JPH0828283B2 - Moisture sensitive element composition - Google Patents

Moisture sensitive element composition

Info

Publication number
JPH0828283B2
JPH0828283B2 JP62100060A JP10006087A JPH0828283B2 JP H0828283 B2 JPH0828283 B2 JP H0828283B2 JP 62100060 A JP62100060 A JP 62100060A JP 10006087 A JP10006087 A JP 10006087A JP H0828283 B2 JPH0828283 B2 JP H0828283B2
Authority
JP
Japan
Prior art keywords
moisture
sensitive element
element composition
humidity
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62100060A
Other languages
Japanese (ja)
Other versions
JPS6344703A (en
Inventor
彰俊 杉尾
正 下村
千春 西沢
英親 若林
近藤  治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of JPS6344703A publication Critical patent/JPS6344703A/en
Publication of JPH0828283B2 publication Critical patent/JPH0828283B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は相対湿度を電気抵抗値の変化として検出する
感湿素子組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a humidity-sensitive element composition for detecting relative humidity as a change in electric resistance.

〔従来の技術〕[Conventional technology]

従来、感湿素子組成物としては、塩化リチウムなど
の電解質塩を用いたもの、ポリアミド、ポリエチレン
などの有機高分子膜を利用したもの、Se、Geなどの金
属半導体を用いたもの、酸化チタン系、酸化アルミニ
ウム系、酸化錫系などの金属酸化物焼結体を利用したも
のが知られている。この中で金属酸化物焼結体を用いた
ものは、有機高分子膜などの他の感湿素子組成物よりも
化学的、物理的に安定である長所を有し、感湿素子組成
物として有力といわれている。
Conventionally, moisture-sensitive element compositions include those using electrolyte salts such as lithium chloride, those utilizing organic polymer films such as polyamide and polyethylene, those using metal semiconductors such as Se and Ge, titanium oxide-based compositions. It is known to use a metal oxide sintered body such as aluminum oxide or tin oxide. Among them, the one using the metal oxide sintered body has an advantage that it is chemically and physically stable as compared with other moisture-sensitive element compositions such as organic polymer films, and thus is used as a moisture-sensitive element composition. It is said to be influential.

しかしながら、金属酸化物焼結体は一般に、固有抵
抗値が高く実用的な抵抗値範囲になく、特に低湿度領域
において急激に感湿素子組成物の抵抗が高くなり、低湿
度域の測定が困難である、温度依存性が大きく温度補
償が必要である、湿分の吸脱着時での感湿特性にヒス
テリシスがある、冷熱衝撃に弱く感湿特性が劣化す
る、金属酸化物焼結体の表面に水酸化物汚れが付着し
感湿特性が劣化するため、その対策として定期的に加熱
クリーニングする必要がある、等の欠点を有している。
However, the metal oxide sintered body generally has a high specific resistance value and is not in a practical resistance value range, and the resistance of the moisture-sensitive element composition rapidly increases particularly in a low humidity region, making it difficult to measure in a low humidity region. The surface of the metal oxide sintered body has a large temperature dependency, requires temperature compensation, has a hysteresis in moisture sensitivity characteristics when adsorbing and desorbing moisture, is weak against cold thermal shock and deteriorates moisture sensitivity characteristics. However, it has a drawback in that it needs to be heated and cleaned regularly as a countermeasure against the deterioration of the moisture-sensitive property due to the adhesion of hydroxide stains.

このため、信頼性の高い感湿素子組成物の開発が望ま
れている。
Therefore, it has been desired to develop a highly reliable moisture sensitive element composition.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は、固有抵抗値が低く実用的な抵抗値範囲に
あり、温度依存性が極めて小さく温度補償が不必要で
あり、湿分の吸脱着時での感湿特性に殆どヒステリシ
スがなく、冷熱衝撃に強く、特別な加熱クリーニン
グが不必要な信頼性の高い感湿素子組成物を提供しよう
とするものである。
INDUSTRIAL APPLICABILITY The present invention has a low specific resistance value in a practical resistance value range, has extremely small temperature dependency, does not require temperature compensation, has almost no hysteresis in moisture-sensitive characteristics at the time of moisture adsorption / desorption, and has a low temperature It is intended to provide a highly reliable moisture-sensitive element composition which is resistant to impact and does not require special heat cleaning.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明は、 金属酸化物を焼結してなる感湿素子組成物において、 金属酸化物に一般式(I)で表されるカルコゲンオキ
ソ酸塩を配合し、分子状酸素の存在下に焼結してなるこ
とを特徴とする感湿素子組成物 AxByOz (I) (式中、Aはアルカリ金属、アルカリ土類金属、Bはイ
オウ、セレンもしくはテルル原子、Oは酸素原子、xは
1〜2、yは1〜5、zは2〜7の数を表す) である。
That is, the present invention relates to a moisture-sensitive element composition obtained by sintering a metal oxide, in which the chalcogen oxoacid salt represented by the general formula (I) is blended with the metal oxide and baked in the presence of molecular oxygen. during humidity sensitive element composition a x B y O z (I ) ( wherein, characterized in that formed by binding, a is alkali metal, alkaline earth metal, B is sulfur, selenium or tellurium atom, O is an oxygen atom , X is 1 to 2, y is 1 to 5, and z is a number of 2 to 7).

本発明において金属酸化物はそれ自体感湿特性を有す
るものであればよく、従来、感湿素子組成物の有効成分
として知られていたものは好適に用いられる。例えばMg
O、TiO2、ZrO2、Nb2O5、TaO、Ta2O5、Cr2O3、MoO3、W
O3、MnO2、Mn3O4、FeO、Fe2O3、CoO、Co2O3、NiO、Ni2O
3、Ni3O4、ZnO、Al2O3、Ga2O3、In2O3、Tl2O3、SiO2、G
eO2、SnO、SnO2、PbO、Sb2O3、Bi2O3などで例示される
酸化物、Mg2Fe2O4、ZnFe2O4、MgAl2O4、MgCr2O3、ZnCr2
O3(以上、スピネル)、3Al2O3・2SiO2(ムライト)な
どで例示される複合酸化物などがあげられる。この中で
も、TiO2、γ−Al2O3、ZnO、MgO、ZrO2、NiO、MgAl2O4
等は特に好ましい。金属酸化物は金属塩、金属水酸化
物、アルコキシドなどを熱分解した生成物でもよい。
In the present invention, the metal oxide may be any one as long as it has a moisture-sensitive property itself, and those conventionally known as the active ingredient of the moisture-sensitive element composition are suitably used. For example Mg
O, TiO 2 , ZrO 2 , Nb 2 O 5 , TaO, Ta 2 O 5 , Cr 2 O 3 , MoO 3 , W
O 3 , MnO 2 , Mn 3 O 4 , FeO, Fe 2 O 3 , CoO, Co 2 O 3 , NiO, Ni 2 O
3 , Ni 3 O 4 , ZnO, Al 2 O 3 , Ga 2 O 3 , In 2 O 3 , Tl 2 O 3 , SiO 2 , G
eO 2 , SnO, SnO 2 , oxides exemplified by PbO, Sb 2 O 3 , Bi 2 O 3, etc., Mg 2 Fe 2 O 4 , ZnFe 2 O 4 , MgAl 2 O 4 , MgCr 2 O 3 , ZnCr 2
Examples thereof include complex oxides such as O 3 (above, spinel) and 3Al 2 O 3 .2SiO 2 (mullite). Among these, TiO 2 , γ-Al 2 O 3 , ZnO, MgO, ZrO 2 , NiO, MgAl 2 O 4
Etc. are particularly preferable. The metal oxide may be a product obtained by thermally decomposing a metal salt, a metal hydroxide, an alkoxide or the like.

カルコゲンオキソ酸塩は下記一般式(I)で表される
ものである。
The chalcogen oxoacid salt is represented by the following general formula (I).

AxByOz (I) (式中、Aはアルカリ金属、アルカリ土類金属、Bはイ
オウ、セレンもしくはテルル原子、Oは酸素原子、xは
1〜2、yは1〜5、zは2〜7の数を表す) イオウのオキソ酸塩として、具体的にはスルホキシル
酸塩、亜硫酸塩、二亜硫酸塩(メタ重亜硫酸塩、亜二チ
オン酸塩、二硫酸塩(ピロ硫酸塩)、チオ硫酸塩、チオ
ン酸塩があげられる。セレンのオキソ酸塩としては、具
体的には亜セレン酸塩、セレン酸塩があげられ、テルル
のオキソ酸塩としては具体的には亜テルル酸塩、テルル
酸塩があげられる。
A x B y O z (I ) ( in the formula, A represents an alkali metal, alkaline earth metal, B is sulfur, selenium or tellurium atom, O is an oxygen atom, x is 1 to 2, y is 1 to 5, z Represents a number of 2 to 7) As sulfur oxo acid salts, specifically, sulfoxylates, sulfites, disulfites (metabisulfites, dithionates, disulfates (pyrosulfates) , Thiosulfates, and thionates, selenium oxoacid salts include selenite and selenate, and tellurium oxoacid salts include tellurite. Examples thereof include salts and tellurates.

カルコゲンオキソ酸塩の配合量は、金属酸化物とカル
コゲンオキソ酸塩との和を基準として通常、0.01〜99.9
9モル%、好ましくは0.1〜99.9モル%であり、経済性お
よび特性を考慮すれば50モル%以下が特に好ましい。
The amount of the chalcogen oxo acid salt is usually 0.01 to 99.9 based on the sum of the metal oxide and the chalcogen oxo acid salt.
It is 9 mol%, preferably 0.1 to 99.9 mol%, and in view of economy and characteristics, 50 mol% or less is particularly preferable.

上記の組成範囲で各成分を混合後、適正な焼結条件に
より得られる焼結体は金属酸化物単身に比べ感湿特性が
極めて良好である。
The sintered body obtained by mixing the respective components in the above composition range under appropriate sintering conditions has extremely good moisture-sensitive properties as compared with the metal oxide alone.

本発明の感湿素子組成物は、通常の磁器製造技術によ
り、次のようにして製造することができる。
The moisture-sensitive element composition of the present invention can be manufactured by the usual porcelain manufacturing technique as follows.

まず、各成分をそれぞれ所定量秤量した後、これらを
乾式、または水、メチルアルコールなどの混合溶媒を用
いた湿式法によって、ボールミル、振動ミルなどで十分
混合する。その後、必要に応じて、得られた混合物を乾
燥し、適当な温度で仮焼後、粉砕して原料粉体が調製さ
れる。これらの原料粉体は、そのまま乾式で成形しても
よいし、例えばポリビニルアルコール、ポリエチレング
リコールなどの結合剤と共に混練して混練物を調製し、
乾燥後、成形してもよい。この成形体は分子状酸素の存
在下に(通常、空気中で)焼結して焼結体とする。焼結
体は、通常、気孔率10〜55%、気孔径1μ以下の多孔構
造が好ましい。
First, a predetermined amount of each component is weighed, and then these are sufficiently mixed by a dry method or a wet method using a mixed solvent such as water and methyl alcohol by a ball mill, a vibration mill or the like. Then, if necessary, the obtained mixture is dried, calcined at an appropriate temperature, and then pulverized to prepare a raw material powder. These raw material powders may be directly dry-molded, or may be kneaded with a binder such as polyvinyl alcohol or polyethylene glycol to prepare a kneaded product,
You may shape | mold after drying. This molded body is sintered in the presence of molecular oxygen (usually in air) to obtain a sintered body. Generally, the sintered body preferably has a porous structure having a porosity of 10 to 55% and a pore diameter of 1 μm or less.

本発明の感湿素子組成物は、通常、原料粉末の粒径0.
1〜3μ、成形圧50〜1000Kg/cm2、成形体の焼結温度500
〜1200℃、焼結時間0.5〜3時間の条件を設定すること
により得られる。
The moisture-sensitive element composition of the present invention usually has a particle size of the raw material powder of 0.
1-3μ, compacting pressure 50-1000Kg / cm 2 , sintering temperature of compact 500
It is obtained by setting the conditions of ~ 1200 ° C and sintering time of 0.5 ~ 3 hours.

このようにして得られた焼結体は、必要に応じて研磨
した後、例えば金ペースト、白金ペースト、酸化ルテニ
ウムペーストなどの常用されるペーストを使用して電極
を形成し、感湿素子を製造することができる。また厚膜
法を用いて量産性を上げ、低価格化することが可能であ
る。
The sintered body thus obtained is, if necessary, polished, and then an electrode is formed using a commonly used paste such as a gold paste, a platinum paste, a ruthenium oxide paste, to manufacture a moisture-sensitive element. can do. Further, it is possible to increase the mass productivity and reduce the cost by using the thick film method.

〔実施例〕〔Example〕

以下に実施例をあげて説明する。 Examples will be described below.

実施例1 酸化チタンとピロ硫酸ナトリウム(Na2S2O7)をモル
比で96.5%、3.5%となるように秤量しポットミルで16
時間湿式で混合した。得られた混合物を140℃で4時間
乾燥し、造粒して原料粉体を調製した。この原料粉体を
500Kg/cm2の条件で加圧成形し、直径12mm、厚さ約2mmの
円盤状圧密体を作った。この圧密体を900℃、3時間焼
結した後、焼結体の片面に酸化ルテニウムペーストを櫛
状にスクリーン印刷して、約850℃で焼付を行った。
Example 1 Titanium oxide and sodium pyrosulfate (Na 2 S 2 O 7 ) were weighed so as to have a molar ratio of 96.5% and 3.5%, and were weighed with a pot mill.
Wet mixed for hours. The obtained mixture was dried at 140 ° C. for 4 hours and granulated to prepare a raw material powder. This raw material powder
Pressure molding was performed under the condition of 500 kg / cm 2 to make a disk-shaped compact with a diameter of 12 mm and a thickness of about 2 mm. After this compact was sintered at 900 ° C. for 3 hours, a ruthenium oxide paste was screen-printed in a comb shape on one surface of the sintered body and baked at about 850 ° C.

このようにして製造した感湿素子の構造を第1図に示
した。第1図で1は電極、2は感湿素子組成物を示す。
The structure of the moisture sensitive element thus manufactured is shown in FIG. In FIG. 1, 1 is an electrode and 2 is a moisture sensitive element composition.

この感湿素子について、恒温槽で雰囲気温度25℃に保
ち、相対湿度を20〜100%まで変化させ、そのときの抵
抗値変化を調べた。この結果(番号1)を酸化チタン成
分のみからなる感湿素子の抵抗値変化(番号1′)と対
比して第2図に示した。第2図から明らかなように、本
発明の感湿素子組成物は雰囲気温度25℃で相対湿度30%
では1.04×106Ω、相対湿度80%では4.5×103Ωと広い
温度範囲で低い抵抗値変化を示し、極めて実用的な抵抗
値範囲にあることが分かる。
With respect to this humidity sensitive element, the ambient temperature was kept at 25 ° C in a constant temperature bath, the relative humidity was changed from 20 to 100%, and the change in resistance value at that time was examined. This result (No. 1) is shown in FIG. 2 in comparison with the change in resistance value (No. 1 ') of the humidity sensitive element consisting of only titanium oxide component. As is clear from FIG. 2, the humidity-sensitive element composition of the present invention has an ambient temperature of 25 ° C. and a relative humidity of 30%.
Shows 1.04 × 10 6 Ω and relative humidity of 80% shows a low resistance change of 4.5 × 10 3 Ω over a wide temperature range, indicating that it is in an extremely practical resistance range.

実施例2 酸化チタンと亜セレン酸バリウム(BaSeO3)をモル比
で96.5%、3.5%となるように秤量しポットミルで16時
間湿式で混合した。得られた混合物を140℃で4時間乾
燥し、造粒して原料粉体を調製した。この原料粉体を50
0Kg/cm2の条件で加圧成形し、直径12mm、厚さ約2mmの円
盤状圧密体を作った。この圧密体を1000℃、3時間焼結
した後、焼結体の片面に酸化ルテニウムペーストを櫛状
にスクリーン印刷して、約850℃で焼付け電極を形成し
た。
Example 2 Titanium oxide and barium selenite (BaSeO 3 ) were weighed so that the molar ratio was 96.5% and 3.5%, and wet-mixed in a pot mill for 16 hours. The obtained mixture was dried at 140 ° C. for 4 hours and granulated to prepare a raw material powder. 50 of this raw material powder
It was pressure-molded under the condition of 0 kg / cm 2 to make a disk-shaped compact with a diameter of 12 mm and a thickness of about 2 mm. After sintering this compact for 3 hours at 1000 ° C., a ruthenium oxide paste was screen-printed on one surface of the sintered body in a comb shape to form a baking electrode at about 850 ° C.

この感湿素子について、恒温槽で雰囲気温度25℃下、
相対湿度を20〜100%まで変化させ、そのときの抵抗値
変化(感湿特性)を調べた。
About this humidity sensitive element, the ambient temperature is 25 ° C in a constant temperature bath,
The relative humidity was changed from 20 to 100%, and the change in resistance value (humidity characteristic) at that time was examined.

その結果を第3図に示す感湿特性(番号1)が得られ
た。また比較のため酸化チタンのみからなる感湿素子の
感湿特性を番号1′として示した。この第3図から明ら
かなように、本発明の感湿素子組成物は雰囲気温度25℃
で相対湿度30%では、8.0×105Ω、相対湿度80%では5.
0×104Ωと広い温度範囲で低い抵抗値変化を示し、極め
て実用的な抵抗値範囲にあることが分かる。
As a result, the moisture sensitivity characteristic (No. 1) shown in FIG. 3 was obtained. For comparison, the humidity-sensitive characteristic of the humidity-sensitive element made of titanium oxide is shown as No. 1 '. As is apparent from FIG. 3, the humidity sensitive element composition of the present invention has an ambient temperature of 25 ° C.
At 30% relative humidity, 8.0 × 10 5 Ω, at 80% relative humidity, 5.
It shows a low resistance value change over a wide temperature range of 0 × 10 4 Ω, indicating that the resistance value range is extremely practical.

実施例3〜11 前記実施例1と同様にして第1表に示す組成物を焼結
し、その焼結体の感湿特性を調べた。その結果を第1表
に示す。なお比較のため酸化チタン成分のみからなる焼
結体の感湿特性(比較例1)を第1表に併記した。
Examples 3 to 11 The compositions shown in Table 1 were sintered in the same manner as in Example 1 above, and the moisture sensitivity characteristics of the sintered bodies were examined. The results are shown in Table 1. For comparison, Table 1 also shows the moisture sensitivity characteristics (Comparative Example 1) of a sintered body containing only a titanium oxide component.

実施例12〜13 前記実施例2と同様にして第2表に示す組成物を焼結
し、その焼結体の感湿特性を調べた。その結果を第2表
に示す。なお比較のため酸化チタン成分のみからなる焼
結体の感湿特性(比較例1)を第2表に併記した。
Examples 12 to 13 The compositions shown in Table 2 were sintered in the same manner as in Example 2 above, and the moisture sensitivity characteristics of the sintered bodies were examined. Table 2 shows the results. For comparison, Table 2 also shows the moisture-sensitive characteristics (Comparative Example 1) of the sintered body containing only the titanium oxide component.

実施例14 前記実施例1と同様にして、酸化チタン、亜セレン酸
カリウム(K2SeO3)をモル%で96.5%、3.5%の組成物
を焼結し、その焼結体の感湿特性を調べた。その結果を
第3表に示す。
Example 14 In the same manner as in Example 1, titanium oxide and potassium selenite (K 2 SeO 3 ) were sintered at a composition of 96.5% and 3.5% in terms of mol%, and the moisture-sensitive property of the sintered body was sintered. I checked. The results are shown in Table 3.

実施例15 前記実施例2と同様にして、酸化チタン、亜テルル酸
カルシウム(CaTeO3)をモル%で96.5%、3.5%の組成
物を焼結し、その焼結体の感湿特性を調べた。その結果
を第4表に示す。
Example 15 In the same manner as in Example 2, a composition of titanium oxide and calcium tellurite (CaTeO 3 ) in mol% of 96.5% and 3.5% was sintered, and the moisture-sensitive property of the sintered body was examined. It was Table 4 shows the results.

実施例16〜28 前記実施例1と同様にして、第5表に示す組成物を焼
結し、その焼結体の感湿特性を調べた。その結果を第5
表に示す。
Examples 16 to 28 In the same manner as in Example 1, the compositions shown in Table 5 were sintered, and the moisture-sensitive characteristics of the sintered bodies were examined. The result is the fifth
Shown in the table.

実施例29〜41 前記実施例2と同様にして、第6表に示す組成物を焼
結し、その焼結体の感湿特性を調べた。その結果を第6
表に示す。
Examples 29 to 41 In the same manner as in Example 2, the compositions shown in Table 6 were sintered, and the moisture sensitivity characteristics of the sintered bodies were examined. The result is No. 6
Shown in the table.

実施例42〜44 前記実施例1と同様にして、第7表に示す組成物を焼
結し、その焼結体の感湿特性を調べた。その結果を第7
表に示す。また第7表に実施例9の結果を併記した。
Examples 42 to 44 In the same manner as in Example 1, the compositions shown in Table 7 were sintered, and the moisture sensitivity characteristics of the sintered bodies were examined. The result is No. 7
Shown in the table. The results of Example 9 are also shown in Table 7.

実施例45〜47 前記実施例2と同様にして、第8表に示す組成物を焼
結し、その焼結体の感湿特性を調べた。その結果を第8
表に示す。また第8表に実施例2の結果を併記した。
Examples 45 to 47 In the same manner as in Example 2, the compositions shown in Table 8 were sintered, and the moisture sensitivity characteristics of the sintered bodies were examined. The result is No. 8
Shown in the table. The results of Example 2 are also shown in Table 8.

実施例48 前記実施例9で用いた感湿素子組成物の焼結体を雰囲
気温度25℃、40℃、60℃、80℃で、相対湿度を20〜100
%まで変化させ、そのときの感湿特性を調べた。その結
果を第4図に示した。
Example 48 The sintered body of the moisture-sensitive element composition used in Example 9 was subjected to an ambient temperature of 25 ° C, 40 ° C, 60 ° C and 80 ° C and a relative humidity of 20 to 100.
%, And the moisture sensitivity characteristics at that time were investigated. The results are shown in FIG.

第4図において番号1,2,3,4は雰囲気温度25℃、40℃、6
0℃、80℃での感湿特性を示す。また第4図に参照のた
め従来品を点線で示した。点線の番号1′、2′はそれ
ぞれ雰囲気温度25℃、40℃での感湿特性を示す。この第
4図から明らかなように、雰囲気温度25℃〜40℃ではそ
の温度依存性は極めて小さく温度補償の必要がないこと
が分かる。また本発明の感湿素子組成物は、雰囲気温度
25〜80℃における感湿特性の全変化量が従来品の雰囲気
温度25〜40℃における感湿特性の変化量に相当し、従来
品に比較して温度特性が格段に小さいことが分かる。
In Fig. 4, numbers 1, 2, 3, and 4 are ambient temperatures of 25 ℃, 40 ℃, and 6 ℃.
Moisture-sensitive property at 0 ℃ and 80 ℃. The conventional product is shown by a dotted line in FIG. 4 for reference. The dotted line numbers 1'and 2'indicate the moisture sensitivity characteristics at ambient temperatures of 25 ° C and 40 ° C, respectively. As is clear from FIG. 4, it can be seen that the temperature dependency is extremely small and the temperature compensation is not required at the ambient temperature of 25 ° C to 40 ° C. The moisture-sensitive element composition of the present invention has an ambient temperature
It can be seen that the total amount of change in the humidity-sensitive property at 25 to 80 ° C corresponds to the amount of change in the humidity-sensitive property at the atmospheric temperature of 25 to 40 ° C of the conventional product, and that the temperature characteristic is significantly smaller than that of the conventional product.

実施例49 前記実施例2で用いた感湿素子組成物の焼結体を雰囲
気温度25℃、40℃、60℃、80℃で、相対湿度を20〜100
%まで変化させ、そのときの感湿特性を調べた。その結
果を第5図に示した。第5図において番号1,2,3,4は雰
囲気温度25℃、40℃、60℃、80℃での感湿特性を示す。
また第5図に参照のため従来品を点線で示した。点線の
番号1′、2′はそれぞれ雰囲気温度25℃、40℃での感
湿特性を示す。この第5図から明らかなように、雰囲気
温度25℃〜40℃ではその温度依存性は極めて小さく温度
補償の必要がないことが分かる。また本発明の感湿素子
組成物は雰囲気温度25〜80℃における感湿特性の全変化
量が従来品の雰囲気温度25〜40℃における感湿特性の変
化量に相当し、従来品に比較して温度特性が格段に小さ
いことが分かる。
Example 49 The sintered body of the moisture-sensitive element composition used in Example 2 was subjected to an ambient temperature of 25 ° C, 40 ° C, 60 ° C and 80 ° C and a relative humidity of 20 to 100.
%, And the moisture sensitivity characteristics at that time were investigated. The results are shown in FIG. In FIG. 5, reference numerals 1, 2, 3, and 4 indicate moisture-sensitive characteristics at ambient temperatures of 25 ° C, 40 ° C, 60 ° C, and 80 ° C.
The conventional product is shown by a dotted line in FIG. 5 for reference. The dotted line numbers 1'and 2'indicate the moisture sensitivity characteristics at ambient temperatures of 25 ° C and 40 ° C, respectively. As is clear from FIG. 5, it is understood that the temperature dependency is extremely small and the temperature compensation is not necessary at the ambient temperature of 25 ° C to 40 ° C. Further, in the humidity-sensitive element composition of the present invention, the total change amount of the humidity-sensitive property at the ambient temperature of 25 to 80 ° C corresponds to the change amount of the moisture-sensitive property of the conventional product at the ambient temperature of 25 to 40 ° C. It can be seen that the temperature characteristics are remarkably small.

実施例50 前記実施例1と同様にして酸化チタン、亜セレン酸カ
リウム(K2SeO3)のモル比89.5%、10.5%の組成物を焼
結した。
Example 50 A composition having a molar ratio of titanium oxide and potassium selenite (K 2 SeO 3 ) of 89.5% and 10.5% was sintered in the same manner as in Example 1.

得られた焼結体を雰囲気温度25℃、相対湿度98%の雰
囲気で24時間放置した後、同上雰囲気温度で、相対湿度
20〜80%の範囲で感湿特性のヒステリシスを調べた。ま
た、上記と同様にして実施例9の組成物焼結体について
感湿特性のヒステリシスを調べた。
After leaving the obtained sintered body in an atmosphere with an ambient temperature of 25 ° C and a relative humidity of 98% for 24 hours, the ambient temperature was adjusted to the relative humidity.
Hysteresis of moisture sensitivity was investigated in the range of 20-80%. Further, the hysteresis of the moisture-sensitive property was examined for the composition sintered body of Example 9 in the same manner as above.

その結果を第6図に示す。第6図において番号1,2は
それぞれ実施例9、50の結果を示す。この第6図から明
らかなように、これらの組成物焼結体の感湿特性におけ
るヒステリシスは±3%RH程度であり、相対湿度98%、
24時間放置という負荷にもかかわらず、極めて小さいヒ
ステリシスであることが分かる。
The result is shown in FIG. In FIG. 6, numbers 1 and 2 show the results of Examples 9 and 50, respectively. As is apparent from FIG. 6, the hysteresis in the moisture sensitivity characteristics of these composition sintered bodies is about ± 3% RH, and the relative humidity is 98%,
It can be seen that the hysteresis is extremely small despite the load of leaving for 24 hours.

実施例51 前記実施例2および実施例13で用いた組成物焼結体
を、雰囲気温度25℃、相対湿度98%の雰囲気で24時間放
置した後、同上雰囲気温度で、相対湿度20〜80%の範囲
で感湿特性のヒステリシスを調べた。
Example 51 The composition sintered bodies used in Examples 2 and 13 were allowed to stand in an atmosphere having an ambient temperature of 25 ° C. and a relative humidity of 98% for 24 hours, and then at the same ambient temperature, a relative humidity of 20 to 80%. The hysteresis of the moisture sensitivity characteristic was investigated in the range of.

その結果を第7図に示す。第7図において番号1,2は
それぞれ実施例2、13の結果を示す。この第7図から明
らかなように、これらの組成物焼結体の感湿特性におけ
るヒステリシスは±2%RH以内であり、相対湿度98%、
24時間放置という負荷にもかかわらず、極めて小さいヒ
ステリシスであることが分かる。
The results are shown in FIG. In FIG. 7, the numbers 1 and 2 show the results of Examples 2 and 13, respectively. As is clear from FIG. 7, the hysteresis in the moisture sensitivity characteristics of these composition sintered bodies is within ± 2% RH, relative humidity 98%,
It can be seen that the hysteresis is extremely small despite the load of leaving for 24 hours.

実施例52 前記実施例9の感湿素子組成物を、雰囲気温度85℃に
30分間放置後、雰囲気温度−25℃に30分間放置を1サイ
クルとして、50サイクル冷熱衝撃試験を行い、その感湿
素子組成物の冷熱衝撃試験前後の感湿特性を前記実施例
1と同様にして調べた。
Example 52 The moisture-sensitive element composition of Example 9 was heated to an ambient temperature of 85 ° C.
After being left for 30 minutes, a 50-cycle thermal shock test was conducted with one cycle of being left at an ambient temperature of -25 ° C for 30 minutes, and the humidity-sensitive characteristics of the humidity-sensitive element composition before and after the thermal shock test were the same as in Example 1 above. I looked it up.

その結果を第8図に示す。第8図において、番号1は
上記試験前の感湿特性、番号2は上記試験後の感湿特性
を示す。また比較のため、従来品の上記試験前後の感湿
特性をそれぞれ点線の番号1′、2′で示した。この第
8図から明らかなように本発明の感湿素子組成物は、そ
の冷熱衝撃試験前後の感湿特性変化が3%以内であり、
従来品に比べ冷熱衝撃に対し非常に強いことが分かる。
The results are shown in FIG. In FIG. 8, reference numeral 1 indicates the moisture-sensitive property before the above test, and number 2 indicates the moisture-sensitive property after the above test. For comparison, the moisture sensitivity characteristics of the conventional product before and after the above test are shown by dotted line numbers 1'and 2 ', respectively. As is clear from FIG. 8, the humidity-sensitive element composition of the present invention has a humidity-sensitive property change before and after the thermal shock test of 3% or less,
It can be seen that it is much more resistant to thermal shock than conventional products.

実施例53 前記実施例13で用いた組成物焼結体を、雰囲気温度85
℃に30分間放置後、雰囲気温度−25℃に30分間放置を1
サイクルとして、50サイクル冷熱衝撃試験を行い、その
冷熱衝撃試験前後の感湿特性を前記実施例2と同様にし
て調べた。
Example 53 The composition sintered body used in Example 13 was heated to an ambient temperature of 85.
After leaving it at ℃ for 30 minutes, leave it at ambient temperature -25 ℃ for 30 minutes.
As a cycle, a 50-cycle thermal shock test was conducted, and the moisture sensitivity characteristics before and after the thermal shock test were examined in the same manner as in Example 2 above.

その結果を第9図に示す。第9図において、番号1は
上記試験前の感湿特性、番号2は上記試験後の感湿特性
を示す。また比較のため、従来品の上記試験前後の感湿
特性をそれぞれ点線の番号1′、2′で示した。この第
9図から明らかなように本発明の感湿素子組成物は、そ
の冷熱衝撃試験前後の感湿特性変化が3%以内であり、
従来品に比べ冷熱衝撃に対し非常に強いことが分かる。
The results are shown in FIG. In FIG. 9, number 1 indicates the moisture sensitivity characteristic before the above test, and number 2 indicates the moisture sensitivity characteristic after the above test. For comparison, the moisture sensitivity characteristics of the conventional product before and after the above test are shown by dotted line numbers 1'and 2 ', respectively. As is clear from FIG. 9, the humidity-sensitive element composition of the present invention has a change in humidity-sensitive property before and after the thermal shock test of 3% or less,
It can be seen that it is much more resistant to thermal shock than conventional products.

実施例54 前記実施例50の感湿素子組成物を、雰囲気温度85℃、
相対湿度80%の環境に1ケ月放置し、この感湿素子組成
物の放置前後の感湿特性を前記実施例1と同様にして調
べた。
Example 54 The moisture-sensitive element composition of Example 50, with an ambient temperature of 85 ° C.,
The humidity-sensitive element composition was allowed to stand for 1 month in an environment having a relative humidity of 80%, and the humidity-sensitive properties before and after standing were examined in the same manner as in Example 1 above.

その結果を第9表に示す。この第9表から明らかなよ
うに本発明の感湿素子組成物は高温、高湿という過酷な
環境下に長期にわたり置かれていたにもかかわらず、そ
の感湿特性の変化は極めて小さい。従って、通常の雰囲
気下では、特別な加熱クリーニングをしなくても長期に
わたり使用できることが分かる。
The results are shown in Table 9. As is clear from Table 9, the humidity-sensitive element composition of the present invention has been left in a severe environment of high temperature and high humidity for a long period of time, but its humidity-sensitive property changes little. Therefore, it can be seen that under normal atmosphere, it can be used for a long time without special heat cleaning.

実施例55 前記実施例2および実施例13で用いた組成物焼結体を
温度25℃の蒸留水中に1ケ月間浸漬した後、風乾し、実
施例2と同様にして上記放置試験前後の感湿特性を調べ
た。
Example 55 The composition sintered bodies used in Examples 2 and 13 were immersed in distilled water at a temperature of 25 ° C. for 1 month and then air-dried, and the feeling before and after the leaving test was performed in the same manner as in Example 2. Wet properties were investigated.

第10図において、番号1、1′は前記実施例2の焼結
体の上記試験前後の感湿特性、番号2、2′は前記実施
例13の焼結体の上記試験前後の感湿特性を示す。
In FIG. 10, reference numerals 1 and 1'represent the moisture-sensitive characteristics of the sintered body of Example 2 before and after the above test, and number 2 and 2'indicate the moisture-sensitive characteristics of the sintered body of Example 13 before and after the above test. Indicates.

この第10図から明らかなように、これらの組成物焼結
体の上記試験前後の感湿特性の変化は殆どなく、極めて
耐水性が良好であることがわかる。したがって、本発明
の感湿素子組成物が結露という過酷な環境下にあっても
感湿特性の劣化の心配がないことから特別な加熱クリー
ニングを必要としなくても長期にわたり使用できること
が分かる。
As is clear from FIG. 10, there is almost no change in the moisture sensitivity characteristics of these sintered compositions of the composition before and after the above-mentioned test, and it is understood that the water resistance is extremely good. Therefore, it can be seen that the moisture-sensitive element composition of the present invention can be used for a long period of time without requiring special heat cleaning because there is no fear of deterioration of moisture-sensitive characteristics even under a severe environment of dew condensation.

〔効果〕〔effect〕

本発明によれば、従来の感湿素子組成物と比較して、
固有抵抗値が低く実用的な範囲にあり、温度依存性が極
めて小さく温度補償が不必要であり、湿分の吸脱着時で
の感湿特性に殆どヒステリシスがなく、しかも冷熱衝撃
に強く、特別な加熱クリーニングが不必要である信頼性
の高い感湿素子組成物を提供することができる。
According to the present invention, compared with the conventional moisture-sensitive element composition,
It has a low specific resistance value and is in a practical range, its temperature dependence is extremely small, temperature compensation is not necessary, there is almost no hysteresis in the moisture sensitivity characteristics when absorbing and desorbing moisture, and it is resistant to thermal shock and It is possible to provide a highly reliable moisture-sensitive element composition which does not require any heat cleaning.

またカルコゲンオキソ酸塩としてアルカリ土類金属塩
を用いた場合には、耐水性にすぐれた感湿素子組成物を
提供することができる。
When an alkaline earth metal salt is used as the chalcogen oxo acid salt, a moisture sensitive element composition having excellent water resistance can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の感湿素子組成物を用いた感湿素子の一
つの形態を示す正面図である。第2〜10図は本発明の感
湿素子組成物の特性を示すグラフであり、第2〜3図は
感湿特性、第4〜5図は感湿特性の温度依存性、第6〜
7図は感湿特性の高湿放置後のヒステリシス、第8〜9
図は冷熱衝撃試験前後の感湿特性、第10図は耐水性試験
前後の感湿特性を示すグラフである。 図中、1は電極、2は感湿組成物を示す。
FIG. 1 is a front view showing one form of a moisture sensitive element using the moisture sensitive element composition of the present invention. 2 to 10 are graphs showing the characteristics of the humidity-sensitive element composition of the present invention, FIGS. 2 to 3 are humidity-sensitive characteristics, FIGS. 4 to 5 are temperature dependence of humidity-sensitive characteristics, and 6-
Fig. 7 shows the hysteresis of the humidity-sensitive property after leaving it at high humidity, 8th to 9th.
FIG. 10 is a graph showing the moisture sensitivity characteristics before and after the thermal shock test, and FIG. 10 is a graph showing the moisture sensitivity characteristics before and after the water resistance test. In the figure, 1 indicates an electrode and 2 indicates a moisture-sensitive composition.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 治 東京都葛飾区新宿6丁目1番1号 三菱瓦 斯化学株式会社本社研究所内 審査官 今井 義男 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Kondo 6-1, 1-1 Shinjuku, Katsushika-ku, Tokyo Yoshio Imai Examiner, Research Center, Mitsubishi Gas Chemical Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】金属酸化物を焼結してなる感湿素子組成物
において、 金属酸化物に一般式(I)で表されるカルコゲンオキソ
酸塩を配合し、分子状酸素の存在下に焼結してなること
を特徴とする感湿素子組成物 AxByOz (I) (式中、Aはアルカリ金属、アルカリ土類金属、Bはイ
オウ、セレンもしくはテルル原子、Oは酸素原子、xは
1〜2、yは1〜5、zは2〜7の数を表す)
1. A moisture-sensitive element composition obtained by sintering a metal oxide, which comprises adding a chalcogen oxoacid salt represented by the general formula (I) to the metal oxide and baking the mixture in the presence of molecular oxygen. during humidity sensitive element composition a x B y O z (I ) ( wherein, characterized in that formed by binding, a is alkali metal, alkaline earth metal, B is sulfur, selenium or tellurium atom, O is an oxygen atom , X is 1-2, y is 1-5, and z is 2-7).
【請求項2】カルコゲンオキソ酸塩の配合量が、金属酸
化物とカルコゲンオキソ酸塩との和を基準として、0.01
〜99.99モル%であるクレーム1の感湿素子組成物
2. The amount of chalcogen oxoacid salt compounded is 0.01 based on the sum of the metal oxide and the chalcogen oxoacid salt.
Moisture-sensitive element composition according to claim 1, wherein the composition is from about 99.99 mol%
【請求項3】カルコゲンオキソ酸塩がアルカリ金属の塩
であるクレーム1の感湿素子組成物
3. The moisture-sensitive element composition according to claim 1, wherein the chalcogen oxoacid salt is an alkali metal salt.
【請求項4】カルコゲンオキソ酸塩がテルルの塩である
クレーム1の感湿素子組成物
4. The moisture-sensitive element composition according to claim 1, wherein the chalcogen oxoacid salt is a tellurium salt.
【請求項5】金属酸化物がTiO2、γ−Al2O3、ZnO、Mg
O、ZrO2、NiO、MgAl2O4からなる群から選ばれる少なく
とも一種であるクレーム1の感湿素子組成物
5. The metal oxide is TiO 2 , γ-Al 2 O 3 , ZnO, Mg.
The moisture-sensitive element composition according to claim 1, which is at least one selected from the group consisting of O, ZrO 2 , NiO, and MgAl 2 O 4 .
【請求項6】金属酸化物がTiO2であるクレーム1の感湿
素子組成物
6. The moisture-sensitive element composition according to claim 1, wherein the metal oxide is TiO 2 .
【請求項7】焼結温度が500〜1200℃であるクレーム1
の感湿素子組成物
7. Claim 1 in which the sintering temperature is 500 to 1200 ° C.
Moisture sensitive element composition
JP62100060A 1986-04-24 1987-04-24 Moisture sensitive element composition Expired - Lifetime JPH0828283B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9321186 1986-04-24
JP61-93212 1986-04-24
JP9321286 1986-04-24
JP61-93211 1986-04-24

Publications (2)

Publication Number Publication Date
JPS6344703A JPS6344703A (en) 1988-02-25
JPH0828283B2 true JPH0828283B2 (en) 1996-03-21

Family

ID=26434633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62100060A Expired - Lifetime JPH0828283B2 (en) 1986-04-24 1987-04-24 Moisture sensitive element composition

Country Status (1)

Country Link
JP (1) JPH0828283B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012026A (en) * 2019-07-03 2021-02-04 公立大学法人大阪 Humidity sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3529500B2 (en) * 1995-05-31 2004-05-24 日本特殊陶業株式会社 Humidity-sensitive element and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012026A (en) * 2019-07-03 2021-02-04 公立大学法人大阪 Humidity sensor

Also Published As

Publication number Publication date
JPS6344703A (en) 1988-02-25

Similar Documents

Publication Publication Date Title
US4357426A (en) Humidity sensitive ceramics
US4086556A (en) Humidity sensitive ceramic resistor
JPH0828283B2 (en) Moisture sensitive element composition
KR910001859B1 (en) Humidity-sensing component composition
JPS639722B2 (en)
JPH0378761B2 (en)
JP3559911B2 (en) Thermistor
JPH0824082B2 (en) Moisture sensitive composition
JPS58166701A (en) Method of producing humidity sensitive element
KR840000260B1 (en) Temperature-responsive element
JPS6041841B2 (en) moisture sensing element
JPS5835901A (en) Moisture sensitive element
JPS6313146B2 (en)
JPS5835902A (en) Moisture sensitive element
JPS6024565B2 (en) moisture sensing element
JPS6229101A (en) Moisture sensitive resistor
JPS6355763B2 (en)
JPS6317781B2 (en)
JPH05264494A (en) Moisture-sensitive element
JP2001155907A (en) Thermistor composition
JPS6317205B2 (en)
JPS6023481B2 (en) moisture sensing element
JPS6317203B2 (en)
JPS6355765B2 (en)
JPH05302908A (en) Moisture sensitive element