is 0.25w.

【0023】これらの実施例並びに比較例の基板型抵抗
・温度ヒュ−ズについて通電遮断試験を行ったところ、
比較例においては、定格電力のほぼ100倍以上の電力
で膜抵抗体の亀裂により通電遮断した。これに対し、実
施例の基板型抵抗・温度ヒュ−ズにおいては、高電力の
もとでも、膜抵抗体の亀裂は発生せず、低融点金属片が
それ自体のジュ−ル熱で溶断して、通電が遮断された。
通電遮断後、絶縁抵抗を測定したところ、比較例では5
00ボルト印課で0Ωに過ぎなかったのに対し、実施例
では、500ボルト印課で1×1012Ωにも達した。
A current-carrying interruption test was carried out on the substrate type resistance / temperature fuses of these examples and comparative examples.
In the comparative example, energization was interrupted by cracks in the film resistor at a power of approximately 100 times or more the rated power. On the other hand, in the substrate-type resistance / temperature fuse of the example, cracking of the film resistor did not occur even under high power, and the low-melting metal piece was melted by its own heat. Power was cut off.
When the insulation resistance was measured after turning off the current, it was 5 in the comparative example.
In the example, it reached 1 × 10 12 Ω at 500 volt, whereas it was only 0 Ω at 00 volt.

【0024】[0024]

【発明の効果】本発明によれば、基板型抵抗・温度ヒュ
−ズにより電気機器を保全する場合、大電力の過電流で
も、低融点金属片のそのジュ−ル熱による溶断で通電を
遮断することができ、膜抵抗体のそのジュ−ル熱による
亀裂で通電が遮断されるのを排除できるから、その通電
遮断での分断箇所の分断距離を大きくし得、その分断箇
所の耐電圧強度を充分に高くでき、再導通を伴わない確
実な通電遮断を保証できる。
According to the present invention, when the electric equipment is maintained by the substrate type resistance / temperature fuse, even if an overcurrent of a large electric power is supplied, the energization is interrupted by the melting of the low melting point metal piece due to the jule heat. Since it is possible to eliminate the interruption of the current flow due to cracking of the membrane resistor due to its Jur heat, it is possible to increase the breaking distance of the breaking point at the breaking of the current flow and withstand voltage strength of the breaking point. Can be made sufficiently high, and reliable energization interruption without re-conduction can be guaranteed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において使用する基板型抵抗・温度ヒュ
−ズの異なる例を示す説明図である。
FIG. 1 is an explanatory diagram showing different examples of substrate type resistance / temperature fuses used in the present invention.

【図2】本発明において使用する基板型抵抗・温度ヒュ
−ズの遮断特性を示す説明図である。
FIG. 2 is an explanatory diagram showing a cutoff characteristic of a substrate type resistance / temperature fuse used in the present invention.

【図3】従来の基板型抵抗・温度ヒュ−ズの遮断特性を
示す説明図である。
FIG. 3 is an explanatory view showing a breaking characteristic of a conventional substrate type resistance / temperature fuse.

【符号の説明】[Explanation of symbols]

1 絶縁基板 2 膜抵抗体 3 低融点金属片 4 膜導体 5 絶縁被覆リ−ド線 6 絶縁被覆 DESCRIPTION OF SYMBOLS 1 Insulating substrate 2 Membrane resistor 3 Low melting point metal piece 4 Membrane conductor 5 Insulation coating lead wire 6 Insulation coating

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁基板上に膜抵抗体と低融点金属片を設
け、これらを直列に接続し、通常は、膜抵抗体のジュ−
ル熱により低融点金属片を溶断させて通電を遮断させる
抵抗・温度ヒュ−ズにおいて、大電力の過電流に対して
は、その過電流に基づく低融点金属片のジュ−ル熱でそ
の低融点金属片を溶断させて通電を遮断させ、当該過電
流での膜抵抗体のジュ−ル熱による亀裂を防止すること
を特徴とする基板型抵抗・温度ヒュ−ズの作動方法。
1. A film resistor and a low melting point metal piece are provided on an insulating substrate, and these are connected in series.
In resistance and temperature fuses that melt the low melting point metal piece by heat of the low melting point to cut off the energization, when the overcurrent of high power is generated, the low temperature is caused by the jule heat of the low melting point metal piece due to the overcurrent. A method for operating a substrate-type resistance / temperature fuse, characterized in that the melting point metal piece is melted to cut off energization to prevent cracking of the film resistor due to jule heat at the overcurrent.
JP18995594A 1994-07-20 1994-07-20 Substrate type resistor and thermal fuse operation method Pending JPH0831286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18995594A JPH0831286A (en) 1994-07-20 1994-07-20 Substrate type resistor and thermal fuse operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18995594A JPH0831286A (en) 1994-07-20 1994-07-20 Substrate type resistor and thermal fuse operation method

Publications (1)

Publication Number Publication Date
JPH0831286A true JPH0831286A (en) 1996-02-02

Family

ID=16249996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18995594A Pending JPH0831286A (en) 1994-07-20 1994-07-20 Substrate type resistor and thermal fuse operation method

Country Status (1)

Country Link
JP (1) JPH0831286A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030586A (en) * 1998-07-15 2000-01-28 Uchihashi Estec Co Ltd Manufacture of substrate type thermal fuse

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030586A (en) * 1998-07-15 2000-01-28 Uchihashi Estec Co Ltd Manufacture of substrate type thermal fuse

Similar Documents

Publication Publication Date Title
US4652848A (en) Fusible link
US4661881A (en) Overload protector for a telephone set
WO1999012178A1 (en) Electrical fuse element
JP3768621B2 (en) How to use the protective element
US6614341B2 (en) Thick film circuit with fuse
US5652562A (en) Thermally fused resistor having a portion of a solder loop thermally connected to an electrically insulated portion of an outer surface of the resistor
JP3782176B2 (en) Method of using protective element and protective device
JPH0831286A (en) Substrate type resistor and thermal fuse operation method
JPH1050184A (en) Chip fuse element
JP3770408B2 (en) Substrate type resistance / temperature fuse and protection method for equipment
WO2016072253A1 (en) Circuit element and method for manufacturing circuit element
JP2012235053A (en) Overcurrent overvoltage protection element
JP7040886B2 (en) Protective element
JP3696635B2 (en) How the temperature protector works
JP3434897B2 (en) Substrate type resistance / temperature fuse
JP2799996B2 (en) Temperature sensor
JPH117876A (en) Circuit board type temperature fuse
JPH10162714A (en) Chip fuse element
JPH11195361A (en) Substrate type thermal fuse, and substrate type thermal fuse provided with resistor
JPH06124632A (en) Method for using alloy type temperature fuse
JPH0733353Y2 (en) Fuse resistor
JPH0514430Y2 (en)
JPH10335119A (en) Fuse resistor and electronic device using the resistor
JP2550465Y2 (en) Communication terminal equipment protector
JP3614894B2 (en) How to use the temperature protector