JPH08298382A - Multilayer ceramic board - Google Patents

Multilayer ceramic board

Info

Publication number
JPH08298382A
JPH08298382A JP7101838A JP10183895A JPH08298382A JP H08298382 A JPH08298382 A JP H08298382A JP 7101838 A JP7101838 A JP 7101838A JP 10183895 A JP10183895 A JP 10183895A JP H08298382 A JPH08298382 A JP H08298382A
Authority
JP
Japan
Prior art keywords
thick film
silver
film resistor
resistor
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7101838A
Other languages
Japanese (ja)
Inventor
Satoyuki Saito
斎藤智行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP7101838A priority Critical patent/JPH08298382A/en
Publication of JPH08298382A publication Critical patent/JPH08298382A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets

Abstract

PURPOSE: To prevent diffusion of silver into a thick film resistor easily by interposing the thick film resistor between the layers of a multilayer ceramic board and employing a silver-palladium alloy powder in the composition of inner conductor to be connected electrically with the thick film resistor. CONSTITUTION: A plurality of unfired inductive green sheets 3a are formed by casting and a resistive paste, principally comprising bismuth ruthenate and glass, is screen printed on the green sheet 3a thus forming a thick film resistor 1. The inner composition, i.e., conductive paste of silver-palladium alloy, of a conductor 2 to be connected electrically with the thick film resistor 1 is then applied by screen printing. The green sheets 3b are then stacked and hot pressed to produce a laminate. With such arrangement, diffusion of silver into the thick film resistor 1 can be prevented easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、積層基板に係るもので
あり、特に高精度抵抗素子を内蔵したセラミックス多層
基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated substrate, and more particularly to a ceramic multilayer substrate having a built-in high precision resistance element.

【0002】[0002]

【従来の技術】近年のハイブリッドICは、より小型
化、高精度化の要求から、グリーンシート上に電極パタ
ーンを印刷形成し、これらを積層、燒結することによ
り、もしくは、スクリーン印刷の繰り返しにより多層化
し、燒結することによって得られる多層基板内部に配線
パターンを持つセラミックス多層基板が用いられてき
た。
2. Description of the Related Art In recent years, hybrid ICs have been required to be more compact and highly accurate, so that electrode patterns are formed by printing on a green sheet and these are laminated and sintered, or by repeating screen printing to form a multilayer. A ceramic multilayer substrate having a wiring pattern inside the multilayer substrate obtained by forming and sintering has been used.

【0003】しかし、この基板内部に形成する回路とし
て、導体配線のみでなく、従来基板表面上に実装してい
た抵抗体等の受動素子をも含める技術開発が進められて
いる。しかしながら、基板内部に抵抗体を包括しようと
した場合、抵抗体の長さと抵抗値の両者の関係が比例関
係から大きく外れ、任意の抵抗値を持った抵抗体の形状
設計が極めて難しく精度の良い抵抗体を内蔵することは
極めて困難であった。これは、抵抗体と電気的に接続す
る内部導体組成物に銀系導体が使用されるため、銀が該
抵抗体中に拡散し、内部導体と接続されている界面の部
分と、内部導体から離れている部分で抵抗体の抵抗値が
異なることに起因する。
However, as a circuit to be formed inside the substrate, technical development is in progress including not only conductor wiring but also passive elements such as resistors which are conventionally mounted on the surface of the substrate. However, when trying to enclose a resistor inside the substrate, the relationship between the length of the resistor and the resistance value deviates greatly from the proportional relationship, and it is extremely difficult and accurate to design the shape of the resistor having an arbitrary resistance value. It was extremely difficult to incorporate a resistor. This is because the silver-based conductor is used in the internal conductor composition that is electrically connected to the resistor, so that silver diffuses into the resistor and the interface portion connected to the internal conductor and the internal conductor This is because the resistance value of the resistor is different in the distant portions.

【0004】このような問題を解決する手段として、特
開平5ー291755が提案されている。即ち、セラミ
ック多層基板の層間に配置された厚膜抵抗体中の銀濃度
を0.2wt%以下にするか、1.5wt%以上に調整
することによりセラミック多層基板の層間に配置された
厚膜抵抗体と、内部導体との界面からの距離が10μm
の部分における該厚膜抵抗体中の銀濃度と、内部導体か
ら最も離れた部分における該厚膜抵抗体中の銀濃度との
比を2倍以内とすることができる。このことにより、抵
抗体の長さと抵抗値の両者の関係が比例関係となり、任
意の抵抗値を持った抵抗体の形状設計が容易となるた
め、高精度の厚膜抵抗体をセラミックス多層基板の層間
に構成することが実現できる。
As a means for solving such a problem, Japanese Patent Laid-Open No. 5-291755 has been proposed. That is, by adjusting the silver concentration in the thick film resistor arranged between the layers of the ceramic multilayer substrate to 0.2 wt% or less, or adjusting it to 1.5 wt% or more, the thick film arranged between the layers of the ceramic multilayer substrate is adjusted. Distance from the interface between the resistor and the internal conductor is 10 μm
The ratio of the silver concentration in the thick film resistor in the portion of (1) to the silver concentration in the thick film resistor in the portion farthest from the internal conductor can be set to within 2 times. This makes the relationship between the length of the resistor and the resistance value proportional and facilitates the shape design of the resistor having an arbitrary resistance value. Construction between layers can be realized.

【0005】[0005]

【発明が解決しようとする課題】上記のように厚膜抵抗
体の精度を上げるため、厚膜抵抗体中の銀濃度を0.2
wt%以下、または1.5wt%以上にするためには、
次の方法が提案されている。即ち、厚膜抵抗体中の銀濃
度を0.2wt%にするためには、厚膜抵抗体と内部導
体間に金等の貴金属を主成分とする端子を介することに
より厚膜抵抗体中への銀の拡散を防止している。さら
に、内部導体中の銀濃度を50wt%以下にすることに
よっても同様の効果が得られるとしている。また、厚膜
抵抗体中の銀の濃度を1.5wt%以上にするために
は、あらかじめ抵抗体中に銀を含有させておくという方
法が提案されている。しかしながら、実際の製造におい
ては、銀の濃度を管理することは困難であり、量産に支
障をきたす場合がある。
As described above, in order to improve the accuracy of the thick film resistor, the silver concentration in the thick film resistor is set to 0.2.
To make it less than wt% or more than 1.5 wt%,
The following methods have been proposed. That is, in order to set the silver concentration in the thick film resistor to 0.2 wt%, the thick film resistor is inserted into the thick film resistor by interposing a terminal mainly containing a noble metal such as gold between the thick film resistor and the internal conductor. It prevents the spread of silver. Further, it is said that the same effect can be obtained by setting the silver concentration in the inner conductor to 50 wt% or less. Further, in order to increase the silver concentration in the thick film resistor to 1.5 wt% or more, a method has been proposed in which the resistor contains silver in advance. However, in actual manufacturing, it is difficult to control the silver concentration, which may hinder mass production.

【0006】そこで本発明は、銀の厚膜抵抗体中への拡
散を簡単に防止し、また厚膜抵抗体中の銀の濃度管理も
必要がない、内部導体組成物を用いたセラミックス多層
基板を提供することを目的とする。
Therefore, the present invention provides a ceramic multilayer substrate using an internal conductor composition, which easily prevents the diffusion of silver into the thick film resistor and does not require the control of the silver concentration in the thick film resistor. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明はセラミックス多層基板の層間に厚膜抵抗体
を配置する場合において、該厚膜抵抗体と電気的に接続
する電極の内部導体組成物に、銀ーパラジウム合金粉を
用いる。
In order to achieve the above-mentioned object, the present invention provides an inside of an electrode electrically connected to a thick film resistor when the thick film resistor is arranged between layers of a ceramic multilayer substrate. Silver-palladium alloy powder is used for the conductor composition.

【0008】さらに、前記内部導体組成物のパラジウム
濃度が10wt%以上30wt%以下である
Further, the palladium concentration of the internal conductor composition is 10 wt% or more and 30 wt% or less.

【0009】[0009]

【作用】セラミックス多層基板の層間に厚膜抵抗体を配
置する場合、抵抗体の長さと抵抗値が比例関係から大き
くはずれるのは、銀系導体で形成された内部導体から抵
抗体中へ銀が拡散することに起因する。したがって、抵
抗体中への銀の拡散を抑制することによって高精度の厚
膜抵抗体を得るという目的を達成することができること
になる。そこで、厚膜抵抗体と接続する内部導体に、銀
ーパラジウム合金粉からなる内部導体を用いることによ
り、内部抵抗体中への銀の拡散を抑さえることが可能と
なり、抵抗体長と抵抗値の関係をほぼ比例関係とするこ
とができる。
[Function] When a thick film resistor is arranged between the layers of the ceramic multi-layer substrate, the length and the resistance value of the resistor deviate greatly from the proportional relationship because the silver is introduced from the inner conductor formed of the silver-based conductor into the resistor. Due to diffusion. Therefore, it is possible to achieve the purpose of obtaining a highly accurate thick film resistor by suppressing the diffusion of silver into the resistor. Therefore, by using an inner conductor made of silver-palladium alloy powder for the inner conductor connected to the thick film resistor, it is possible to suppress the diffusion of silver into the inner resistor, and the relationship between the resistor length and the resistance value. Can be made approximately proportional.

【0010】なお、内部導体として銀ーパラジウム合金
粉を用いることは、合金化によって銀の拡散率が低下す
るため、同比率の混合粉を用いた場合より良好な結果が
得られる。即ち、同等の効果を得るためには、混合粉を
用いた場合よりパラジウム含有量を押さえることが可能
であり、内部導体の抵抗値を低く押さえることが可能
で、コスト面でも良好な結果が得られる。
When silver-palladium alloy powder is used as the inner conductor, alloying reduces the diffusivity of silver. Therefore, better results can be obtained than when mixed powders having the same ratio are used. That is, in order to obtain the same effect, it is possible to suppress the palladium content as compared with the case of using the mixed powder, it is possible to suppress the resistance value of the internal conductor to a low level, and good results can be obtained in terms of cost as well. To be

【0011】したがって、任意の抵抗値を持った抵抗体
の形状設計が容易となるため、高精度の厚膜抵抗体をセ
ラミックス多層基板の層間に構成することが実現でき
る。
Therefore, since it is easy to design the shape of a resistor having an arbitrary resistance value, it is possible to form a highly accurate thick film resistor between the layers of the ceramic multilayer substrate.

【0012】[0012]

【実施例】次に、本発明に係るセラミック多層基板の第
1の実施例を図面にしたがって説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a first embodiment of a ceramic multilayer substrate according to the present invention will be described with reference to the drawings.

【0013】図1に、本発明に係る厚膜抵抗体用内部導
体組成物を用いたセラミックス多層基板の断面図を示
す。
FIG. 1 is a sectional view of a ceramic multilayer substrate using the internal conductor composition for a thick film resistor according to the present invention.

【0014】ほう硅酸ガラス粉とフリットとしてのアル
ミナ粉末に、アクリル樹脂系のバインダーを加えて攪拌
し、スラリー状にした。このスラリーをドクターブレー
ドを用いたキャスティング成膜法によって未焼成の誘電
グリーンシートを複数枚形成した。
An acrylic resin binder was added to borosilicate glass powder and alumina powder as a frit, and the mixture was stirred to form a slurry. A plurality of unfired dielectric green sheets were formed from this slurry by a casting film forming method using a doctor blade.

【0015】このグリーンシート3a上にルテニウム酸
ビスマス及びガラスを主成分とする抵抗ペーストをスク
リーン印刷し抵抗体1を形成した。次に、金属成分の比
率が銀75wt%、パラジウム25wt%の合金粉から
なる導体ペーストをスクリーン印刷法によって塗布し、
導体2を形成した。次に、先に形成したグリーンシート
3bを、ステンレス等からなる金型で外形を整形した
後、積み重ねる。次いで、熱プレス等を用いて温度50
℃、圧力700kg/cm2の条件で上下面から熱圧縮
して積層体とした。更に、この積層体を空気中において
温度900℃で約15分間焼成することにより、内部に
厚膜抵抗体を内蔵したセラミックス多層基板を得ること
ができる。
A resistor 1 containing bismuth ruthenate and glass as main components was screen-printed on the green sheet 3a to form a resistor 1. Next, a conductor paste made of an alloy powder having a metal component ratio of 75 wt% silver and 25 wt% palladium is applied by a screen printing method,
The conductor 2 was formed. Next, the green sheets 3b formed previously are shaped after being shaped by a metal mold made of stainless steel or the like, and then stacked. Then, using a hot press or the like, a temperature of 50
The laminate was heat-compressed from the upper and lower surfaces under conditions of ° C and a pressure of 700 kg / cm2. Further, by firing this laminated body in the air at a temperature of 900 ° C. for about 15 minutes, a ceramic multilayer substrate having a thick film resistor built therein can be obtained.

【0016】この場合において、グリーンシート3b上
に更なる抵抗体及び配線用導体等を形成し、新たなグリ
ーンシートをその上に積層して3層構造のセラミックス
多層基板を構成することや、また更にその上に新たなグ
リーンシートを積層して4層以上の多層構造を持つセラ
ミックス多層基板を得ることができるということは、い
うまでもない。
In this case, further resistors and wiring conductors are formed on the green sheet 3b, and a new green sheet is laminated on the green sheet 3b to form a three-layer ceramic multilayer substrate. It goes without saying that a ceramic green board having a multi-layer structure of four or more layers can be obtained by further laminating a new green sheet thereon.

【0017】ここで、該セラミックス多層基板内部の抵
抗体1において、銀の拡散による抵抗値増加分(以下、
「界面抵抗」と呼ぶ)と、抵抗体1固有の抵抗値(以
下、「シート抵抗」と呼ぶ)を測定しこれらの比を計算
すると0.1以下となる。この結果から、内部導体と接
続されている界面の部分と、内部導体から離れている部
分とで抵抗体の抵抗率の差が小さくなっていることがわ
かり、導体中の銀の拡散が小さいことがわかる。したが
って、任意の抵抗値を持った抵抗体の形状設計が容易と
なるため、抵抗体1の抵抗値は、抵抗体1の長さによっ
て計算される値に高精度で押さえることができる。
Here, in the resistor 1 inside the ceramic multilayer substrate, an increase in resistance value due to diffusion of silver (hereinafter, referred to as
The "interface resistance") and the resistance value unique to the resistor 1 (hereinafter referred to as "sheet resistance") are measured, and the ratio thereof is calculated to be 0.1 or less. From this result, it is found that the difference in the resistivity of the resistor between the interface part connected to the internal conductor and the part away from the internal conductor is small, and the diffusion of silver in the conductor is small. I understand. Therefore, since it is easy to design the shape of the resistor having an arbitrary resistance value, the resistance value of the resistor 1 can be suppressed to a value calculated by the length of the resistor 1 with high accuracy.

【0018】図2に、成分比率を変えた銀ーパラジウム
合金からなる導体ペーストを用いた場合の界面抵抗とシ
ート抵抗の比を示す。パラジウム濃度を上げていくと、
界面抵抗とシート抵抗の比が0に近くなり抵抗1の抵抗
が計算値に近くなって、セラミックス多層基板に内蔵す
る抵抗体の抵抗値が目的とする抵抗値に誤差なく設定す
ることができる。
FIG. 2 shows the ratio of the interfacial resistance and the sheet resistance when a conductor paste made of a silver-palladium alloy with different component ratios is used. As the palladium concentration increases,
Since the ratio of the interface resistance and the sheet resistance is close to 0 and the resistance of the resistor 1 is close to the calculated value, the resistance value of the resistor built in the ceramic multilayer substrate can be set to the target resistance value without error.

【0019】また、図2には同時に銀ーパラジウム混合
粉を用いた場合の界面抵抗とシート抵抗の比を示す。銀
ーパラジウム合金粉を用いて厚膜抵抗体用内部導体組成
物を形成することにより、銀ーパラジウム混合粉を用い
た場合より低いパラジウム濃度で、目的とする抵抗値の
誤差を小さくしてセラミックス多層基板内部を形成する
ことができることがわかる。
FIG. 2 shows the ratio of the interface resistance and the sheet resistance when the silver-palladium mixed powder was used at the same time. By forming an internal conductor composition for a thick film resistor by using silver-palladium alloy powder, the error of the target resistance value can be reduced with a lower palladium concentration than that when using the silver-palladium mixed powder, and a ceramic multilayer substrate can be obtained. It can be seen that the interior can be formed.

【0020】このように、高精度の内蔵抵抗体を持つ、
セラミック多層基板が容易に形成することができるた
め、抵抗体素子を搭載した高周波対応マルチチップモジ
ュールや、ハイブリッドIC等の製品を製造する場合、
従来の表裏に抵抗体を表層形成した製品と比較して、内
部に配置された抵抗体や導体は同時焼成されるため焼成
工程の大幅な削減を可能としている。
As described above, having a highly accurate built-in resistor,
Since a ceramic multilayer substrate can be easily formed, when manufacturing products such as high frequency compatible multi-chip modules equipped with resistor elements and hybrid ICs,
Compared to the conventional product in which resistors are formed on the front and back surfaces, the resistors and conductors placed inside are fired at the same time, which makes it possible to greatly reduce the firing process.

【0021】[0021]

【発明の効果】厚膜抵抗体を内蔵したセラミックス多層
基板において、内部抵抗体の抵抗値誤差の少ないセラミ
ックス多層基板を得ることができるため、高精度な抵抗
を用いる回路基板を、該セラミックス多層基板をもちい
て容易に小型化することができる。
As a ceramic multilayer substrate having a thick film resistor built-in, it is possible to obtain a ceramic multilayer substrate in which the resistance value error of the internal resistor is small. Therefore, a circuit substrate using a highly accurate resistor is used. Can be easily miniaturized.

【図面の簡単な説明】[Brief description of drawings]

【図1】厚膜抵抗体用内部導体組成物を用いたセラミッ
クス多層基板の断面図
FIG. 1 is a sectional view of a ceramic multilayer substrate using an internal conductor composition for a thick film resistor.

【図2】パラジウム濃度と界面抵抗の関係グラフ[Fig. 2] Graph of relation between palladium concentration and interface resistance

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】セラミックス多層基板の層間に厚膜抵抗体
を配置する場合において、該厚膜抵抗体と電気的に接続
する内部導体組成物に、銀ーパラジウム合金粉を用いる
ことを特徴とするセラミックス多層基板。
1. A ceramics characterized by using silver-palladium alloy powder for an internal conductor composition electrically connected to a thick film resistor when the thick film resistor is arranged between layers of the ceramic multilayer substrate. Multilayer board.
【請求項2】前記内部導体組成物のパラジウム濃度が1
0wt%以上30wt%以下であることを特徴とする請
求項1記載のセラミック多層基板
2. The palladium concentration of the inner conductor composition is 1
The ceramic multilayer substrate according to claim 1, wherein the content is 0 wt% or more and 30 wt% or less.
JP7101838A 1995-04-26 1995-04-26 Multilayer ceramic board Pending JPH08298382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7101838A JPH08298382A (en) 1995-04-26 1995-04-26 Multilayer ceramic board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7101838A JPH08298382A (en) 1995-04-26 1995-04-26 Multilayer ceramic board

Publications (1)

Publication Number Publication Date
JPH08298382A true JPH08298382A (en) 1996-11-12

Family

ID=14311219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7101838A Pending JPH08298382A (en) 1995-04-26 1995-04-26 Multilayer ceramic board

Country Status (1)

Country Link
JP (1) JPH08298382A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016114118A1 (en) * 2015-01-13 2017-04-27 日本特殊陶業株式会社 Circuit board and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016114118A1 (en) * 2015-01-13 2017-04-27 日本特殊陶業株式会社 Circuit board and manufacturing method thereof
JPWO2016114119A1 (en) * 2015-01-13 2017-04-27 日本特殊陶業株式会社 Ceramic substrate and manufacturing method thereof
JPWO2016114121A1 (en) * 2015-01-13 2017-04-27 日本特殊陶業株式会社 Method for manufacturing ceramic substrate, ceramic substrate and silver-based conductor material

Similar Documents

Publication Publication Date Title
US4464420A (en) Ceramic multilayer circuit board and a process for manufacturing the same
GB1565421A (en) Manufacture of electrical devices
JP3121822B2 (en) Conductor paste and wiring board
JPH08298382A (en) Multilayer ceramic board
EP1189495B1 (en) Method of manufacturing multilayer ceramic substrate
JP2002043758A (en) Multilayer board and manufacturing method
JPS63122295A (en) Multilayer ceramic board with built-in electronic component
JPH0542159B2 (en)
JPH0787226B2 (en) Low dielectric constant insulator substrate
JP3495203B2 (en) Circuit board manufacturing method
JPH0834341B2 (en) Method of manufacturing circuit board with thick film resistor
JPS6092697A (en) Composite laminated ceramic part
JPH0216004B2 (en)
JPH05267854A (en) Ceramic multilayer circuit board and manufacture thereof
JPH05291755A (en) Ceramic multilayer circuit board and multichip module using it
JP3093602B2 (en) Manufacturing method of ceramic circuit board
JPH0231798Y2 (en)
JPS598373Y2 (en) printed wiring board
JP2515165B2 (en) Method for manufacturing multilayer wiring board
JP2000353877A (en) Multilayer circuit board and its manufacture
JPH11186001A (en) Resistance material and ceramic multilayered part using the same
JPH0462449B2 (en)
JPS6011479B2 (en) Manufacturing method of ceramic multilayer circuit board
JPH04329207A (en) Conductor composition and wiring substrate
JPH0677665A (en) Multilayered circuit board and manufacture thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19991116