JPH083110A - Production of unsaturated glycol diester and catalyst to be used therefor - Google Patents

Production of unsaturated glycol diester and catalyst to be used therefor

Info

Publication number
JPH083110A
JPH083110A JP6258998A JP25899894A JPH083110A JP H083110 A JPH083110 A JP H083110A JP 6258998 A JP6258998 A JP 6258998A JP 25899894 A JP25899894 A JP 25899894A JP H083110 A JPH083110 A JP H083110A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
palladium
tellurium
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6258998A
Other languages
Japanese (ja)
Other versions
JP3540392B2 (en
Inventor
Masato Sato
眞人 佐藤
Hironobu Ono
博信 大野
Nobuyuki Murai
信行 村井
Youji Iwasaka
洋司 岩阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP5272961A external-priority patent/JPH07100383A/en
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP25899894A priority Critical patent/JP3540392B2/en
Publication of JPH083110A publication Critical patent/JPH083110A/en
Application granted granted Critical
Publication of JP3540392B2 publication Critical patent/JP3540392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the subject compound in an industrially advantageous way by acyloxylating a conjugated diene compound by using a highly and sustainedly active catalyst carried on a solid carrier having special structure. CONSTITUTION:This unsaturated glycol diester is obtained by reaction between a conjugated diene (e.g. butadiene, isoprene), carboxylic acid (e.g. acetic acid, propionic acid, butyric acid) and molecular oxygen at 20-150 deg.C under a pressure of 5-100kg/cm<2> by using a catalyst (with both palladium and tellurium as active ingredients) carried on a solid carrier with the volume of the pores 5-50nm in radius accounting for >=80% (pref. >=90%) of the total volume of the pores 1.8-10000nm in radius. It is preferable that the specific surface area of the solid carrier be <200m<2>/g (esp. 30-190m<2>/g), the solid carrier being e.g. silica, alumina, titania, zeolite, silica-alumina. The level of the Pd in the catalyst stands at 0.5-10 (pref. 2-6)wt.% and the amount of the Te carried 0.15-0.5 gram atom per gram atom of the Pd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はパラジウムとテルルを担
体に担持させた固体触媒の存在下、共役ジエンとカルボ
ン酸及び分子状酸素とを反応させて不飽和グリコ−ルジ
エステルを製造する方法及びこの方法に用いる触媒に係
わるものである。
The present invention relates to a method for producing an unsaturated glycol diester by reacting a conjugated diene with a carboxylic acid and molecular oxygen in the presence of a solid catalyst having palladium and tellurium supported on a carrier, and a method for producing the unsaturated glycol diester. It relates to the catalyst used in the method.

【0002】[0002]

【従来の技術】不飽和グリコ−ルジエステル、例えば1,
4-ブテンジオ−ルジエステルは、エンジニアリングプラ
スチックスなどの原料である1,4-ブタンジオ−ル及びテ
トラヒドロフランの重要な中間化合物である。テトラヒ
ドロフランはそれ自体が高性能溶剤であり、またその重
合物であるポリテトラメチレンエ−テルグリコ−ルは弾
性繊維の原料として重要である。このブテンジオ−ルジ
エステルを製造する方法については、従来、数多くの提
案がなされており、なかでも、パラジウム及びテルルを
活性炭に担持させた固体触媒を使用し、ブタジエンをカ
ルボン酸及び分子状酸素と反応させてブテンジオ−ルジ
エステルを製造する方法は良く知られている。
Unsaturated glycol diesters, for example 1,
4-Butenediodiol diester is an important intermediate compound of 1,4-butanediol and tetrahydrofuran, which are raw materials for engineering plastics and the like. Tetrahydrofuran itself is a high-performance solvent, and its polymer, polytetramethylene ether glycol, is important as a raw material for elastic fibers. Regarding the method for producing this butenediole diester, many proposals have hitherto been made, among which, using a solid catalyst in which palladium and tellurium are supported on activated carbon, butadiene is reacted with a carboxylic acid and molecular oxygen. Methods for producing butenediole diesters are well known.

【0003】具体的には、例えばパラジウムと、テルル
及びセレンの少なくとも1種とを含有した固体触媒を用
いる方法(特開昭48-72090号公報)、パラジウムと、ア
ンチモン及びビスマスの少なくとも1種と、テルル及び
セレンの少なくとも1種とを含有する固体触媒を用いる
方法(特開昭48-96513号公報)、これらの固体触媒の触
媒活性を向上させるために、用いる担体の活性炭を硝酸
で前処理して使用する方法(特開昭49-11812号公報)、
これらの固体触媒を還元処理した後、200 ℃以上の温度
において分子状酸素を含むガスで処理し、更にこれを還
元処理した上で用いる方法(特公昭52-12686号公報)が
提案されている。
Specifically, for example, a method of using a solid catalyst containing palladium and at least one of tellurium and selenium (JP-A-48-72090), palladium, and at least one of antimony and bismuth. , A method of using a solid catalyst containing at least one of tellurium and selenium (JP-A-48-96513), in order to improve the catalytic activity of these solid catalysts, the active carbon of the carrier used is pretreated with nitric acid. To use (Japanese Patent Laid-Open No. 49-11812),
A method has been proposed in which these solid catalysts are subjected to reduction treatment, then treated with a gas containing molecular oxygen at a temperature of 200 ° C. or higher, and further subjected to reduction treatment (Japanese Patent Publication No. 52-12686). .

【0004】しかしながら、上記の触媒は高い触媒活性
及び選択性を示すものの、触媒からの担持金属の溶出、
触媒活性の経時低下があり、その改良が望まれていた。
触媒活性の経時低下を防止するために、ブタジエン中の
ビニルシクロヘキセン又は酢酸中のギ酸等の不純物の量
を制限すると共に、反応系に重合防止剤を存在させて反
応を行なわせる方法(特公昭53-15491号公報)、劣化防
止剤として元素状硫黄を存在させて反応を行なう方法
(特開昭52-51313号公報)等が提案されている。これら
により前記の固体触媒の欠点はかなり改善されるが、未
だ充分といえなかった。
However, although the above catalysts show high catalytic activity and selectivity, the elution of the supported metal from the catalyst,
There is a decrease in catalyst activity over time, and improvement thereof has been desired.
In order to prevent the catalyst activity from deteriorating with time, a method in which the amount of impurities such as vinylcyclohexene in butadiene or formic acid in acetic acid is limited, and a reaction is carried out in the presence of a polymerization inhibitor in the reaction system (Japanese Patent Publication No. -15491), a method of reacting elemental sulfur in the presence of a deterioration inhibitor (JP-A-52-51313), and the like have been proposed. Although the above-mentioned drawbacks of the solid catalyst are remedied considerably, they have not been said to be sufficient.

【0005】[0005]

【発明が解決しようとする課題】本発明者等は上記従来
の問題点を解決するため、触媒担体の触媒性能に及ぼす
影響について鋭意検討を重ねた結果、本発明に到達し
た。即ち、本発明の第1の目的は、高活性かつ活性低下
の極めて小さい触媒の存在下に、共役ジエン、カルボン
酸及び分子状酸素を反応させて不飽和グリコ−ルジエス
テルを工業的有利に製造する方法を提供することにあ
る。更に本発明の第2の目的は、上記方法に用いて有用
な触媒を提供することにある。
The present inventors have arrived at the present invention as a result of extensive studies on the influence of the catalyst carrier on the catalytic performance in order to solve the above-mentioned conventional problems. That is, the first object of the present invention is to industrially advantageously produce an unsaturated glycol diester by reacting a conjugated diene, a carboxylic acid and molecular oxygen in the presence of a catalyst having a high activity and a very low activity decrease. To provide a method. A second object of the present invention is to provide a catalyst useful in the above method.

【0006】[0006]

【課題を解決するための手段】上記本発明第1の目的
は、パラジウム及びテルルを活性成分として担持する固
体触媒の存在下、共役ジエンとカルボン酸及び分子状酸
素とを反応させて不飽和グリコ−ルジエステルを製造す
る方法において、上記固体触媒の担体として細孔半径5
〜50 nm の範囲の細孔の占める容積が、細孔半径1.8 〜
10,000 nm の範囲の全細孔容積に対して80%以上である
固体担体を使用することにより達成される。上記本発明
第2の目的は、細孔半径5 〜50 nm の範囲の細孔の占め
る容積が、細孔半径1.8 〜10,000 nm の範囲の全細孔容
積に対して80%以上である固体担体にパラジウム及びテ
ルルを活性成分として担持させてなる共役ジエンのアシ
ロキシ化触媒により達成される。
The first object of the present invention is to react an conjugated diene with a carboxylic acid and molecular oxygen in the presence of a solid catalyst carrying palladium and tellurium as active ingredients to form an unsaturated glycol. -In the method for producing ludiester, the pore radius of 5 as a carrier of the solid catalyst.
The volume occupied by pores in the range
This is achieved by using a solid support that is greater than 80% with respect to the total pore volume in the 10,000 nm range. The second object of the present invention is to provide a solid carrier in which the volume occupied by pores having a pore radius of 5 to 50 nm is 80% or more of the total pore volume having a pore radius of 1.8 to 10,000 nm. This is achieved by a conjugated diene acyloxylation catalyst in which palladium and tellurium are supported as active ingredients.

【0007】本発明に用いる触媒は上記のような特定の
細孔分布を有する固体担体に触媒成分であるパラジウム
及びテルルを担持したものである。本発明における細孔
容積は水銀ポロシメ−タ−を用いて測定される。即ち細
孔測定法における細孔半径と圧力の基本関係式(1)、 Pr=−2ψ・cosθ ---- (1) 〔上式(1)中、Pは圧力、rは細孔半径、ψは水銀の
表面張力、θは水銀と試料の接触角を示す〕において、
ψ=480 dyne/cm,θ=140 ゜の条件で測定した細孔容
積である。本発明では、この方法で測定して、細孔半径
(r)が1.8 nmから10,000 nm の範囲の全細孔容積に対
して、細孔半径5 〜50 nm の範囲の細孔容積の占める割
合が80%以上である固体担体に触媒成分であるパラジウ
ム及びテルルを担持した触媒を用いる。この要件の一層
好ましいのは細孔半径5 〜50 nm の範囲の細孔が、細孔
半径1.8 〜10,000 nm の範囲の全細孔容積に対して85%
以上、更に好ましくは90%の固体担体に触媒成分である
パラジウム及びテルルを担持したものを使用する。本発
明においては、触媒成分であるパラジウムと、もう一つ
の触媒成分であるテルルとの担持量の比は、テルルの量
がパラジウム1 g 原子に対して0.05〜5 g原子の範囲で
あり、好ましくは0.15〜4 g 原子、より好ましくは0.15
〜0.5 g 原子の範囲である。
The catalyst used in the present invention is one in which palladium and tellurium, which are catalyst components, are supported on a solid support having the above-mentioned specific pore distribution. The pore volume in the present invention is measured using a mercury porosimeter. That is, the basic relational expression (1) of the pore radius and the pressure in the pore measuring method, Pr = −2ψ · cos θ ---- (1) [In the above formula (1), P is the pressure, r is the pore radius, ψ is the surface tension of mercury, θ is the contact angle between mercury and the sample]
It is the pore volume measured under the conditions of ψ = 480 dyne / cm and θ = 140 °. In the present invention, the ratio of the pore volume in the range of 5 to 50 nm in the radius of pores to the total pore volume in the range of 1.8 to 10,000 nm in the pore radius (r) measured by this method. A catalyst in which palladium and tellurium, which are catalyst components, are supported on a solid support whose content is 80% or more is used. More preferred of this requirement is that pores with pore radii in the range 5 to 50 nm are 85% of the total pore volume in the pore radii 1.8 to 10,000 nm.
As described above, it is more preferable to use a 90% solid carrier on which palladium and tellurium as catalyst components are supported. In the present invention, the ratio of the supported amount of palladium as a catalyst component and tellurium as another catalyst component is such that the amount of tellurium is in the range of 0.05 to 5 g atom relative to 1 g atom of palladium, and Is 0.15 to 4 g atom, more preferably 0.15
~ 0.5 g atom range.

【0008】共役ジエンとカルボン酸及び分子状酸素と
を反応させる不飽和グリコ−ルジエステルの製造装置
は、通常、半年ないし1年間連続運転するので、この間
に触媒活性が低下しないことが強く要求される。活性低
下の小さい触媒であるためには、触媒成分であるパラジ
ウム及びテルルが担体上において金属ないしは合金とし
て高分散されていること、及びこれらの金属が副生する
高沸点物等で長時間にわたって被覆されないことが必要
であると考えられる。一般に不飽和グリコ−ルジエステ
ルの製造に用いられる触媒上でのパラジウム及びテルル
の平均粒子直径は数十オングストロ−ム(数nm)と考え
られている。
Since an unsaturated glycol diester producing apparatus for reacting a conjugated diene with a carboxylic acid and molecular oxygen is usually continuously operated for half a year to one year, it is strongly required that the catalytic activity does not decrease during this period. . In order for the catalyst to have a small activity decrease, the catalyst components, palladium and tellurium, are highly dispersed as a metal or an alloy on the carrier, and the metal is coated as a by-product with a high boiling point for a long time. It is considered necessary not to be done. It is generally considered that the average particle diameter of palladium and tellurium on the catalyst used for the production of unsaturated glycol diester is several tens of angstroms (several nm).

【0009】そして本発明で用いる特定の細孔分布を有
する担体が良好に機能するのは次のような理由によると
考えられる。即ち、細孔直径が100 nmを越えるマクロポ
アでは比表面積が小さくなるので活性成分の担持密度が
低下して触媒の反応効率が低下してしまう。また細孔直
径10nm 未満のミクロポアは反応で副生する高沸物又は
原料の共役ジエンの重合物により閉塞され易いので、こ
のようなミクロポア内に担持されている触媒金属は、そ
の触媒活性の経時的低下が大きくなるというものであ
る。
The reason why the carrier having a specific pore distribution used in the present invention works well is considered to be as follows. That is, in a macropore having a pore diameter of more than 100 nm, the specific surface area becomes small, so that the supporting density of the active ingredient is lowered and the reaction efficiency of the catalyst is lowered. In addition, since micropores with a pore diameter of less than 10 nm are easily clogged by a high boiling point by-produced in the reaction or a polymer of a conjugated diene as a raw material, the catalyst metal supported in such micropores has a long catalytic activity. It means that the decline will be large.

【0010】従って、本発明で用いる固体担体のように
細孔半径が5 〜50nm(直径では10〜100 nm)の範囲に、
ほとんどの細孔が存在する担体に触媒金属を担持させる
ことにより、高活性で、かつ長時間失活しない触媒とな
り得るのである。また細孔容積については、特に限定す
るものではないが、通常、細孔容積0.8cc/g 以上のも
のは、担持させるパラジウム及びテルル担持量を多くで
き有利である。更に、本発明で使用する固体担体の比表
面積は上記の細孔の条件を満足すればよく、好ましくは
200 m2/g 未満のもの、更に好ましくは30〜190 m2/g
である。200 m2/g を越えてあまり大きい比表面積の担
体は、ミクロポアが過度に増加するため好ましくない。
Therefore, like the solid carrier used in the present invention, the pore radius is in the range of 5 to 50 nm (diameter is 10 to 100 nm),
By supporting the catalyst metal on the carrier having most of the pores, a catalyst having high activity and not deactivating for a long time can be obtained. The pore volume is not particularly limited, but normally, the pore volume of 0.8 cc / g or more is advantageous because the amount of palladium and tellurium supported can be increased. Further, the specific surface area of the solid support used in the present invention may satisfy the above-mentioned conditions of pores, preferably
Less than 200 m 2 / g, more preferably 30 to 190 m 2 / g
Is. A carrier having a specific surface area exceeding 200 m 2 / g and having a too large specific surface area is not preferable because the micropores excessively increase.

【0011】本発明で用いる固体担体の形状は、特に限
定されるものでなく、粉末状、破砕状、粒子状、柱状等
の形状のものを任意に用いることができるが、工業的に
は2.0 〜6.0 mmの大きさ(最大径)を有し、充填密度が
0.35 g/ml以上のものが好ましく用いられる。かかる固
体担体としては、シリカ、アルミナ、チタニア、ゼオラ
イト、シリカ−アルミナ等を所定の形状に成形したもの
が用いられる。この他活性炭でも上記の条件を満足すれ
ば使用できる。
The shape of the solid carrier used in the present invention is not particularly limited, and powdery, crushed, particulate, columnar and other shapes can be arbitrarily used, but it is industrially 2.0. With a size (maximum diameter) of ~ 6.0 mm, the packing density is
Those of 0.35 g / ml or more are preferably used. As such a solid carrier, those obtained by molding silica, alumina, titania, zeolite, silica-alumina or the like into a predetermined shape are used. In addition, activated carbon can also be used if it satisfies the above conditions.

【0012】固体担体に触媒活性成分の金属を担持させ
るには、担体付き金属触媒調製のために従来からよく知
られている方法を適宜利用することができる。例えば、
パラジウム化合物及びテルル化合物を硝酸水溶液に溶解
し、その水溶液中に固体担体を浸漬し、担体に上記金属
成分を含浸又は吸着担持させ、しかる後、この触媒成分
を担持した担体を濾別し、これを空気中で乾燥し、水素
又は還元力のある有機化合物の気流中で還元する方法が
一般的である。
In order to support the metal of the catalytically active component on the solid support, a conventionally well-known method for preparing a metal catalyst with a support can be appropriately used. For example,
A palladium compound and a tellurium compound are dissolved in an aqueous nitric acid solution, a solid carrier is immersed in the aqueous solution, and the carrier is impregnated or adsorbed with the metal component, and then the carrier carrying the catalyst component is separated by filtration. Is generally dried in air and reduced in a stream of hydrogen or an organic compound having a reducing power.

【0013】触媒調製のために用いられるパラジウム化
合物としては、硝酸パラジウム、塩化パラジウム、酢酸
パラジウム、パラジウムアンミン錯体等が挙げられる
が、必要ならば金属パラジウムも使用できる。触媒中の
パラジウムの濃度は、一般には0.5 〜10重量%の範囲で
あり、より好ましくは2〜6重量%の範囲である。上記範
囲の下限未満では、活性の高い触媒が調製し難い。また
上記範囲の上限を越える高濃度とするときは次の理由で
好ましくない。即ち、触媒中におけるテルルとパラジウ
ムとを好適な割合(テルル/パラジウム原子比)に保持
するためには、含浸する溶液中のパラジウムの濃度にあ
わせてテルルの濃度をある一定値以上に保つ必要があ
る。しかし、テルルの溶解度はパラジウムよりも小さい
ため、パラジウムの濃度があまり高濃度(上記範囲の上
限を越える濃度)になると、これに対応するテルル濃度
を確保できなくなるからである。
Examples of the palladium compound used for preparing the catalyst include palladium nitrate, palladium chloride, palladium acetate, palladium ammine complex and the like, but if necessary, metallic palladium can also be used. The concentration of palladium in the catalyst is generally in the range 0.5 to 10% by weight, more preferably 2 to 6% by weight. Below the lower limit of the above range, it is difficult to prepare a highly active catalyst. Further, when the concentration is higher than the upper limit of the above range, it is not preferable for the following reason. That is, in order to keep the tellurium and palladium in the catalyst at a suitable ratio (tellurium / palladium atomic ratio), it is necessary to keep the concentration of tellurium at a certain value or higher in accordance with the concentration of palladium in the impregnating solution. is there. However, since the solubility of tellurium is smaller than that of palladium, if the concentration of palladium becomes too high (the concentration exceeding the upper limit of the above range), it becomes impossible to secure the tellurium concentration corresponding thereto.

【0014】次に触媒の調製に用いられるテルル化合物
としては、塩化テルル(II),(IV) のようなハロゲン化合
物、酸化テルル(IV),(VI) のような酸化物、テルル酸(H
6TeO6)、金属テルル等が利用できる。担体に担持される
テルルは、触媒中のパラジウムに対するテルルの担持比
率で、通常パラジウム1 グラム原子に対して0.05〜5 グ
ラム原子の範囲から選択され、より好ましいのはパラジ
ウム1 グラム原子に対し0.15〜4 グラム原子、更に好ま
しくは0.15〜0.5 グラム原子である。テルルの割合が上
記範囲の下限未満の原子比では反応に使用中にパラジウ
ムが触媒から反応液中に溶出し、またテルルの割合が上
記範囲の上限を越える原子比ではテルルが溶出すること
により、何れの場合も触媒活性低下の原因となり、長時
間の連続使用に耐えられない。
Next, as tellurium compounds used for preparing the catalyst, halogen compounds such as tellurium (II) and (IV) chlorides, oxides such as tellurium (IV) and (VI) oxides, and telluric acid (H
6 TeO 6 ), metallic tellurium, etc. can be used. The tellurium supported on the carrier is a supporting ratio of tellurium to palladium in the catalyst, and is usually selected from the range of 0.05 to 5 gram atom per 1 gram atom of palladium, more preferably 0.15 to 1 gram atom of palladium. 4 gram atom, more preferably 0.15 to 0.5 gram atom. When the ratio of tellurium is less than the lower limit of the above range, palladium is eluted from the catalyst into the reaction solution during use in the reaction, and when the ratio of tellurium exceeds the upper limit of the above range, tellurium is eluted. In either case, the catalyst activity is lowered and it cannot withstand continuous use for a long time.

【0015】上述のパラジウム化合物及びテルル化合物
の水溶液に担体を加えて含浸又は吸着担持させる際の水
溶液と担体の全細孔容積との比、即ち(使用する水溶液
の全容積)/(使用する担体の合計細孔容積)の値は0.
8 以上となる範囲から選ぶのが好ましく、特に好ましい
範囲は上記容積比が0.9 〜1.1 である。上記容積比が0.
8 より低いときは、パラジウム及びテルルが均一に担持
され難い。また上記容積比が1.1 を越えると、担体に吸
着されずに残る溶液が相当量生ずるのでその回収が必要
となり好ましくない。
The ratio of the aqueous solution to the total pore volume of the carrier when the carrier is added to the aqueous solution of the palladium compound and tellurium compound to impregnate or adsorb the carrier, that is, (total volume of aqueous solution used) / (carrier used) The total pore volume of) is 0.
It is preferable to select from the range of 8 or more, and particularly preferable range is the above volume ratio of 0.9 to 1.1. The volume ratio is 0.
When it is lower than 8, it is difficult to uniformly support palladium and tellurium. On the other hand, if the volume ratio exceeds 1.1, a considerable amount of the solution that remains without being adsorbed on the carrier is produced, and it is not preferable because the solution must be recovered.

【0016】次にパラジウム化合物及びテルル化合物を
含浸した固体担体を乾燥するためには、この固体担体で
固定床を形成し、これに加熱した窒素、空気、水素ガス
等を流通させればよい。この場合に用いるガス流量は、
通常触媒に対して空間速度(SV)で20(l/l ・時)以
上の範囲で選択されるが、より好ましいのは1000〜8000
(l/l ・時) の範囲である。SVの値が低すぎると乾燥
時間が長くなり、また高すぎるとガス使用量が大きくな
り不経済である。
Next, in order to dry the solid support impregnated with the palladium compound and tellurium compound, a fixed bed may be formed from this solid support, and heated nitrogen, air, hydrogen gas or the like may be passed through this. The gas flow rate used in this case is
The space velocity (SV) of the catalyst is usually selected in the range of 20 (l / l.hr) or more, more preferably 1000 to 8000.
The range is (l / l ・ hour). If the SV value is too low, the drying time becomes long, and if it is too high, the amount of gas used becomes large, which is uneconomical.

【0017】乾燥に用いるガス中の水分量は通常2 重量
%以下の範囲であるが、0.5 重量%以がより好ましい。
乾燥ガス中の含有水分量が高くなりすぎると最終的に得
られる触媒性能が低下する。また、乾燥温度は通常40〜
150 ℃の範囲内で選択されるが、60〜100 ℃のガスを流
通させて予め乾燥した後に140 〜150 ℃のガスを流通さ
せて乾燥を完結させるのが好ましい。乾燥された触媒の
活性化処理は、水素のような還元性ガス等による還元処
理と酸素及び窒素混合ガス等による酸化処理とを交互に
繰り返す方法又は還元性ガス等による還元処理を単独で
行なう方法の、何れをも用いることができる。
The amount of water in the gas used for drying is usually in the range of 2% by weight or less, more preferably 0.5% by weight or more.
If the water content in the dry gas becomes too high, the catalyst performance finally obtained will deteriorate. Also, the drying temperature is usually 40 ~
The temperature is selected within the range of 150 ° C., but it is preferable that a gas of 60 to 100 ° C. is circulated to pre-dry and then a gas of 140 to 150 ° C. is circulated to complete the drying. For the activation treatment of the dried catalyst, a method of alternately repeating a reduction treatment with a reducing gas such as hydrogen and an oxidation treatment with a mixed gas of oxygen and nitrogen, or a method of performing the reduction treatment with a reducing gas alone. Any of these can be used.

【0018】上記の触媒を用いて不飽和グリコ−ルジエ
ステルを製造する際に使用する反応原料の共役ジエン例
えばブタジエンは必ずしも純粋なものである必要はな
く、窒素ガスのような不活性ガスや、メタン、エタン、
ブタンなどの飽和炭化水素、又はブテン等の不飽和炭化
水素を含むものであってもよい。共役ジエンとしては、
その他にイソプレン、2,3-ジメチルブタジエン、ピペリ
レン等のアルキル基置換ブタジエンが使用できる。
The conjugated diene, for example, butadiene, as a reaction raw material used when producing an unsaturated glycol diester using the above catalyst is not necessarily required to be pure, and an inert gas such as nitrogen gas or methane may be used. , Ethane,
It may contain a saturated hydrocarbon such as butane or an unsaturated hydrocarbon such as butene. As a conjugated diene,
In addition, alkyl group-substituted butadienes such as isoprene, 2,3-dimethylbutadiene and piperylene can be used.

【0019】次にもう一方の反応原料であるカルボン酸
は、炭素数2 〜6 の低級脂肪族モノカルボン酸、例えば
酢酸、プロピオン酸、酪酸などが用いられ、特に反応性
及び価格の点から酢酸がより好ましい。通常はカルボン
酸が反応媒体を兼ねるが、反応に不活性な有機溶媒例え
ば飽和炭化水素、エステル等を併用してもよい。しか
し、反応媒体の50重量%以上は原料のカルボン酸である
ことが好ましい。カルボン酸の使用量は共役ジエン1 モ
ルに対する化学量論量以上、60モル以下の範囲内が好ま
しい。
Next, as the carboxylic acid as the other reaction raw material, a lower aliphatic monocarboxylic acid having 2 to 6 carbon atoms such as acetic acid, propionic acid and butyric acid is used. Is more preferable. Usually, the carboxylic acid also serves as the reaction medium, but an organic solvent inert to the reaction, such as saturated hydrocarbon or ester, may be used together. However, it is preferable that 50% by weight or more of the reaction medium is the starting carboxylic acid. The amount of the carboxylic acid used is preferably in the range of stoichiometric amount or more and 60 mol or less with respect to 1 mol of the conjugated diene.

【0020】本発明方法で用いる分子状酸素は純粋な酸
素である必要はなく、窒素等の不活性ガスで希釈された
酸素、例えば空気でもよい。酸素の使用量は限定的でな
く、反応系内で気体が爆発組成とならない範囲であれば
よい。
The molecular oxygen used in the method of the present invention need not be pure oxygen, but may be oxygen diluted with an inert gas such as nitrogen, for example air. The amount of oxygen used is not limited and may be within a range such that the gas does not have an explosive composition in the reaction system.

【0021】本発明方法による固体触媒の存在下での分
子状酸素、共役ジエン及びカルボン酸の反応は回分式又
は連続法で行なうことができるが、触媒は固定床式、流
動床式、懸濁槽式等、任意の方法で実施することができ
る。反応は通常20℃以上の温度で行なわれるが、反応速
度及び副生物の生成などを考慮すると、好適な反応温度
範囲は50〜120℃である。また反応圧力は、反応速度及
び反応設備費用を考慮すると、好適なのは5 〜100 kg/
cm2 である。
The reaction of molecular oxygen, a conjugated diene and a carboxylic acid in the presence of a solid catalyst according to the method of the present invention can be carried out by a batch system or a continuous process, and the catalyst is a fixed bed system, a fluid bed system or a suspension system. It can be carried out by any method such as a tank system. The reaction is usually carried out at a temperature of 20 ° C. or higher, but in consideration of the reaction rate and the production of by-products, a suitable reaction temperature range is 50 to 120 ° C. The reaction pressure is preferably 5 to 100 kg / in consideration of the reaction rate and the cost of the reaction equipment.
It is cm 2.

【0022】[0022]

【実施例】以下、実施例によって本発明を更に詳細に説
明するが、本発明はその要旨を超えない限り、下記の実
施例によって限定されるものでない。なお、以下の実施
例及び比較例において、使用する触媒担体につき、細孔
半径が5 〜50 nm の範囲の細孔の占める容積が、細孔半
径1.8 〜10,000 nm の範囲の全細孔容積に対する比率、
即ち、[(細孔半径が5 〜50 nm の範囲の細孔の占める容
積) /(細孔半径1.8 〜10,000 nm の範囲の全細孔容
積)×100]をA比率(%)と略記する。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples unless it exceeds the gist. In the following Examples and Comparative Examples, the volume of pores having a pore radius of 5 to 50 nm with respect to the catalyst carrier used is relative to the total pore volume of the pore radius of 1.8 to 10,000 nm. ratio,
That is, [(volume occupied by pores having pore radius in the range of 5 to 50 nm) / (total pore volume in pore radius of 1.8 to 10,000 nm) x 100] is abbreviated as A ratio (%). .

【0023】実施例1 粒子の直径が2.4 〜3.4 mmであって、A比率が97%であ
るシリカ担体(シェル化学社製S980G,細孔容積1.12 cc
/g,平均細孔半径22.6 nm,担体比表面積67 m2/g) 56g
に、パラジウムを金属換算で10重量%含有する硝酸パラ
ジウム水溶液57g及び二酸化テルル2.6 g を35%硝酸に
溶解して得られた水溶液140 g を添加し、30℃に2 時間
保持した後、5 時間放冷した。これを濾過してシリカ担
体を回収し、更にこの担体を遠心分離器で遠心分離して
脱液することにより触媒136 g を得た。
Example 1 A silica carrier having a particle diameter of 2.4 to 3.4 mm and an A ratio of 97% (S980G manufactured by Shell Chemical Co., pore volume 1.12 cc).
/ G, average pore radius 22.6 nm, specific surface area of carrier 67 m 2 / g) 56g
Add 57 g of an aqueous palladium nitrate solution containing 10% by weight of palladium in terms of metal and 140 g of an aqueous solution obtained by dissolving 2.6 g of tellurium dioxide in 35% nitric acid, and hold at 30 ° C for 2 hours, and then for 5 hours. I let it cool. This was filtered to collect a silica carrier, and this carrier was further centrifuged and deliquored to obtain 136 g of a catalyst.

【0024】この触媒を内径4.6 cm(有効断面積16.6 c
m2)のパイレックス製ガラス管中に収容し、65℃におい
て6 時間、次いで100 ℃に昇温して2 時間保持して乾燥
した。次に150 ℃に昇温した後、水素ガスを330 Nl/時
の流量で流通させながら、毎時50℃の割合で昇温し、30
0 ℃に4 時間保持した後、窒素気流中で冷却し、活性化
処理した触媒60 gを得た。この触媒はパラジウム4.9 重
量%及びテルル1.8 重量%を含有していた。
This catalyst has an inner diameter of 4.6 cm (effective area 16.6 c
It was housed in a Pyrex glass tube of m 2 ), heated at 65 ° C. for 6 hours, then heated to 100 ° C. and kept for 2 hours to be dried. Then, after raising the temperature to 150 ° C, the temperature was raised at a rate of 50 ° C / hr while flowing hydrogen gas at a flow rate of 330 Nl / hr.
After being kept at 0 ° C. for 4 hours, it was cooled in a nitrogen stream to obtain 60 g of an activated catalyst. The catalyst contained 4.9% by weight palladium and 1.8% by weight tellurium.

【0025】次に、この触媒4 g を内径12 mm(有効断面
積1.005 cm2)のステンレス製反応管に充填し、1,3-ブタ
ジエン0.122 モル/時及び酢酸2.5 モル/時を液相で、
並びに酸素6 容量%を含有する窒素96.4 Nl /時をガス
相で供給し、反応圧力60 kg/cm2 、反応温度80℃にお
いて連続的に3900時間反応を実施した。反応開始後、所
定時間経過時の生成液を分析し、触媒1 g について1 時
間当りのジアセトキシブテンの生成量を求め、反応速度
定数(k)を計算し、触媒活性の失活率を求めた。その
結果を表1に示す。
Next, 4 g of this catalyst was charged into a stainless steel reaction tube having an inner diameter of 12 mm (effective area 1.005 cm 2 ) and 0.12-mol of 1,3-butadiene and 2.5 mol / hour of acetic acid in a liquid phase. ,
Further, 96.4 Nl / hour of nitrogen containing 6% by volume of oxygen was supplied in the gas phase, and the reaction was continuously carried out for 3900 hours at a reaction pressure of 60 kg / cm 2 and a reaction temperature of 80 ° C. After the start of the reaction, analyze the product solution after a lapse of a predetermined time, determine the amount of diacetoxybutene produced per hour for 1 g of catalyst, calculate the reaction rate constant (k), and determine the deactivation rate of the catalyst activity. It was Table 1 shows the results.

【0026】実施例2 触媒担体としてA比率が99%である富士デビソン社製シ
リカ担体(商品名CARIACT15)(粒子直径2.4 〜4.0 mm,
細孔容積0.91 cc /g,平均細孔半径10.3 nm,担体比表面
積170 m2/g)を使用した以外は実施例1と同様にしてジ
アセトキシブテンを製造した。結果を表1に示す。
Example 2 As a catalyst carrier, a silica carrier (trade name CARIACT 15) manufactured by Fuji Devison Co., Ltd. having an A ratio of 99% (particle diameter 2.4 to 4.0 mm,
Diacetoxybutene was produced in the same manner as in Example 1 except that the pore volume was 0.91 cc / g, the average pore radius was 10.3 nm, and the carrier specific surface area was 170 m 2 / g). The results are shown in Table 1.

【0027】比較例1 触媒担体としてA比率が67%である富士デビソン社製シ
リカ担体(商品名CARIACT10)(粒子直径2.4 〜4.0 mm,
細孔容積0.94 cc /g,平均細孔半径5.8 nm, 担体比表面
積273 m2/g)を使用した以外は実施例1と同様にしてジ
アセトキシブテンを製造した。結果を表1に示す。
Comparative Example 1 As a catalyst carrier, a silica carrier (trade name CARIACT10) manufactured by Fuji Devison Co. having an A ratio of 67% (particle diameter 2.4 to 4.0 mm,
Diacetoxybutene was produced in the same manner as in Example 1 except that the pore volume was 0.94 cc / g, the average pore radius was 5.8 nm, and the carrier specific surface area was 273 m 2 / g). The results are shown in Table 1.

【0028】比較例2 触媒担体としてA比率が29%であるピ−ト成型炭(オラ
ンダのノリット社製、商品名Sorbonorit-2X)(直径2 m
m, 長さ6 mmの円筒状, 細孔容積0.69 cc /g,平均細孔
半径460 nm, 担体比表面積1058 m2 /g)を用い、この40
gに水60 g及び60重量%硝酸水溶液60 gを加え、90〜94
℃に3時間保持した。冷却後、濾過して溶液を除去し、
硝酸処理した活性炭を得た。
COMPARATIVE EXAMPLE 2 As a catalyst carrier, peated coal having an A ratio of 29% (Sorbonorit-2X, trade name, manufactured by Norit of the Netherlands) (diameter 2 m
m, cylindrical length 6 mm, pore volume 0.69 cc / g, average pore radius 460 nm, carrier specific surface area 1058 m 2 / g)
To 60 g of water, add 60 g of water and 60 g of 60 wt% nitric acid aqueous solution,
Hold at ℃ for 3 hours. After cooling, remove the solution by filtration,
A nitric acid-treated activated carbon was obtained.

【0029】次に、上記活性炭にパラジウムを金属換算
で10重量%含有する硝酸パラジウム水溶液20 g及び金属
テルル0.55 gを35%硝酸に溶解して得られた水溶液120
g を添加し、30℃に3 時間保持した後、5 時間放冷し
た。これを濾過して溶液を除去した後、240 トルの減圧
下に最高140 ℃で8 時間乾燥し、パラジウム4.2 重量%
及びテルル0.78重量%を含有するパラジウム及びテルル
担持活性炭(以下担持触媒という)を得た。上記担持触
媒のうち、30 cc を内径2.5 cm(有効断面積4.9 cm2)の
パイレックス製ガラス管に充填し、これにメタノ−ル8
容量%を含有する窒素を39 Nl /時の流量で流通させな
がら、毎時50℃の割合で350 ℃まで昇温し、この温度に
4 時間保持した後、窒素気流中で室温まで放冷した。
Next, 20 g of an aqueous solution of palladium nitrate containing 10% by weight of palladium in terms of metal in the activated carbon and 0.55 g of metal tellurium in 35% nitric acid were prepared as an aqueous solution 120.
g was added, and the mixture was kept at 30 ° C. for 3 hours and then allowed to cool for 5 hours. It was filtered to remove the solution, then dried under vacuum at 240 torr for up to 140 ° C for 8 hours to give 4.2% by weight palladium.
And palladium and tellurium-supported activated carbon (hereinafter referred to as supported catalyst) containing 0.78% by weight of tellurium were obtained. Of the above supported catalyst, 30 cc was filled in a glass tube made of Pyrex with an inner diameter of 2.5 cm (effective area 4.9 cm 2 ) and methanol 8
Nitrogen containing vol.% Was flown at a flow rate of 39 Nl / hour, and the temperature was raised to 350 ° C at a rate of 50 ° C / hour.
After holding for 4 hours, it was left to cool to room temperature in a nitrogen stream.

【0030】次に、酸素2 容量%含有窒素ガスを流量39
Nl /時で流通させながら、300 ℃まで昇温してこの温
度に10時間保持した後、窒素気流中で室温まで冷却し
た。次に、メタノ−ル8 容量%を含有する窒素ガスを39
Nl /時の流量で流通させながら、毎時50℃の割合で35
0 ℃まで昇温し、この温度に15時間保持した後、窒素気
流中で室温まで放冷した。次に、酸素2 容量%含有窒素
ガスを流量39 Nl /時の流量で流通させながら300 ℃ま
で昇温してこの温度に4 時間保持した後、窒素気流中で
室温まで冷却した。
Next, a nitrogen gas containing 2% by volume of oxygen is supplied at a flow rate of 39.
The temperature was raised to 300 ° C. and kept at this temperature for 10 hours while flowing at a flow rate of Nl / hour, and then cooled to room temperature in a nitrogen stream. Then, nitrogen gas containing 8% by volume of methanol was added to 39%.
Flowing at a flow rate of Nl / hour, the flow rate of
The temperature was raised to 0 ° C., the temperature was maintained for 15 hours, and then the mixture was allowed to cool to room temperature in a nitrogen stream. Next, nitrogen gas containing 2% by volume of oxygen was flown at a flow rate of 39 Nl / hour, the temperature was raised to 300 ° C. and maintained at this temperature for 4 hours, and then cooled to room temperature in a nitrogen stream.

【0031】次に、水素ガスを39 Nl /時の流量で流通
させながら、毎時50℃の割合で350℃まで昇温し、この
温度にて4 時間保持した後、窒素気流中で室温まで放冷
した。次に、酸素2 容量%を含有する窒素を流量39 Nl
/時の流量で流通させながら、300 ℃まで昇温し、この
温度にて15時間保持した後、窒素気流中で室温まで冷却
した。次に、水素ガスを39 Nl /時の流量で流通させな
がら、毎時50℃の割合で350℃まで昇温し、この温度に4
時間保持した後、窒素気流中で室温まで冷却した。以
上のような酸化及び還元を繰り返す活性化処理を行なっ
て調製した担持触媒は、パラジウム4.7 重量%及びテル
ル0.87重量%を含有していた。
Next, while flowing hydrogen gas at a flow rate of 39 Nl / hour, the temperature was raised to 350 ° C. at a rate of 50 ° C./hour, held at this temperature for 4 hours, and then released to room temperature in a nitrogen stream. Chilled Then, nitrogen containing 2% by volume of oxygen is added to the flow rate of 39 Nl.
While circulating at a flow rate of / hour, the temperature was raised to 300 ° C., the temperature was maintained for 15 hours, and then the temperature was cooled to room temperature in a nitrogen stream. Next, while flowing hydrogen gas at a flow rate of 39 Nl / hour, the temperature was raised to 350 ° C at a rate of 50 ° C / hour, and the temperature was raised to 4 ° C.
After holding for a period of time, it was cooled to room temperature in a nitrogen stream. The supported catalyst prepared by carrying out the activation treatment in which the above oxidation and reduction were repeated contained 4.7% by weight of palladium and 0.87% by weight of tellurium.

【0032】次に、この触媒4 g を内径12 mm(有効断面
積0.848 cm2)のステンレス製反応管に充填し、1,3-ブタ
ジエン0.122 モル/時及び酢酸2.5 モル/時を液相で、
並びに酸素6容量%を含有する窒素96.4 Nl /時をガス
相で供給して、反応圧力60 kg/cm2 、反応温度80℃で
連続的に3800時間反応を行なった。反応開始後、所定時
間経過時の生成液を分析し、触媒1 g について1 時間当
りのジアセトキシブテンの生成量を求め、反応速度定数
(k)を計算し、触媒活性の失活率を求めた。その結果
を表1に示す。
Next, 4 g of this catalyst was filled in a stainless reaction tube having an inner diameter of 12 mm (effective area 0.848 cm 2 ) and 0.12-mol / hr of 1,3-butadiene and 2.5 mol / hr of acetic acid in a liquid phase. ,
Further, 96.4 Nl / hour of nitrogen containing 6% by volume of oxygen was supplied in a gas phase, and the reaction was continuously performed at a reaction pressure of 60 kg / cm 2 and a reaction temperature of 80 ° C. for 3800 hours. After the start of the reaction, analyze the product solution after a lapse of a predetermined time, determine the amount of diacetoxybutene produced per hour for 1 g of catalyst, calculate the reaction rate constant (k), and determine the deactivation rate of the catalyst activity. It was Table 1 shows the results.

【0033】比較例3 触媒担体としてA比率が24%であるヤシガラ破砕炭(大
きさ4 〜6 メッシュ,細孔容積0.35 cc /g,平均細孔半
径180 nm, 担体比表面積1020 m2 /g)を用いた以外は比
較例2と同様にしてジアセトキシブテンを製造した。結
果を表1に示す。
Comparative Example 3 As a catalyst carrier, crushed coconut husk charcoal having an A ratio of 24% (size 4 to 6 mesh, pore volume 0.35 cc / g, average pore radius 180 nm, carrier specific surface area 1020 m 2 / g) Diacetoxybutene was produced in the same manner as in Comparative Example 2 except that The results are shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】表1における表示は次による。反応時間
(t) は反応開始後の時間を示し、このときの反応速度定
数をkとする。初期活性は、反応開始から10時間後での
測定による反応速度定数を示し、これをk0 とする。失
活率(%)は、式[(k0 −k) /k0]×100 によって計
算した値である。失活速度は、式[1−(k/k0)] /lo
g(t/10) による値である。担体比表面積(m2 /g)は、
BET 法により液体窒素温度における窒素の吸着量から求
めた。担体細孔容積(cc/g)は、水銀ポロシメ−タを用
いて測定した細孔半径が1.8nmから10,000 nm の範囲の
全細孔容積である。担体平均細孔半径(nm)は、細孔半径
が1.8 nmから10,000 nm の範囲において、各細孔半径で
の細孔容積を積算した値が全細孔容積の 1/2 になる点
での細孔半径である。
The indications in Table 1 are as follows. Reaction time
(t) indicates the time after the start of the reaction, and the reaction rate constant at this time is k. The initial activity represents a reaction rate constant measured 10 hours after the start of the reaction, and is defined as k 0 . The deactivation rate (%) is a value calculated by the formula [(k 0 −k) / k 0 ] × 100. The deactivation rate is calculated by the formula [1- (k / k 0 )] / lo
It is a value based on g (t / 10). The specific surface area of the carrier (m 2 / g) is
It was calculated from the amount of nitrogen adsorbed at the liquid nitrogen temperature by the BET method. The carrier pore volume (cc / g) is the total pore volume in which the pore radius measured using a mercury porosimeter is in the range of 1.8 nm to 10,000 nm. The carrier average pore radius (nm) is the value at which the value obtained by integrating the pore volumes at each pore radius is 1/2 of the total pore volume in the pore radius range of 1.8 nm to 10,000 nm. Pore radius.

【0036】実施例3 実施例2で8600時間反応させた後の触媒を反応器より取
り出し、ソックスレ−抽出器を用いてトルエンで8 時間
洗浄し、更に真空乾燥器で150 ℃、6 時間減圧乾燥し
た。この触媒の重量(w)を測定し、次式より高沸付着
率(重量%)を求めた。 高沸付着率(重量%)=[(w/w0)−1]×100 (上式中、w0 は反応前の触媒重量を示す) 次にBET 法により液体窒素温度における窒素の吸着量か
ら担体比表面積(m2/g)を求めた。更に水銀ポロシメ−
タを用いて担体細孔容積(cc/g)を求めた。以上の結果
を表2に示す。
Example 3 The catalyst after reacting for 8600 hours in Example 2 was taken out of the reactor, washed with toluene using a Soxhlet extractor for 8 hours, and dried under reduced pressure in a vacuum dryer at 150 ° C. for 6 hours. did. The weight (w) of this catalyst was measured, and the high boiling point adhesion rate (% by weight) was determined from the following equation. High boiling rate (wt%) = [(w / w 0 ) −1] × 100 (W 0 in the above formula represents the catalyst weight before the reaction.) Next, the amount of nitrogen adsorbed at the liquid nitrogen temperature by the BET method. The carrier specific surface area (m 2 / g) was determined from the above. Further mercury porosimetry
The carrier pore volume (cc / g) was determined by using a tester. Table 2 shows the above results.

【0037】比較例4 比較例2で3800時間反応させた後の触媒を反応器より取
り出し、この触媒を実施例3と同様の方法により、高沸
付着率、担体比表面積及び担体細孔容積を求めた。結果
を表2に示す。
Comparative Example 4 The catalyst after the reaction for 3800 hours in Comparative Example 2 was taken out of the reactor, and the high boiling adhesion rate, the specific surface area of the carrier and the pore volume of the carrier were measured by the same method as in Example 3. I asked. Table 2 shows the results.

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【発明の効果】パラジウム及びテルルを有効成分とする
触媒の担体として、特殊構造の固体担体を用いることに
より、高活性で、かつ経時的な活性低下の極めて小さい
アシロキシ化用触媒を得ることができ、更にその触媒を
用いることにより共役ジエン化合物のアシロキシ化を工
業的有利に遂行する方法を確立した。
EFFECTS OF THE INVENTION By using a solid carrier having a special structure as a carrier for a catalyst containing palladium and tellurium as active ingredients, it is possible to obtain an acyloxylation catalyst having a high activity and a very small decrease in activity over time. Furthermore, a method for industrially advantageous acyloxylation of a conjugated diene compound was established by using the catalyst.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 67/05 9546−4H // C07B 61/00 300 (72)発明者 岩阪 洋司 三重県四日市市東邦町1番地 三菱化成株 式会社四日市工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication C07C 67/05 9546-4H // C07B 61/00 300 (72) Inventor Youji Iwasaka Yokkaichi, Mie Prefecture Tohomachi No. 1 Mitsubishi Chemical Co., Ltd. Yokkaichi Plant

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 パラジウム及びテルルを活性成分として
担持する固体触媒の存在下、共役ジエンとカルボン酸及
び分子状酸素とを反応させて不飽和グリコ−ルジエステ
ルを製造する方法において、上記固体触媒の担体として
細孔半径5〜50nmの範囲の細孔の占める容積が細孔
半径1.8〜10,000nmの範囲の全細孔容積に対
して80%以上である固体担体を使用することを特徴と
する不飽和グリコ−ルジエステルの製造法。
1. A method for producing an unsaturated glycol diester by reacting a conjugated diene with a carboxylic acid and molecular oxygen in the presence of a solid catalyst supporting palladium and tellurium as active ingredients, wherein the carrier for the solid catalyst is a carrier. As a solid carrier, the volume occupied by pores having a pore radius of 5 to 50 nm is 80% or more of the total pore volume having a pore radius of 1.8 to 10,000 nm. A method for producing an unsaturated glycol diester.
【請求項2】 固体触媒におけるテルルの担持量が、パ
ラジウム1グラム原子に対して0.15〜0.5グラム
原子であることを特徴とする請求項1に記載の製造法。
2. The method according to claim 1, wherein the amount of tellurium supported on the solid catalyst is 0.15 to 0.5 gram atom per 1 gram atom of palladium.
【請求項3】 共役ジエンがブタジエン、イソプレン、
アルキル置換ブタジエンから選ばれることを特徴とする
請求項1又は2に記載の製造法。
3. The conjugated diene is butadiene, isoprene,
3. The method according to claim 1 or 2, wherein the method is selected from alkyl-substituted butadiene.
【請求項4】 固体触媒の担体が、細孔半径5〜50n
mの範囲の細孔の占める容積が細孔半径1.8〜10,
000nmの範囲の全細孔容積に対して90%以上であ
ることを特徴とする請求項1乃至3のいずれかに記載の
製造法。
4. The solid catalyst carrier has a pore radius of 5 to 50 n.
The volume occupied by pores in the range of m is 1.8 to 10,
The production method according to any one of claims 1 to 3, which is 90% or more of the total pore volume in the range of 000 nm.
【請求項5】 カルボン酸が酢酸、プロピオン酸又は酪
酸であることを特徴とする請求項1乃至4のいずれかに
記載の製造法。
5. The method according to claim 1, wherein the carboxylic acid is acetic acid, propionic acid or butyric acid.
【請求項6】 反応温度20〜150℃の条件で反応を
行なうことを特徴とする請求項1乃至5のいずれかに記
載の製造法。
6. The method according to claim 1, wherein the reaction is carried out at a reaction temperature of 20 to 150 ° C.
【請求項7】 反応圧力5〜100kg/cm2 の条件
で反応を行なうことを特徴とする請求項1乃至6のいず
れかに記載の製造法。
7. The production method according to claim 1, wherein the reaction is performed under a reaction pressure of 5 to 100 kg / cm 2 .
【請求項8】 固体担体がシリカ、アルミナ、チタニ
ア、ゼオライト、シリカ−アルミナから選ばれるもので
あることを特徴とする請求項1乃至7のいずれかに記載
の製造法。
8. The production method according to claim 1, wherein the solid support is selected from silica, alumina, titania, zeolite, and silica-alumina.
【請求項9】 固体担体の比表面積が200m2 /g未
満であることを特徴とする請求項1乃至8のいずれかに
記載の製造法。
9. The method according to claim 1, wherein the solid support has a specific surface area of less than 200 m 2 / g.
【請求項10】 細孔半径5〜50nmの範囲の細孔の
占める容積が細孔半径1.8〜10,000nmの範囲
の全細孔容積に対して80%以上である固体担体にパラ
ジウム及びテルルを活性成分として担持させてなる共役
ジエンのアシロキシ化触媒。
10. A solid support in which palladium having a volume of pores having a radius of 5 to 50 nm occupies 80% or more of the total volume of pores having a radius of 1.8 to 10,000 nm. A catalyst for acylation of a conjugated diene, which comprises tellurium as an active ingredient.
JP25899894A 1993-10-06 1994-09-29 Process for producing unsaturated glycol diester and catalyst used in this process Expired - Fee Related JP3540392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25899894A JP3540392B2 (en) 1993-10-06 1994-09-29 Process for producing unsaturated glycol diester and catalyst used in this process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5272961A JPH07100383A (en) 1993-10-06 1993-10-06 Catalyst for acyloxy modification of conjugated diene and production of unsaturated glycol diester using the same
JP5-272961 1993-10-06
JP25899894A JP3540392B2 (en) 1993-10-06 1994-09-29 Process for producing unsaturated glycol diester and catalyst used in this process

Publications (2)

Publication Number Publication Date
JPH083110A true JPH083110A (en) 1996-01-09
JP3540392B2 JP3540392B2 (en) 2004-07-07

Family

ID=26543917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25899894A Expired - Fee Related JP3540392B2 (en) 1993-10-06 1994-09-29 Process for producing unsaturated glycol diester and catalyst used in this process

Country Status (1)

Country Link
JP (1) JP3540392B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022364A1 (en) * 2018-07-27 2020-01-30 株式会社クラレ Method for producing 1,3-bisacyloxy-2-methylene propane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022364A1 (en) * 2018-07-27 2020-01-30 株式会社クラレ Method for producing 1,3-bisacyloxy-2-methylene propane
JPWO2020022364A1 (en) * 2018-07-27 2021-08-02 株式会社クラレ Method for producing 1,3-bisacyloxy-2-methylenepropane
US11384045B2 (en) 2018-07-27 2022-07-12 Kuraray Co., Ltd. Method for producing 1,3-bisacyloxy-2-methylene propane

Also Published As

Publication number Publication date
JP3540392B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
JPH0789896A (en) Production of acetic acid
EP0647611B1 (en) Process for producing unsaturated glycol diester
JPS62121647A (en) Rhodium/carbon catalyst and its production
CA2256182A1 (en) Silver catalyst for production of ethylene oxide, method for production thereof, and method for production of ethylene oxide
JP2530333B2 (en) Method for producing unsaturated glycol diester
JPH083110A (en) Production of unsaturated glycol diester and catalyst to be used therefor
JP3672367B2 (en) Ammonia synthesis catalyst and production method thereof
JP3422062B2 (en) Method for producing diacetoxybutene
JP2868968B2 (en) Method for producing chloroform
JP3979127B2 (en) Method for producing phenyl ester
JP4273784B2 (en) Method for producing phenyl ester
JPH03279349A (en) Production of unsaturated diester
JPH0881413A (en) Production of unsaturated glycol diester
JPS5951850B2 (en) Catalyst for diacyloxylation of conjugated dienes
JPS6259229A (en) Production of ethanol
JPH1036314A (en) Production of unsaturated glycol diester
JPH10298138A (en) Production of unsaturated glycol diester
JPS63162638A (en) Production of ethanol
JPS6218530B2 (en)
JPS6049615B2 (en) Method for producing oxygen-containing compounds containing ethanol as the main component
JPS6238336B2 (en)
JPS6032728A (en) Production of 1[4c alcohol
JPS6119611B2 (en)
JPH0569815B2 (en)
JPH10291960A (en) Production of unsaturated glycol diester and production of catalyst for producing unsaturated glycol diester

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees