JPH0830049B2 - 4―アミノ―3―ヒドロキシペンタン酸誘導体の製造法 - Google Patents

4―アミノ―3―ヒドロキシペンタン酸誘導体の製造法

Info

Publication number
JPH0830049B2
JPH0830049B2 JP1259992A JP25999289A JPH0830049B2 JP H0830049 B2 JPH0830049 B2 JP H0830049B2 JP 1259992 A JP1259992 A JP 1259992A JP 25999289 A JP25999289 A JP 25999289A JP H0830049 B2 JPH0830049 B2 JP H0830049B2
Authority
JP
Japan
Prior art keywords
group
amino
derivative
general formula
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1259992A
Other languages
English (en)
Other versions
JPH03123765A (ja
Inventor
孜郎 寺島
佳司 竹本
芳雄 伊藤
光代 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Original Assignee
Sagami Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute filed Critical Sagami Chemical Research Institute
Priority to JP1259992A priority Critical patent/JPH0830049B2/ja
Publication of JPH03123765A publication Critical patent/JPH03123765A/ja
Publication of JPH0830049B2 publication Critical patent/JPH0830049B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一般式 (式中、R1は炭素数1〜4の直鎖もしくは分枝アルキル
基、炭素数5〜8の置換もしくは無置換のシクロアルキ
ル基を表し、また、R2はアミノ基の保護基を表す)で表
される2−アミノプロパナール誘導体を、一般式 (式中、R3、R4、R5、R6は各々独立に、炭素数1〜4の
直鎖もしくは分枝アルキル基または置換もしくは無置換
アリール基を表す)で表されるケテンシリルアセタール
とルイス酸存在下反応させることを特徴とする、一般式 (式中、R1、R2およびR3は前記と同じ意味を表す)で表
される4−アミノ−3−ヒドロキシペンタン酸誘導体の
製造法に関する。本発明によれば、(S)−配置を有す
る一般式(I)で表される2−アミノプロパナール誘導
体から、(3S,4S)−配置を有する一般式(III)で表さ
れる4−アミノ−3−ヒドロキシペンタン酸誘導体を高
立体選択的に製造することができ、例えば、R1としてイ
ソプロピル基またはシクロヘキシル基を有する一般式
(I)で表される(S)−2−アミノプロパナール誘導
体から、R1としてイソプロピル基またはシクロヘキシル
基を有する一般式(III)で表される(3S,4S)−4−ア
ミノ−3−ヒドロキシペンタン酸誘導体を高立体選択的
に製造することができる。
本発明によって製造される一般式(III)で表される
4−アミノ−3−ヒドロキシペンタン酸誘導体は、医薬
品の合成原料としての用途を有する。例えば、一般式
(III)において、R1がイソプロピル基、3位不斉炭素
が(S)−配置および4位不斉炭素が(S)−配置であ
る化合物は、ヒトレニン阻害作用により高血圧症治療剤
として有用なペプチド様化合物の製造中間体(J.Boger,
et al.,Ann.Rep.in Med.Chem.,Academic Press,1985,Vo
l.20,pp257-226.J.Boger,et al.,J.Med.Chem.,28,1779
(1985).R.Matsueda,et al.,Chem.Lett.,1985,1041.M.
G.Bock,et al.,J.Med.Chem.,31,1918(1988).K.Iizuk
a,et al.,Chem.Pharm.Bull.,36,2278(1988).特開昭6
1-236770号.特開昭64-26596.特開平1-143898.特開平1-
143899)として用いられる。また、一般式(I)におい
て、R1がシクロヘキシル基、3位不斉炭素が(S)−配
置および4位不斉炭素が(S)−配置である化合物は、
より強力なヒトレニン阻害作用により高血圧症治療剤と
して有用なペプチド様化合物の製造中間体(J.Boger,et
al.,J.Med.Chem.,28,1779(1985).森沢ら、日本薬学
会第109年会、名古屋、1989年、講演要旨集IV,p6.K.Kiw
ada,et al.,Hypertension,11,708(1988).特開昭62-3
3141.特開昭64-26596)として使用できる。
〔従来の技術〕 有用な医薬品の製造中間体である4−アミノ−3−ヒ
ドロキシペンタン酸誘導体は、従来 (1)(S)−α−アミノ酸から合成した(S)−α−
アミノプロパナール誘導体へ酢酸エチルから調製した金
属エノラートを反応させる方法(J.Boger,et al.,J.Me
d.Chem.,28,1779(1985).D.H.Rich,et al.,J.Org.Che
m.,43,3624(1978).W.Liu et al.,J.Org.Chem.,43,754
(1978).M.T.Reetz,et al.,Angew.Chem.Int.Ed.Engl.,
25,1141(1987).),(2)(S)−α−アミノ酸か
ら合成した(S)−α−アミノプロパナール誘導体に酢
酸と光学活性アルコールのエステルから調製したリチウ
ムエノラートを反応させる方法(R.M.Devant,et al.,Te
trahedron Lett.,29,2307(1988).)(3)(S)−
α−アミノ酸から合成した(S)−α−アミノプロパナ
ール誘導体に光学活性3−(メチルチオアセチル)−2
−オキサゾリドン誘導体を反応し、さらに脱硫反応を行
う方法(J.Savrda,Synth.Commun.,17,1901(198
7).),(4)(S)−α−アミノ酸から合成した
(S)−α−アミノプロパナール誘導体を光学活性ジオ
ールと反応して光学活性アセタール誘導体とし、このも
のをアリルシランで開環する方法(W.S.Johnson,et a
l.,Tetrahedron Lett.,28,6535(1987).),(5)
(S)−α−アミノ酸から合成した(S)−α−アミノ
プロパナール誘導体と1,3−ジメトキシ−1−トリメチ
ルシリル−1,3−ブタジエンとのDiels-Alder反応による
方法(M.M.Midland,et al.,J.Am.Chem.Soc.,111,4368
(1989).), (6)(S)−α−アミノ酸から合成した(S)−4−
アミノ−3−オキソペンタン酸誘導体の3位カルボニル
基を還元する方法(R.Noyori,Tetrahedron Lett.,29,63
27(1988).J.Jouin,et al.,J.Org.Chem.,54,617(198
9).D.H.Rich.et al.,J.Org.Chem.,53,869(1988).M.
M.Schmidt,et al.,Tetrahedron,44,3489(1988).P.F.S
chuda,et al.,Eur.Pat.Appl.,0306143 A1.),(7)
(S)−α−アミノ酸から合成した(S)−4−アミノ
−2(Z)−ペンテン−1−オール誘導体のエポキシ化
による方法(H.Kogen.et al.,J.Chem.Soc.Chem.Commu
n.,1987,311.),(8)(S)−α−アミノ酸から合成
した光学活性2−アミドアルコール誘導体の2−オキサ
ゾリドン誘導体への閉環反応による方法(S.Kano,et a
l.,Tetrahedron Lett.,28,6331(1987).),(9)
(S)−α−アミノ酸から合成した光学活性ピロール−
2(5H)−オン誘導体の還元による方法(P.Jouin,et a
l.,J.Chem.Soc.Perkin I,1987,1177.), (10)光学活性2−オキソ−3−オキサゾリン誘導体か
ら製造する方法(T.Kumeda,et al.,J.Org.Chem.,53,338
1(1988).),(11)(R)−2,3−イソプロピリデン
グリセルアルデヒド、1,2,5,6−ジ−O−イソプロピリ
デン−D−グルコースなどの糖誘導体から製造する方法
(M.Kinoshita et al.,Bull.Chem.Soc.Jpn.,48,570(19
75).J.Mulzer,et al.,Liebigs Ann.Chem.,1988,445.お
よびH.Yanagisawa,et al.,Chem.Lett.,1989,687.)など
によって合成されていた。しかしながら、これらの製造
法のうち(1)の方法では3位水酸基の生成における立
体選択性あるいは反応の収率が低く、反応成績体の分離
精製が大きな障害であり、(2)、(3)、(4)の方
法は(S)−α−アミノ酸由来の不斉中心に加えて、い
ま一つの不斉源を用いるので、経済性および不斉源の除
去や回収の点で工業的に実施するのは困難である。
(5)−(11)の方法は、3位水酸基の生成における立
体選択性は高いものの多段階を必要とする製造法であ
り、工業的に実施するのは多大な困難が伴うものであ
る。
〔発明が解決しようとする課題〕
本発明者らは、医薬品製造中間体である前記一般式
(III)で表される4−アミノ−3−ヒドロキシペンタ
ン酸誘導体を前記一般式(I)で表される2−アミノプ
ロパナール誘導体から、(I)が有する唯一の不斉源を
利用して高立体選択的に効率良く製造する方法、すなわ
ち、(S)−配置を有する一般式(I)で表される2−
アミノプロパナール誘導体から(3S,4S)−4−アミノ
−3−ヒドロキシペンタン酸誘導体を高立体選択的に効
率良く製造する方法を探索した結果、本発明の製造法を
見出し、本発明を完成した。
〔課題を解決するための手段〕
本発明に用いられる前記一般式(I)で表される2−
アミノプロパナール誘導体は下記の反応式に従い容易に
製造できる。
(式中、R1およびR2は前記と同じ意味を表し、R7は炭素
数1〜4の直鎖または分枝低級アルキル基を表す。) 〔第1工程〕 本工程は、一般式(IV)で表される2−アミノプロピ
オン酸エステル誘導体にアミノ基の保護基を導入後エス
テル基を還元し、さらに必要に応じて3位フェニル基な
どの還元を行い、一般式(V)で表される2−アミノ−
プロパノール誘導体を製造するものである(参考例参
照)。
2−アミノプロピオン酸エステル誘導体としては、2
−アミノプロピオン酸メチル誘導体、2−アミノプロピ
オン酸エチル誘導体、2−アミノプロピオン酸イソプロ
ピル誘導体などが例示でき、これらのものは公知の方法
によって製造できる(H.Seki et al.,Chem.Pharm.Bul
l.,13,995(1965).,およびS.R.Sandler and W.Karo,
“Functional Group Preparations",Academic Press,Ne
w York,1968,pp245〜265.参照)。
2−アミノプロピオン酸エステル誘導体に導入される
アミノ基の保護基としては、酸性条件下、加水分解する
ことによって除去できるものならばいかなるものも使用
できるが、好適にはホルミル基、アセチル基、プロピオ
ニル酸、ブチリル基、イソブチリル基などの炭素数1〜
4の直鎖あるいは分枝アルカノイル基、ベンゾイル基、
p−クロロベンゾイル基、p−メトキシベンゾイル基な
どの無置換あるいは置換アロイル基、メトキシカルボニ
ル基、エトキシカルボニル基、イソプロポキシカルボニ
ル基、t−ブチルオキシカルボニル基などの炭素数1〜
5の直鎖あるいは分枝アルコキシカルボニル基、ベンジ
ルオキシカルボニル基、p−クロロベンジルオキシカル
ボニル基、p−メトキシベンジルオキシカルボニル基な
どの無置換あるいは置換アラルコキシカルボニル基が用
いられる。これらの保護基は公知の方法によって導入で
きる(T.W.Greene,“Protective Groups in Organic Sy
nthesis",John-Wiley & Sons,New York,1980,pp218-28
7参照)。
アミノ基が保護された2−アミノプロピオン酸エステ
ル誘導体のエステル基の還元は、適当な還元剤、例えば
塩化リチウムまたは臭化リチウム存在下、水素化ホウ素
ナトリウムを用いて行われる(参考例参照)。
なお、一般式(V)で表される2−アミノプロパノー
ル誘導体の3位にシクロヘキシル基が存在する化合物
は、対応する2−アミノ−3−フェニルプロパノール誘
導体の3位フェニル基を適当な触媒、例えば、5%ロジ
ウム−アルミナの存在下に水添することにより得ること
もできる。
本工程において、(S)−配置を有する一般式(IV)
で表される2−アミノプロピオン酸エステル誘導体を用
いた場合には、(S)−配置を有する一般式(V)で表
される2−アミノプロパノール誘導体をラセミ化するこ
となく得ることができる。
本工程において、一般式(IV)で表される2−アミノ
プロピオン酸エステル誘導体として(S)−ロイシンメ
チルエステルおよび(S)−フェニルアラニンメチルエ
ステルを用いた場合には、一般式(V)で表さる(S)
−ロイシノール誘導体および(S)−シクロヘキシルア
ラニノール誘導体をラセミ化することなく得ることがで
きる(参考例参照)。
〔第2工程〕 本工程は、一般式(V)で表される2−アミノプロパ
ノール誘導体を酸化し、一般式(I)で表される2−ア
ミノプロパナール誘導体を製造するものである。好適な
酸化方法としては、ジメチルスルホキシド中三酸化イオ
ウ−ピリジン錯体−トリエチルアミンを用いる方法が例
示できる (参考例参照)。
本工程において、(S)−配置を有する一般式(V)
で表される2−アミノプロパノール誘導体を用いた場合
には、(S)−配置を有する一般式(I)で表される2
−アミノプロパナール誘導体をラセミ化することなく得
ることができる。
本工程において、一般式(V)で表される2−アミノ
プロパノール誘導体として(S)−ロイシノール誘導体
および(S)−シクロヘキシルアラニノール誘導体を用
いた場合には、一般式(I)で表される(S)−ロイシ
ナール誘導体および(S)−シクロヘキシルアラニナー
ル誘導体をラセミ化することなく得ることができる(参
考例参照)。
上記の合成工程によって製造される一般式(I)で表
される2−アミノプロパナール誘導体から本発明の下記
の製造法により、一般式(III)で表される4−アミノ
−3−ヒドロキシペンタン酸誘導体を高立体選択的に効
率よく製造することができる。
(式中、R1、R2、R3、R4、R5およびR6は前記と同じ意味
を表す)。
〔第3工程〕 一般式(II)で表されるケテンアセタールとしては、
O−メチル−O−トリメチルシリルケテンアセタール、
O−エチル−O−トリメチルシリルケテンアセタール、
O−メチル−O−t−ブチルジメチルシリルケテンアセ
タール、O−エチル−O−t−ブチルジメチルシリルケ
テンアセタール、O−メチル−O−t−ブチルジフェニ
ルシリルケテンアセタール、O−t−ブチル−O−t−
ブチルジメチルシリルケテンアセタール、O−フェニル
−O−トリメチルシリルケテンアセタールなどが例示で
きるが、好適には、O−メチル−O−トリメチルシリル
ケテンアセタールが用いられる。用いられるシリルケテ
ンアセタールは酢酸メチルから常法に従い合成し、精製
することなくそのまま反応に用いることができ、当量は
2〜3当量用いて行う〔H.W.Rathke et al.,Synth.Comm
un.,3,67(1973).〕。本反応にはルイス酸の存在が必
要であり、用いられるルイス酸としては、四塩化チタ
ン、三フッ化ホウ素・エーテル錯体、四塩化スズ、塩化
亜鉛、ヨウ化亜鉛、臭化マグネシウム、トリス〔2,2−
ビス(トリ重水素メチル)−1,1,1−トリ重水素−6,6,
7,7,8,8,8−ヘプタフルオロオクタジオネイト−(3,
5)〕−ユーロピウム(III) 〔Eu(fod)3〕などが例示される。ルイス酸は2−アミノ
プロパナール誘導体に対して0.005〜2.0当量用いられる
が、好適には0.05〜1.5当量用いられる。
本反応は溶媒中で行われ、用いられる溶媒としては、
ジクロロメタン、クロロホルム、四塩化炭素、1,2−ジ
クロロエタンなどのハロゲン化炭化水素系溶媒、トルエ
ン、キシレンなどの炭化水素系溶媒、エーテル、テトラ
ヒドロフラン、ジオキサンなどのエーテル系溶媒、アセ
トニトリル、ジメチルホルムアミドなどが例示できる
が、好適には、ジクロロメタンが用いられる。
本反応は、−100℃〜50℃で行われるが、四塩化チタ
ンなどの弱いルイス酸では−100℃〜−40℃が好適であ
り、またヨウ化亜鉛などの弱いルイス酸では0℃〜50℃
が最も好ましい結果を与える。
本反応において(S)−配置を有する2−アミノプロ
パナール誘導体を用いた場合、(3S,4S)−配置を有す
る4−アミノ−3−ヒドロキシペンタン酸誘導体が、
(3R,4R)−配置を有する誘導体に対して高立体選択的
に生成する。
本反応において、(S)−ロイシナール誘導体および
(S)−シクロヘキシルアラニナール誘導体を一般式
(I)で表される2−アミノプロパナール誘導体として
用いた場合には、(3S,4S)−4−アミノ−3−ヒドロ
キシ−6−メチルヘプタン酸誘導体および(3S,4S)−
4−アミノ−5−シクロヘキシル−3−ヒドロキシペン
タン酸誘導体が(3R,4S)−配置を有する誘導体に対し
てそれぞれ高立体選択的(最大94:6および95:5)に生成
する。
上記の合成工程によって得られた一般式(I)で表さ
れる4−アミノ−3−ヒドロキシペンタン酸誘導体を、
酸性条件下、加水分解反応に付することにより4位アミ
ノ基と1位カルボン酸基の脱保護を同時に行い、一般式 (式中、R1は前記と同じ意味を表す)で表される医薬品
合成中間体として有用な4−アミノ−3−ヒドロキシペ
ンタン酸が得られた。本加水分解反応を(3S,4S)−4
−アミノ−3−ヒドロキシ−6−メチルヘプタン酸誘導
体および(3S,4S)−4−アミノ−5−シクロヘキシル
−3−ヒドロキシペンタン酸誘導体に対して行った場合
には、ヒトレニン阻害作用により高血圧症の治療剤とし
て有用なアミノ酸誘導体の製造中間体として用いられる
光学活性(3S,4S)−4−アミノ−3−ヒドロキシ−6
−メチルヘプタン酸〔(3S,4S)−スタチン〕および(3
S,4S)−4−アミノ−5−シクロヘキシル−3−ヒドロ
キシペンタン酸〔(3S,4S)−シクロヘキシルスタチ
ン〕がそれぞれ得られる。
以下、本発明の内容を実施例、参考例を用いて詳細に
説明するが、本発明はこれらによって何ら限定されるも
のではない。
参考例1 (S)−ロイシンメチルエステル239mg(1.65mmol)
を無水塩化メチレン5mlに溶解し、氷冷下炭酸カリウム2
28mg(1.65mmol)を添加後、クロロ炭酸イソプロピル0.
23ml(1.98mmol)をゆっくりと滴下した。氷冷下、1時
間攪拌後、飽和重曹水を加えエーテル抽出した。抽出液
は無水硫酸ナトリウムで乾燥後、減圧下濃縮し、残渣を
シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸
エチル=4:1)により精製し、N−(イソプロポキシカ
ルボニル)−(S)−ロイシンメチルエステルを無色オ
イル状化合物として333mg(87%)得た。
〔▲α〕20 D▼‐4.90°(C 1.53,CHCl31 H‐NMR(CDCl3) δ:4.90(2H,m and sept,J=6.2H
z),4.40(1H,m),3.73(3H,s),1.3〜1.8(3H,m),1.2
3(6H,d,J=6.1Hz),0.95(6H,m). IR(CHCl3):3460,2970,1730,1710,1510,1110cm-1. MS(m/z):231(M+),172,86,43. 参考例2 N−(イソプロポキシカルボニル)−(S)−ロイシ
ンメチルエステル333mg(0.144mmol)を無水テトラヒド
ロフラン4mlに溶解し、塩化リチウム183mg(4.32mmo
l)、水素化ホウ素ナトリウム163mg(4.32mmol)無水エ
タノール6mlを順次加え、室温下5時間攪拌した。反応
液を減圧下濃縮後、1M塩酸を加え(pH2〜3)酢酸エチ
ルで抽出した。抽出液は硫酸ナトリウムで乾燥後、溶媒
を減圧留去した。得られた粗成績体は、シリカゲルカラ
ムクロマトグラフィーにより精製して(ヘキサン:酢酸
エチル=2:1)、N−(イソプロポキシカルボニル)−
(S)−ロイシノール292mg(定量的収率)を得た。
〔▲α〕20 D▼‐30.9°(C 1.05,CHCl31 H‐NMR(CDCl3) δ:4.90(1H,sept,J=6.2Hz),4.70
(1H,m),3.65(3H,m),2.45(1H,brs),1.3〜2.0(3H,
m),1.23(6H,d,J=6.2Hz),0.93(6H,d,J=6.4Hz). IR(CHCl3):3460,2970,1700,1510,1110cm-1. MS(m/z):204(M++1),172,130,86,43. 参考例3 N−(イソプロポキシカルボニル)−(S)−ロイシ
ノール281mg(1.38mmol)、トルエン1ml、ジメチルスル
ホキシド1.8ml(25.4mmol)およびトリエチルアミン1.1
6ml(8.30mmol)の混合溶液に三酸化イオウ−ピリジン
錯塩1.32g(8.30mmol)を加え、室温で30分間攪拌し
た。反応液に氷水を加え、酢酸エチルで抽出し、抽出液
を乾燥後、溶媒を減圧留去した。この粗成績体は、シリ
カゲルカラムクロマトグラフィー(ヘキサン:酢酸エチ
ル=8:1)により精製し、N−(イソプロポキシカルボ
ニル)−(S)−ロイシナール219mg(79%)を無色油
状物として得た。
〔▲α〕20 D▼+34.4°(C 0.964,CHCl31 H‐NMR(CDCl3) δ:9.59(1H,s),4.92(2H,m and s
ept,J=6.2Hz),4.25(1H,m),1.3〜1.9(3H,m),1.24
(6H,d,J=6.2Hz),0.97(6H,m). IR(CHCl3):3460,2980,2720,1720,1710,1500,1380,111
0cm-1. MS(m/z):172,130,86,43. 参考例4 (S)−フェニルアラニンメチルエステル塩酸塩3.90
g(18mmol)を無水テトラヒドロフラン20mlに懸濁し、
氷冷下トリエチルアミン5.5ml(39mmol)、クロロ炭酸
イソプロピル2.3ml(20mmol)を加えて同温度で1時間
攪拌した。反応液を減圧下濃縮し残渣に酢酸エチルを加
え、1M塩酸、飽和食塩水、飽和重曹水、および飽和食塩
水で順次洗浄した。無水硫酸マグネシウム上で乾燥後、
減圧下に濃縮し、残渣をカラムクロマトグラフィー(シ
リカゲル、ヘキサン−酢酸エチル10:1)で精製し、白色
固体のN−(イソプロポキシカルボニル)−(S)−フ
ェニルアラニンメチルエステル4.35g(91%)を得た。
mp 36〜37℃. 〔▲α〕20 D▼+55.4°(C=1.32,CHCl31 H‐NMR(CDCl3) δ:1.21(6H,d,J=6Hz,CHMe2),3.1
1(2H,d,J=6Hz,PhCH2),3.72(3H,s,OMe),4.50〜5.20
(2H,m,C2H and NH),4.92(1H,quintet,J=6Hz,CHM
e2),7.04〜7.48(5H,m,Ph). IR(KBr):1740,1685cm-1. MS(m/z):266(〔M++1〕+),206,162,131,120. 参考例5 N−(イソプロポキシカルボニル)−(S)−フェニ
ルアラニンメチルエステル2.52g(9.5mmol)を無水テト
ラヒドロフランに溶解し、塩化リチウム1.22g(29mmo
l)、水素化ホウ素ナトリウム1.09g(29mmol)、無水エ
タノール25mlを順次加え室温で16.5時間攪拌した。反応
液を減圧下濃縮し、残渣に1M塩酸を加えてpH2〜3に調
整した後、酢酸エチルで抽出した。抽出液を水、飽和食
塩水で順次洗浄し、無水硫酸ナトリウム上で乾燥後、減
圧下に濃縮した。残渣をカラムクロマトグラフィー(シ
リカゲル、ヘキサン−酢酸エチル5:1→3:1)で精製し、
白色固体9N−(イソプロポキシカルボニル)−(S)−
フェニルアラニノール2.21g(98%)を得た。
mp 78-81℃. 〔▲α〕20 D▼‐25.2°(C=1.03,CHCl3). NMR(CDCl3) δ:1.21(6H,d,J=6Hz,CHMe2),1.96〜
2.30(1H,m,OH),2.88(2H,d,J=7Hz,phCH2),3.44〜4.
16(3H,m,C2-H and CH2OH),4.65〜5.13(1H,m,NH),
4.92(1H,quintet J=6Hz,CHMe2),7.05〜7.47(5H,m,P
h). IR(KBr):1690cm-1. MS(m/z):237(M+),206,146,120. 元素分析値:C13H19NO3として 計算値:C 65.80%;H 8.07%;N 5.90%. 分析値:C 65.99%;H 8.03%;N 5.81%. 参考例6 N−(イソプロポキシカルボニル)−(S)−フェニ
ルアラニノール2.05g(8.6mmol)をメタノール6mlに溶
解し、ロジウム−アルミナ触媒403mg、酢酸0.6mlを加
え、水素雰囲気下(4気圧)、室温で5時間攪拌した。
触媒を除去した後、溶媒を減圧下濃縮し、残渣をカラム
クロマトグラフィー(シリカゲル、ヘキサン−酢酸エチ
ル5:1)で精製し、無色オイル状のN−(イソプロポキ
シカルボニル)−(S)−シクロヘキシルアラニノール
2.09g(100%)を得た。
〔▲α〕20 D▼‐26.4°(C=1.78,CHCl3). NMR(CDCl3) δ:1.23(6H,d,J=6Hz,CHMe2),0.71〜
2.13(13H,m,cyclohexyl),3.36〜4.02(3H,m,C2-H and
CH2OH),4.51〜5.15(1H,m,NH),4.93(1H,quintet J
=6Hz,CHMe2). IR(neat):1690cm-1. MS(m/z):244(〔M+1〕+212,170,126. 元素分析値:C13H25NO3・0.1H2Oとして 計算値:C 63.69%;H 10.36%;N 5.71%. 分析値:C 63.56%;H 10.39%;N 5.75%. 参考例7 N−(イソプロポキシカルボニル)−(S)−シクロ
ヘキシルアラニノール138mg(0.57mmol)、無水トルエ
ン0.33ml、無水ジメチルスルホキシド0.67ml(9.4mmo
l)、およびトリエチルアミン0.43ml(3.1mmol)の混合
物に三酸化イウオ−ピリジン錯塩491mg(3.1mmol)を加
え室温で20分間攪拌した。反応液に氷水を加え、酢酸エ
チルで抽出した。抽出液を水、飽和食塩水で順次洗浄
し、無水硫酸ナトリウムで乾燥後、減圧下に濃縮した。
残渣をカラムクロマトグラフィー(シリカゲル、ヘキサ
ン−酢酸エチル10:1→5:1)で精製し、無色オイル状の
N−(イソプロポキシカルボニル)−(S)−シクロヘ
キシルアラニナール107mg(78%)を得た。
〔▲α〕20 D▼+26.6°(C=0.939,CHCl3). NMR(CDCl3) δ:0.60〜2.06(13H,m,cyclohexyl),1.
23(6H,d,J=7Hz,CHMe2),4.03〜4.43(1H,m,C2-H),4.
93(1H,q,J=6Hz,CHMe2),5.20〜5.52(1H,m,NH),9.56
(1H,s,CHO). IR(neat):1730,1690cm-1. MS(m/z):242〔M+1〕+,212,170,126. 実施例1 N−(イソプロポキシカルボニル)−(S)−ロイシ
ナール28.9mg(0.144mmol)とモレキュラシーブ4A(5m
g)にアルゴン気流下、O−メチル−O−トリメチルシ
リルケテンアセタール63.0mg(0.431mmol)の塩化メチ
レン溶液2mlを加え、−78℃に冷却後、三フッ素化ホウ
素・エーテル錯体(1M塩化メチレン溶液)0.17mlをゆっ
くり滴下した。反応液を1時間攪拌した後、飽和重曹水
を加え酢酸エチルで抽出し、1M塩酸で洗浄、乾燥後、減
圧下溶媒を留去した。この粗成績体はシリカゲルカラム
クロマトグラフィー(ヘキサン:酢酸エチル=4:1)で
精製し、(3S,4S)−3−ヒドロキシ−6−メチル−4
−〔(N−イソプロポキシカルボニル)アミノ〕ヘプタ
ン酸メチル19.4mgとその(3R,4S)−体6.5mgおよび両者
の混合物2.6mg(全収率72%)を得た。(3S,4S)−体と
(3R,4S)−体との生成比は、ガスクロマトグラフィー
(5%Silar10C,190℃)から80:20と決定した。
(3S,4S)−体 〔▲α〕20 D▼‐43.2°(C 1.07,CHCl31 H‐NMR(CDCl3)δ:4.98(1H,sept,J=6.2Hz),4.82
(1H,brd,J=9.7Hz),4.03(1H,brs),3.72(3H,s),3.
67(1H,m),3.30(1H,brs),2.53(2H,m),1.66(1H,
m),1.54(1H,m),1.35(1H,m),1.23(6H,d,J=6.2H
z),0.93(6H,m). IR(CHCl3):3470,2980,1710,1505,1110cm-1. MS(m/z):276,216,172,130,86,43. (3R,4S)−体 〔▲α〕20 D▼‐29.8°(C 0.650,CHCl3) mp 63〜65℃(from Et2O‐hexane).1 H‐NMR(CDCl3)δ:4.89(1H,sept,J=6.1Hz),4.62
(1H,brd,J=7.8Hz),4.02(1H,brs),3.71(4H,s and
m),3.35(1H,brs),2.50(2H,m),1.68(1H,m),1.34
(2H,m),1.23(6H,d,J=6.1Hz),0.94(6H,d,J=6.5H
z). IR(CHCl3):3460,2970,1710,1505,1110cm-1. MS(m/z):316,256,212,170,126,71,43. 実施例2 N−(イソプロポキシカルボニル)−(S)−ロイシ
ナール8.7mg(0.0433mmol)とモレキュラシーブ4A 4mg
にアルゴン気流下、O−メチル−O−トリメチルシリル
ケテンアセタール19mg(0.13mmol)の塩化メチレン溶液
0.5mlを加え、−78℃に冷却後、四塩化チタン(1M塩化
メチレン溶液)0.065mlをゆっくり滴下した。反応液を
1時間攪拌したのち、飽和重曹水を少量加え、セライト
濾過した。濾液は減圧下溶媒留去し得られた残渣は、シ
リカゲルカラムクロマトグラフィー(ヘキサン:酢酸エ
チル=4:1)により精製して、(3S,4S)−3−ヒドロキ
シ−6−メチル−4−〔(N−イソプロポキシカルボニ
ル)アミノ〕ヘプタン酸メチルおよびその(3R,4S)−
体の混合物10.6mg(89%)を得た。(3S,4S)−体と(3
R,4S)−体との生成比はガスクロマトグラフィー(5%
Silar10C,190℃)から95:5と決定した。
実施例3〜7 実施例3〜5については実施例2と同様に、また、実
施例6〜7については実施例1と同様に行いTable 1の
結果を得た。ただし、ルイス酸、溶媒、および反応温度
はそれぞれ表記の条件を用いた。
実施例8 N−(イソプロポキシカルボニル)−(S)−シクロ
ヘキシルアラニナール61.0mg(0.253mmol)とモレキュ
ラシーブ4A(30mg)にアルゴン気流下、O−メチル−O
−トリメチルシリルケテンアセタール110mg(0.759mmo
l)の塩化メチレン溶液3mlを加え、−78℃に冷却後、四
塩化チタン(1M塩化メチレン溶液)0.25mlをゆっくり滴
下した。反応液を1時間攪拌した後、飽和重曹水を少量
加え、セライト濾過した。濾液は減圧下に留去し、残渣
をシリカゲルカラムクロマトグラフィー(ヘキサン:酢
酸エチル=4:1)により精製して、原料16.7mg(27
%)、(3S,4S)−5−シクロヘキシル−3−ヒドロキ
シ−4−〔(N−イソプロポキシカルボニル)アミノ〕
ペンタン酸メチル50.0mg(63%)、その(3R,4S)−体
6.0mg(7.5%)および両者の混合物2.8mgを得た。(3S,
4S)−体と(3R,4S)−体との生成比はガスクロマトグ
ラフィー(5% Silar 10C 190℃)から96:4と決定し
た。
(3S,4S)−体 〔▲α〕20 D▼‐36.6°(C 1.11,CHCl31 H‐NMR(CDCl3)δ:4.88(1H,sept,J=6.2Hz),4.77
(1H,brd,J=9.8Hz),4.02(1H,brd,J=6.7Hz),3.71
(3H,s),3.69(1H,m),3.24(1H,brs),2.52(2H,m),
1.82(1H,brs),1.66(4H,m),1.3〜1.6(2H,m),1.23
(6H,d,J=6.2Hz),1.1〜1.3(2H,m),0.8〜1.1(2H,
m). IR(CHCl3):3470,2940,2870,1710,1505,1440,1110c
m-1. MS(m/z):316,256,212,170,126,100,43. (3R,4S)−体 〔▲α〕20 D▼‐30.8°(C 0.510,CHCl3) mp 73〜74℃(from hexane).1 H‐NMR(CDCl3)δ:4.89(1H,sept,J=6.0Hz),4.60
(1H,brd,J=7.7Hz),4.02(1H,m),3.77(1H,m),3.71
(3H,s),3.38(1H,brs),2.48(2H,m),1.83(1H,brd,
J=13.0Hz),1.53〜1.76(4H,m),1.1〜1.5(5H,m),1.
23(6H,d,J=6.0Hz),0.7〜1.1(2H,m). IR(CHCl3):3690,3460,2930,2860,1710,1500,1430,111
0cm-1. MS(m/z):276,216,172,130,86,43. 参考例8 (3S,4S)−3−ヒドロキシ−6−メチル−4−
〔(N−イソプロポキシカルボニル)アミノ〕ヘプタン
酸メチル40.7mg(0.148mmol)を酢酸エチル0.5mlに溶解
し、6N−塩酸2.0mlを加えて13時間100℃で加熱した。反
応液を減圧下、溶媒留去後、残渣をイオン変換カラムク
ロマトグラフィー(Dowex AG50W-X2,pH 5 緩衝液(1M
ピリジン−酢酸)〕により精製して(3S,4S)−スタ
チン22.9mg(88%)を得た。
純品は水−エタノールから再結晶して500mgを得た。
〔▲α〕20 D▼‐20.4°(C 0.501,H2O) mp 202〜205℃ 文献値(M.Kinoshita et al.,Bull.Chem.Soc.Jpn.,48,5
70(1975)). 〔▲α〕16 D▼‐20°(C 0.64,water) mp 201〜203℃(decomp).1 H‐NMR(D2O)δ:4.10(1H,m),3.30(1H,m),2.53(1
H,dd,J=5.1 and 15Hz),2.48(1H,dd,J=7.0 and 15H
z),0.94(6H,d,J=5.7Hz),1.2〜1.9(3H,m). IR(KBr):3440,3220,2970,2890,1600,1550,1510,1430,
1390,1170,720cm-1. MS(m/z):176(M++1),172,157,140,118,100,86,40,
30. 参考例9 (3S,4S)−5−シクロヘキシル−3−ヒドロキシ−
4−〔(N−イソプロポキシカルボニル)アミノ〕ペン
タン酸メチル16.0mg(0.0508mmol)の酢酸エチル0.5ml
溶液に、6N塩酸2.0mlを加え、8時間100℃で加熱した。
反応液を減圧下留去後、残渣をイオン交換カラムクロマ
トグラフィー(Dowex AG50W-X2,pH 5 緩衝液(1Mピリ
ジン−酢酸)により精製して、(3S,4S)−シクロヘキ
シルスタチン10.2mg(93%)を得た。
純品は、1M塩酸に溶解後、1M NaOH水溶液でpH5〜6に
調節し、析出する結晶を濾取乾燥して得た。
〔▲α〕20 D▼‐25.3°(C 0.435,1M HCl) mp 213〜216℃ 文献値(H.Yanagisawa et al,Chem.Lett.,687(198
9). mp 230〜231℃(dec.) 〔▲α〕25 D▼‐26.2°(C 1.0,1M HCl)1 H‐NMR(D2O)δ:4.00(1H,m),335(1H,m),225(2H,
m),0.8〜2.0(13H,m). IR(KBr):3430,3220,2950,2880,1610,1550,1510,1440,
1385,1335,1115,1070,1035,980,885cm-1. MS(m/z):216(M++1),197,126,100,55.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07B 61/00 300

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】一般式 (式中、R1は炭素数1〜4の直鎖もしくは分枝アルキル
    基、炭素数5〜8の置換もしくは無置換のシクロアルキ
    ル基を表し、また、R2はアミノ基の保護基を表す)で表
    される2−アミノプロパナール誘導体を、一般式 (式中、R3、R4、R5、R6は各々独立に、炭素数1〜4の
    直鎖もしくは分枝アルキル基または置換もしくは無置換
    アリール基を表す)で表されるケテンシリルアセタール
    とルイス酸存在下反応させることを特徴とする、一般式 (式中、R1、R2およびR3は前記と同じ意味を表す)で表
    される4−アミノ−3−ヒドロキシペンタン酸誘導体の
    製造方法。
  2. 【請求項2】3位不斉炭素が(S)−配置、4位不斉炭
    素が(S)−配置である請求項(1)記載の4−アミノ
    −3−ヒドロキシペンタン酸誘導体の製造方法。
  3. 【請求項3】R1がイソプロピル基またはシクロヘキシル
    基である請求項(2)記載の4−アミノ−3−ヒドロキ
    シペンタン酸誘導体の製造方法。
JP1259992A 1989-10-06 1989-10-06 4―アミノ―3―ヒドロキシペンタン酸誘導体の製造法 Expired - Lifetime JPH0830049B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1259992A JPH0830049B2 (ja) 1989-10-06 1989-10-06 4―アミノ―3―ヒドロキシペンタン酸誘導体の製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1259992A JPH0830049B2 (ja) 1989-10-06 1989-10-06 4―アミノ―3―ヒドロキシペンタン酸誘導体の製造法

Publications (2)

Publication Number Publication Date
JPH03123765A JPH03123765A (ja) 1991-05-27
JPH0830049B2 true JPH0830049B2 (ja) 1996-03-27

Family

ID=17341786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1259992A Expired - Lifetime JPH0830049B2 (ja) 1989-10-06 1989-10-06 4―アミノ―3―ヒドロキシペンタン酸誘導体の製造法

Country Status (1)

Country Link
JP (1) JPH0830049B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2263663C2 (ru) * 2000-04-03 2005-11-10 Ихара Кемикал Индастри Ко., Лтд. Способ получения сложного эфира амидокислоты

Also Published As

Publication number Publication date
JPH03123765A (ja) 1991-05-27

Similar Documents

Publication Publication Date Title
Jouin et al. Stereospecific synthesis of N-protected statine and its analogues via chiral tetramic acid
US4716235A (en) Process for preparing N-[1(S)-ethoxycarbonyl-3-phenylpropyl]-L-alanyl-L-proline
US20040171608A1 (en) Synthesis of clasto-lactacystin beta-lactone and analogs thereof
HU207101B (en) Process for stereospecific producing of tert.butoxycarbonyl aminoalkynic acid and gamma-valerolactone derivatives
JP2691442B2 (ja) 新規なプロリン誘導体
EP0106652B1 (en) Beta-lactam compounds and production thereof
JPH0656751A (ja) シクロペンタン−および−ペンテン−β−アミノ酸
Yakura et al. Synthesis of an immunomodulator (+)-conagenin and its analogs
IE58243B1 (en) A process for the preparation of optically-active 3-amino carboxylic acids
Madau et al. Stereoselective synthesis of unnatural aminoacids cis-4-hydroxyproline and bulgecinine
KR0144684B1 (ko) 디카르복실산의 모노에스테르 및 그의 제조방법
JPH0830049B2 (ja) 4―アミノ―3―ヒドロキシペンタン酸誘導体の製造法
US6034247A (en) Oxazolidinones and methods for the synthesis and use of same
Kato et al. Total synthesis of uracil polyoxin C
Takemoto et al. A highly stereoselective synthesis of (3S, 4S)-statine and (3S, 4S)-cyclohexylstatine
JP2834501B2 (ja) 3,4―エポキシ酪酸エステルの製法および中間体
Sham et al. Highly efficient synthesis of 2 (S)-3 (R, S)-2-amino-4, 4-difluoro-1, 6-diphenyl-3-hydroxyhexane—the key intermediate for a series of potent HIV proteinase inhibitors
US5587514A (en) Diastereoselective synthesis of hydroxyethylene dipeptide isosteres
US5834618A (en) Process for the preparation of 3-amino-2-hydroxy-4-phenylbutyronitrile derivatives
US4816598A (en) 4-Amino-butanoic acid derivatives
EP0316360A1 (en) ASYMETRIC SYNTHESIS OF ENANTIOMERICALLY PURE MONOCLYCLIC $g(b)-LACTAM INTERMEDIATES
Wuts et al. Synthesis of the hydroxyethylene isostere of Leu-Val
US5670653A (en) Process for the manufacture of (4,5)-trans-oxazolidines
KR0136706B1 (ko) 광학 활성이 있는 3-아미노 피롤리딘 유도체의 제조방법
EP0081817B1 (en) Optically-active diamide derivatives