JPH08281382A - Mold for continuous casting - Google Patents
Mold for continuous castingInfo
- Publication number
- JPH08281382A JPH08281382A JP8159595A JP8159595A JPH08281382A JP H08281382 A JPH08281382 A JP H08281382A JP 8159595 A JP8159595 A JP 8159595A JP 8159595 A JP8159595 A JP 8159595A JP H08281382 A JPH08281382 A JP H08281382A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- coating layer
- mold
- copper
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000009749 continuous casting Methods 0.000 title claims description 22
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 38
- 229910052802 copper Inorganic materials 0.000 claims abstract description 38
- 239000010949 copper Substances 0.000 claims abstract description 38
- 238000007747 plating Methods 0.000 claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 22
- 229910052751 metal Inorganic materials 0.000 claims abstract description 22
- 230000005499 meniscus Effects 0.000 claims abstract description 14
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 6
- 239000000956 alloy Substances 0.000 claims abstract description 6
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical class [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000011247 coating layer Substances 0.000 claims description 62
- 239000010410 layer Substances 0.000 claims description 39
- 239000011248 coating agent Substances 0.000 claims description 25
- 238000000576 coating method Methods 0.000 claims description 25
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 9
- 238000007751 thermal spraying Methods 0.000 claims description 4
- 239000000843 powder Substances 0.000 abstract description 26
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 238000010583 slow cooling Methods 0.000 abstract description 6
- 238000009413 insulation Methods 0.000 abstract description 4
- 229910000831 Steel Inorganic materials 0.000 description 19
- 239000010959 steel Substances 0.000 description 19
- 238000001816 cooling Methods 0.000 description 10
- 239000000919 ceramic Substances 0.000 description 6
- 238000005266 casting Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- GEIAQOFPUVMAGM-UHFFFAOYSA-N oxozirconium Chemical compound [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011195 cermet Substances 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 229910003465 moissanite Inorganic materials 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 229910020630 Co Ni Inorganic materials 0.000 description 2
- 229910002440 Co–Ni Inorganic materials 0.000 description 2
- 229910020515 Co—W Inorganic materials 0.000 description 2
- 229910000954 Medium-carbon steel Inorganic materials 0.000 description 2
- 229910018104 Ni-P Inorganic materials 0.000 description 2
- 229910018536 Ni—P Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003779 heat-resistant material Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N AI2O3 Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 210000001503 Joints Anatomy 0.000 description 1
- 108060007162 RALY Proteins 0.000 description 1
- 230000001070 adhesive Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000000875 corresponding Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、金属の連続鋳造に用い
る鋳型に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold used for continuous casting of metal.
【0002】[0002]
【従来の技術】従来、金属の連続鋳造に用いる鋳型とし
ては、銅又は銅合金製の鋳型または内表面にNiメッキ
を施した銅又は銅合金製鋳型、あるいは内表面にNiメ
ッキを施しさらにその表面にCrメッキを施した銅又は
銅合金製の鋳型が用いられており、これらの鋳型を用い
て鋳片を連続製造する際には、一般に鋳型内溶鋼上面に
パウダーを供給して、鋳型内壁面に沿って流入させ、鋳
型内壁面と溶鋼間の潤滑剤として機能させることが行わ
れている。この際、メニスカス温度の不均一やパウダー
流入の不均一のために、凝固シェル厚みが不均一とな
り、鋳片に割れが発生して品質が悪化する場合がある。2. Description of the Related Art Conventionally, as a mold used for continuous casting of metal, a mold made of copper or copper alloy, a copper or copper alloy mold having an inner surface plated with Ni, or an inner surface plated with Ni, Molds made of copper or copper alloy with Cr plating on the surface are used, and when continuously manufacturing cast pieces using these molds, powder is generally supplied to the upper surface of molten steel in the mold to It is made to flow along the wall surface to function as a lubricant between the inner wall surface of the mold and the molten steel. At this time, due to the nonuniform meniscus temperature and the nonuniform powder inflow, the thickness of the solidified shell may be nonuniform, and the slab may be cracked to deteriorate the quality.
【0003】このような不都合な現象の発生を防止する
ためには、凝固シェルを均一に生成させる必要がある。
そのために、鋳型内で溶鋼を凝固させるに際して、溶鋼
を緩冷却したり、幅方向の冷却むらを防止することが提
案されている。In order to prevent the occurrence of such an inconvenient phenomenon, it is necessary to uniformly form a solidified shell.
Therefore, it has been proposed to slowly cool the molten steel or prevent uneven cooling in the width direction when the molten steel is solidified in the mold.
【0004】例えば、特開平01−224142号公報
においては、銅製鋳型本体の溶鋼メニスカス相当部及び
その近傍に耐熱材料製内筒を内挿するとともに、この内
筒と銅製鋳型本体との間に粉粒状物質または液状物質の
充填層を設けることが開示されており、また、特願平0
5−107259号においては、銅製鋳型内面に特定の
厚さ及び熱伝導率を有するセラミックス板を密着して張
り付ける等の提案がなされている。[0004] For example, in Japanese Patent Laid-Open No. 01-224142, an inner cylinder made of a heat-resistant material is inserted in the molten steel meniscus corresponding part of the copper mold body and its vicinity, and a powder is provided between the inner cylinder and the copper mold body. It is disclosed that a packed layer of a granular substance or a liquid substance is provided, and Japanese Patent Application No.
No. 5-107259 proposes that a ceramic plate having a specific thickness and thermal conductivity be adhered and adhered to the inner surface of a copper mold.
【0005】上記の例においては、凝固シェル厚さの均
一化や緩冷却化のため、鋳型内のメニスカス近傍に、熱
抵抗材料として耐熱材料製内筒(ステンレス鋼、アルミ
ナグラファイト、フューズドシリカ)を挿入することや
セラミックス板を張り付けることが提案されているが、
例えば大型のスラブ鋳片を鋳造する場合には、鋳型の長
辺側が大面積になるため、セラミックスによる一枚施工
は困難であることから、タイル状に形成した複数枚のセ
ラミックス板を接着剤等で張り付けることが必要であ
り、施工の作業負担が大きくなる。In the above example, in order to make the thickness of the solidified shell uniform and to cool it slowly, an inner cylinder made of a heat-resistant material (stainless steel, alumina graphite, fused silica) as a heat resistance material is provided in the vicinity of the meniscus in the mold. It has been proposed to insert a
For example, when casting a large slab slab, it is difficult to apply one piece of ceramics because the long side of the mold has a large area. Since it is necessary to stick it on, the work load of the construction becomes heavy.
【0006】また、セラミックス板を張り付けた目地部
において、鋳片冷却能が変化して凝固シェルを均一生成
することが難しくなる。また、セラミックスは、熱伝導
率が小さいため、急激に溶鋼に浸漬した場合、表裏面で
の温度差が大きくなり、大きな熱応力が発生しクラック
が発生することは避けられない。Further, in the joint portion to which the ceramics plate is attached, the cooling performance of the slab changes and it becomes difficult to uniformly form a solidified shell. Further, since ceramics have a low thermal conductivity, it is inevitable that when they are rapidly immersed in molten steel, the temperature difference between the front surface and the back surface becomes large, and a large thermal stress occurs and cracks occur.
【0007】[0007]
【発明が解決しようとする課題】本発明は、連続鋳造機
により鋳片を連続製造する際に、銅又は銅合金製鋳型の
メニスカス近傍の内壁面に、緩冷却機能に優れ、溶融パ
ウダーと反応、固着のない被膜を強固に形成して、冷却
むらを防止し凝固シェルを均一に生成させ、表面性状の
良好な鋳片を得ることができる連続鋳造用鋳型を提供す
るものである。DISCLOSURE OF THE INVENTION The present invention, when continuously producing a slab by a continuous casting machine, has an excellent slow cooling function on the inner wall surface near the meniscus of a copper or copper alloy mold and reacts with molten powder. The present invention provides a continuous casting mold in which a non-sticking coating is strongly formed to prevent uneven cooling and to uniformly form a solidified shell, and a cast piece having good surface properties can be obtained.
【0008】[0008]
【課題を解決する手段】本発明の第一の発明は、メニス
カス近傍の銅又は銅合金製鋳型の内壁面に、金属メッキ
あるいは金属系溶射によるボンドコート層としての第一
被膜層を形成し、この第一被膜層の上面に、熱伝導率が
20kcal/mhr℃以下の金属系合金の溶射層からなる第二
被膜層を形成し、さらに、この第二被膜層の上面に金属
メッキ層からなる第三被膜層を形成したことを特徴とす
る連続鋳造用鋳型。第二の発明は、第一の発明におい
て、第二被膜層をCo系合金の溶射層で形成したことを
特徴とする連続鋳造鋳型。また、第三の発明は、第一の
発明および第二の発明において、第一被膜層〜第三被膜
層からなる被膜層を、その熱抵抗Rが下式を満足するよ
うに形成したことを特徴とする連続鋳造鋳型である。 19.0≦R≦37.0 R=δ/λ ここで、 δ:被膜厚み(μm) λ:熱伝導率(kcal/mhr℃)A first invention of the present invention is to form a first coating layer as a bond coat layer by metal plating or metal-based spraying on the inner wall surface of a copper or copper alloy mold near a meniscus, On the upper surface of this first coating layer, a second coating layer made of a sprayed layer of a metal alloy having a thermal conductivity of 20 kcal / mhr ° C. or less is formed, and further on the upper surface of this second coating layer, made of a metal plating layer. A mold for continuous casting, wherein a third coating layer is formed. A second invention is a continuous casting mold according to the first invention, wherein the second coating layer is formed of a thermal sprayed layer of a Co-based alloy. A third invention is that, in the first invention and the second invention, a coating layer composed of the first coating layer to the third coating layer is formed so that its thermal resistance R satisfies the following expression. It is a characteristic continuous casting mold. 19.0 ≦ R ≦ 37.0 R = δ / λ where δ: coating thickness (μm) λ: thermal conductivity (kcal / mhr ° C.)
【0009】[0009]
【作用】本発明の連続鋳造鋳型においては、銅又は銅合
金製鋳型のメニスカス近傍の鋳型内壁面に、連続鋳造
時、溶鋼を緩冷却するとともに、溶融パウダーと反応、
固着しない被膜層を強固に形成しているので、凝固シェ
ルの均一な生成を促進させ、表面性状の良好な鋳片を得
ることができる。In the continuous casting mold of the present invention, on the inner wall of the mold near the meniscus of the copper or copper alloy mold, during continuous casting, while slowly cooling the molten steel, react with the molten powder,
Since the coating layer that does not stick is strongly formed, it is possible to promote the uniform formation of a solidified shell and obtain a slab with good surface properties.
【0010】以下に作用を図1〜図2を参考にしながら
具体的に説明する。図1は、本発明の連続鋳造用鋳型の
実施例を示す斜視図、図2は、本発明の連続鋳造用鋳型
の実施例の一部を示す断面図である。The operation will be specifically described below with reference to FIGS. FIG. 1 is a perspective view showing an embodiment of a continuous casting mold of the present invention, and FIG. 2 is a sectional view showing a part of an embodiment of the continuous casting mold of the present invention.
【0011】図1において、1は銅板からなる銅又は銅
合金製鋳型(以下、単に銅製鋳型とするが、銅合金製鋳
型を含むものである)で、その背面にはこの銅製鋳型1
を補強するとともに、銅製鋳型1を冷却するための冷却
水を供給・排出する構造を有する冷却箱2が配設されて
いる。4は溶鋼で、鍋から、タンディッシュ、ノズルを
経て銅製鋳型1に注入される。In FIG. 1, reference numeral 1 denotes a copper or copper alloy mold (hereinafter referred to simply as a copper mold, which includes a copper alloy mold) made of a copper plate, and the copper mold 1 is provided on the back surface thereof.
And a cooling box 2 having a structure for supplying and discharging cooling water for cooling the copper mold 1. Molten steel 4 is poured from a pot into a copper mold 1 through a tundish and a nozzle.
【0012】銅製鋳型1内に注入された溶鋼4の上に
は、パウダー5aが投入され、このパウダー5aは溶鋼
4の熱により溶融し、溶融パウダー層5bを形成し、銅
製鋳型1の内壁面と銅製鋳型1に冷却されて形成される
凝固シェル6間に流入して潤滑材として機能する。Powder 5a is put on the molten steel 4 poured into the copper mold 1, and the powder 5a is melted by the heat of the molten steel 4 to form a molten powder layer 5b, and the inner wall surface of the copper mold 1 is formed. And it flows into between the solidified shells 6 formed by being cooled by the copper mold 1 and functions as a lubricant.
【0013】本発明においては、メニスカス近傍領域の
銅製鋳型1の内壁面と凝固シェル6間への溶融パウダー
5bの流入を均一化して、緩冷却化を図り鋳片の表面欠
陥の発生を防止するための3層からなる被膜層3が形成
されている。この被膜層3は、図2に示すように、銅製
鋳型1を形成する銅板のメニスカス近傍領域に形成され
た凹部1oの内面に形成される。また、この被膜層3
は、図3に示すように、金属メッキまたは金属系溶射層
からなる第一被膜層3a、鋳片緩冷却のための断熱性お
よび熱抵抗性を有する金属系溶射層からなる第二被膜層
3b、溶融パウダーとの反応・固着を防止する金属メッ
キ層からなる第三被膜層3cの三層から形成されてい
る。In the present invention, the inflow of the molten powder 5b between the solidified shell 6 and the inner wall surface of the copper mold 1 in the area near the meniscus is made uniform to achieve slow cooling and prevent the occurrence of surface defects on the slab. A coating layer 3 composed of three layers is formed. As shown in FIG. 2, the coating layer 3 is formed on the inner surface of the recess 1o formed in the vicinity of the meniscus of the copper plate forming the copper mold 1. In addition, this coating layer 3
As shown in FIG. 3, a first coating layer 3a made of metal plating or a metal sprayed layer, and a second coating layer 3b made of a metal sprayed layer having heat insulation and heat resistance for gentle cooling of the slab. , A third coating layer 3c formed of a metal plating layer for preventing reaction and sticking with the molten powder.
【0014】第一被膜層は、銅板と金属系溶射層からな
る第二被膜層3bとの密着力を確保するボンドコート層
として機能させるもので、Niメッキ、Ni−Pメッ
キ、Ni−Bメッキ等のメッキ層、あるいはNiCrA
lY、CoCrAlY、80Ni20Cr、NiCoC
rAlY等の金属系溶射層等、銅板と第二被膜層に対し
て密着力に優れたメッキ層、溶射層で形成することが望
ましい。The first coating layer functions as a bond coat layer for ensuring the adhesion between the copper plate and the second coating layer 3b made of a metal-based sprayed layer, and is Ni plating, Ni-P plating, Ni-B plating. Plating layer such as NiCrA
1Y, CoCrAlY, 80Ni20Cr, NiCoC
It is desirable to use a metal-based sprayed layer such as rAlY or the like, and a plated layer or a sprayed layer having excellent adhesion to the copper plate and the second coating layer.
【0015】第二被膜層は、断熱、熱抵抗層として機能
させるもので、被膜厚みが200μm〜500μm、熱
伝導率が20kcal/mhr℃以下のCo系の金属系溶射層で
形成することが望ましい。The second coating layer functions as a heat insulation and heat resistance layer, and is preferably formed of a Co-based metal sprayed layer having a coating thickness of 200 μm to 500 μm and a thermal conductivity of 20 kcal / mhr ° C. or less. .
【0016】第三被膜層は、パウダーとの反応・固着を
防止するためのものであり、Niメッキ、Co−Niメ
ッキ、Co−W系メッキ等、第二被膜層との密着性に優
れ、パウダーとの反応・固着し難い金属メッキ層で形成
することが望ましい。The third coating layer is for preventing reaction and sticking with the powder, and has excellent adhesion to the second coating layer such as Ni plating, Co-Ni plating, Co-W system plating, It is desirable to use a metal plating layer that is hard to react with and adhere to the powder.
【0017】なお、この三層からなる被膜層を形成する
場合、適度に緩冷却して均一な凝固シェル生成を確保す
るために、この被膜層の熱抵抗Rが下式を満足するよう
に、被膜厚みδ(μm)、熱伝導率λ(kcal/mhr℃)を
設定することが望ましい。 19.0≦R≦37.0 R=δ/λ ここで、 δ:被膜厚み(μm) K:熱伝導率(kcal/mhr℃) 熱抵抗Rが19以下では緩冷却効果が小さく均一な凝固
シェル生成ができない。また、熱抵抗Rが37以上では
冷却が不十分で凝固シェルが十分に生成されない。When the coating layer consisting of these three layers is formed, the thermal resistance R of this coating layer satisfies the following equation in order to ensure moderate solidification and uniform solidified shell formation. It is desirable to set the film thickness δ (μm) and the thermal conductivity λ (kcal / mhr ° C.). 19.0 ≦ R ≦ 37.0 R = δ / λ where δ: coating thickness (μm) K: thermal conductivity (kcal / mhr ° C.) When the thermal resistance R is 19 or less, the slow cooling effect is small and uniform solidification Cannot generate shell. Further, when the thermal resistance R is 37 or more, the cooling is insufficient and the solidified shell is not sufficiently generated.
【0018】[0018]
(実施例1)まず、被膜3としての特性を確認するため
に、Co系合金(重量%で、C:0. 4〜0. 7%、N
i:5〜10%、Cr:10〜25%、W:3〜8%、
Ta:2〜4%を含有し、残部がCoおよび不純物)
と、ZrO2 −8Y2 O3 、ZrO2 −8Y2 O3 系サ
ーメット、Cr3 C2 −25NiCr、CoCrAlY
−Y2 O3 −CrB2 および前記従来例のAl2 O3 、
SiC、BN、ステンレス板等を対象として、溶鋼浸漬
試験による被膜密着性と熱伝導率測定による熱抵抗特性
の評価試験を行った。Example 1 First, in order to confirm the characteristics of the coating 3, a Co-based alloy (% by weight, C: 0.4 to 0.7%, N
i: 5 to 10%, Cr: 10 to 25%, W: 3 to 8%,
Ta: Containing 2 to 4%, the balance being Co and impurities)
If, ZrO 2 -8Y 2 O 3, ZrO 2 -8Y 2 O 3 cermet, Cr 3 C 2 -25NiCr, CoCrAlY
-Y 2 O 3 -CrB 2 and the conventional example of Al 2 O 3,
For SiC, BN, stainless steel plates, etc., an evaluation test was conducted on the coating adhesion by the molten steel immersion test and the thermal resistance property by measuring the thermal conductivity.
【0019】溶鋼浸漬試験では、10kg誘導溶解炉中の
溶鋼(1555℃、中炭素鋼)に上記の各種の材質で形
成した被膜を表面に形成した銅板(100mm長さ×10
0mm幅×10mm厚み)を、パウダーを投入した溶鋼中に
2秒間浸漬した後、被膜表面を観察した。被膜の熱伝導
率は、レーザーフラッシュ法にて測定した。In the molten steel immersion test, a copper plate (100 mm length × 10) formed on the surface of molten steel (1555 ° C., medium carbon steel) in a 10 kg induction melting furnace with a coating formed of the above various materials was used.
(0 mm width × 10 mm thickness) was immersed in molten steel containing powder for 2 seconds, and then the coating surface was observed. The thermal conductivity of the coating was measured by the laser flash method.
【0020】凝固シェル均一度は、浸漬試験後の銅板に
付着生成した凝固シェルの厚み測定値より、凝固シェル
均一度=(最薄凝固シェル厚/平均凝固シェル厚)で評
価した。銅板のみの場合の凝固シェル均一度は、0.7
であった。上記の評価試験結果を表1に示す。The uniformity of the solidified shell was evaluated from the measured value of the thickness of the solidified shell adhered to the copper plate after the immersion test, and the uniformity of the solidified shell = (the thinnest solidified shell thickness / average solidified shell thickness). The homogeneity of the solidified shell is 0.7 for the copper plate only.
Met. Table 1 shows the evaluation test results.
【0021】[0021]
【表1】 [Table 1]
【0022】[0022]
【表2】 [Table 2]
【0023】[0023]
【表3】 [Table 3]
【0024】この評価試験結果においては、被膜のクラ
ックや剥離がなく、パウダーの固着がなく、さらに凝固
シェル均一度が現状銅板レベルより向上している被膜材
質は、Co系合金溶射+Niメッキ(No.19〜2
2)、BN、SiC(No.26〜31)であった。In this evaluation test result, there is no crack or peeling of the coating, no adhesion of powder, and the uniformity of the solidified shell is higher than the current copper plate level. The coating material is Co alloy sprayed + Ni plated (No. .19-2
2), BN, and SiC (No. 26 to 31).
【0025】しかし、BN、SiCの場合は、板状のも
のを銅板に張り付け形成したものであるが、スラブ用鋳
型長辺のような大面積への施工は困難であり、実用の場
合には、施工はタイル状のものを接着剤等で張り付ける
こととなる。この場合には、目地部により鋳片冷却能が
変化して抜熱むらを生じ、凝固シェルの均一生成は困難
であり実用性に乏しい。However, in the case of BN and SiC, although a plate-shaped member is formed by adhering to a copper plate, it is difficult to apply it to a large area such as the long side of the slab mold, and in practical use, For construction, the tiles will be attached with adhesive. In this case, the cooling performance of the slab changes due to the joints, resulting in uneven heat removal, and it is difficult to uniformly form a solidified shell, which is not practical.
【0026】試験後の被膜を観察した結果では、セラミ
ックあるいはサーメット(No.1〜6)の溶射被膜が
溶融パウダーと接触する場合、溶射層内の空隙部分に溶
融パウダーが侵入固化し、また一部にパウダー成分と溶
射材成分の化学的反応も見られた。したがって、溶鋼と
接する部分は空隙のない金属系被膜で形成する必要があ
ることがわかった。As a result of observing the coating film after the test, when the ceramic or cermet (No. 1 to 6) sprayed coating comes into contact with the molten powder, the molten powder invades and solidifies into the voids in the sprayed layer, and A chemical reaction between the powder component and the thermal spray material was also seen in the area. Therefore, it was found that the portion in contact with the molten steel needs to be formed with a metal-based coating having no voids.
【0027】さらに、セラミックスやサーメット(N
o.7〜12)の場合、第三被膜層のNiメッキ層との
密着力が弱く、剥離・亀裂が多く見られた。また、密着
力の確保を狙って、第二被膜層と第三被膜層の間に、熱
伝導率が第二被膜層の金属系溶射層と第三層のNiメッ
キ層の中間にある金属溶射被膜を形成し、その表面を平
滑に研磨した後、Niメッキを行った(No.13〜1
8)場合、密着力がやや改善をされたものもあったが、
十分な耐久性を得るまでには至らなかった。Furthermore, ceramics and cermet (N
o. In the cases of 7 to 12), the adhesion of the third coating layer to the Ni plating layer was weak, and many peeling and cracking were observed. In addition, in order to secure adhesion, metal spraying between the second coating layer and the third coating layer, the thermal conductivity of which is intermediate between the metal coating layer of the second coating layer and the Ni plating layer of the third layer. After forming a film and polishing the surface to be smooth, Ni plating was performed (No. 13 to 1).
8) In some cases, the adhesion was slightly improved,
It was not possible to obtain sufficient durability.
【0028】なお、ステンレス板(No.32〜33)
の場合、クラックの発生、パウダー固着はなかったが、
変形が大きく凝固シェルの均一度が低く、また容易に剥
離してしまった。A stainless plate (Nos. 32 to 33)
In the case of, there was no crack generation or powder adhesion, but
The deformation was large and the solidified shell had low uniformity, and was easily peeled off.
【0029】(実施例2)次に、実施例1での溶鋼浸漬
試験において、被膜密着性、熱伝導率、熱抵抗特性の評
価結果のよかった3層からなる被膜層(No.20〜2
2)と同様の被膜層を、銅製鋳型内面のメニスカス近傍
に形成し、実際の連続鋳造を行い、その被膜特性につい
て評価試験を行った。(Example 2) Next, in the molten steel dipping test in Example 1, three coating layers (Nos. 20 to 2), which had good evaluations of coating adhesion, thermal conductivity and thermal resistance characteristics, were obtained.
The same coating layer as 2) was formed near the meniscus on the inner surface of the copper mold, actual continuous casting was performed, and an evaluation test was conducted on the coating characteristics.
【0030】この評価試験のための連続鋳造では、鋳型
は銅製で250mm(厚)×1200mm(幅)のものを用
い、鋳造速度2. 5m/min で中炭素鋼を鋳造した。被膜
層の形成位置は、鋳型内のメニスカス近傍(鋳型上端よ
り50mmから200mm)の領域において、鋳型幅方向に
帯状に形成した。In the continuous casting for this evaluation test, a mold made of copper and having a size of 250 mm (thickness) × 1200 mm (width) was used, and a medium carbon steel was cast at a casting speed of 2.5 m / min. The coating layer was formed in a strip shape in the width direction of the mold in a region near the meniscus in the mold (50 mm to 200 mm from the upper end of the mold).
【0031】前記図3に示すように、鋳型1の銅板にま
ず上端および下端部が曲面1cに形成された凹部1oを
形成し、この凹部内面にボンドコート層としてNiメッ
キによる厚さ50μmの第一被膜層3aを形成し、この
第一被膜層3aの上面に、緩冷却のための断熱あるいは
熱抵抗層としてCo系合金の溶射による厚さ300μm
の第二の被膜層3bを形成し、さらにその上面に、パウ
ダーとの反応・固着の防止層としてNiメッキによる厚
さ100μmの第三被膜層3cを逐次形成した。As shown in FIG. 3, first, a copper plate of the mold 1 is formed with a concave portion 1o having upper and lower end portions formed into curved surfaces 1c, and the inner surface of the concave portion is formed with a Ni coating having a thickness of 50 μm as a bond coat layer. One coating layer 3a is formed, and a thickness of 300 μm is formed on the upper surface of this first coating layer 3a by thermal spraying of a Co-based alloy as a heat insulating or heat resistance layer for slow cooling.
The second coating layer 3b was formed, and a 100 µm-thick third coating layer 3c formed by Ni plating was successively formed on the upper surface of the second coating layer 3b as a layer for preventing reaction and adhesion with the powder.
【0032】ここでは、第二被膜層3bの溶射施工を行
うとき、被溶射面1aに対し常に垂直方向より施工でき
るように、ゆるやかな角度を設けて、第二被膜層3bを
第一被膜層3aとの間に包むように形成して第二被覆層
の密着性と機能の安定を確保できるようにし、この被膜
3の下端部では第三被膜層3cの表面と被膜3を形成し
ない鋳型内壁面との境界に段差を生じないように被膜3
を形成した。Here, when performing the thermal spraying of the second coating layer 3b, the second coating layer 3b is formed with a gentle angle so that the second coating layer 3b can be always coated in the vertical direction. It is formed so as to be wrapped between 3a and 3a so as to ensure the adhesion and stability of the function of the second coating layer, and at the lower end of the coating 3, the surface of the third coating layer 3c and the inner wall surface of the mold in which the coating 3 is not formed. Film 3 so that there is no step at the boundary with
Was formed.
【0033】鋳造に際しては、鋳型内溶鋼にサルファー
添加を行い、前記サルファー添加時に鋳型出側位置にあ
った鋳片の切断断面のサルファープリントによって、凝
固シェルの厚み分布を調査した。また、表面割れは、鋳
造された鋳片の表面観察により、単位面積当たりの割れ
長さ(m/m2 )で評価した。At the time of casting, sulfur was added to the molten steel in the mold, and the thickness distribution of the solidified shell was investigated by the sulfur print of the cut cross section of the slab at the mold outlet side when the sulfur was added. The surface crack was evaluated by the crack length per unit area (m / m 2 ) by observing the surface of the cast slab.
【0034】その結果、鋳造後の鋳型内の被膜3の観察
では、クラックや剥離が見られなかったしパウダーの固
着もなかった。また、鋳片の品質については、サルファ
ープリントからの凝固シェルの厚み分布は、凝固シェル
の均一度(=最薄凝固シェル厚/平均凝固シェル厚))
で評価すると、従来例の銅製鋳型による凝固シェル均一
度が0.70であるのに対して、被膜3を形成した本発
明の銅製鋳型による場合には、0.85と凝固均一度が
向上した。As a result, in observing the coating film 3 in the mold after casting, no crack or peeling was observed and no powder adhered. Regarding the quality of the slab, the thickness distribution of the solidified shell from the sulfur print is the uniformity of the solidified shell (= thinn solidified shell thickness / average solidified shell thickness)).
When evaluated with, the uniformity of the solidification shell by the copper mold of the conventional example is 0.70, whereas in the case of the copper mold of the present invention in which the coating 3 is formed, the solidification uniformity is improved to 0.85. .
【0035】鋳片表面観察では、従来例の銅製鋳型によ
る鋳片表面の単位面積当たりの割れ長さが0.1m/m
2 であるのに対し、被膜3を形成した本発明の銅製鋳型
による場合には、0.0m/m2 と鋳片割れ長さが激減
した。Observation of the slab surface revealed that the crack length per unit area of the slab surface by the conventional copper mold was 0.1 m / m.
On the other hand, in the case of the copper mold of the present invention in which the coating 3 was formed, the length of the slab cracking was drastically reduced to 0.0 m / m 2 in contrast to 2 .
【0036】なお、本発明は、この実施例に限定される
ものではなく、請求項1〜請求項3を満足する範囲内
で、被膜層の形状、配置、形成条件等については、公知
の手段で代替することがある。例えば、ボンドコート層
としての第一被膜層にNiメッキ層を、緩冷却のための
断熱あるいは熱抵抗層としての第二被膜層にCo系金属
溶射層を、そしてパウダーの反応・固着防止層としての
第三被膜層にてNiメッキ層をそれぞれ形成した場合に
ついて述べたが、これに限定されるものではなく、例え
ば第一被膜層としては、メッキではNi−P、Ni−
B、溶射ではNiCrAlY、CoCrAlY、80N
i20Cr、NiCoCrAlY、第三被膜層として
は、Co−Ni、Co−W等を用いても同様の効果が得
られる。The present invention is not limited to this embodiment, and known means can be used for the shape, arrangement, forming conditions, etc. of the coating layer within the range satisfying claims 1 to 3. May be replaced by. For example, a Ni plating layer as a first coating layer as a bond coat layer, a Co-based metal spray layer as a second coating layer as a heat insulating or heat resistance layer for slow cooling, and a powder reaction / sticking prevention layer. The case where the Ni plating layer is formed by each of the third coating layers is described, but the present invention is not limited to this. For example, the first coating layer may be plated with Ni-P or Ni-
B, NiCrAlY, CoCrAlY, 80N for thermal spraying
The same effect can be obtained by using Co-Ni, Co-W, or the like as the i20Cr, NiCoCrAlY, and the third coating layer.
【0037】[0037]
【発明の効果】本発明の連続鋳造鋳型においては、メニ
スカス近傍の鋳型内面に、連続鋳造時、溶鋼を緩冷却す
るとともに、溶融パウダーと反応、固着しない被膜層を
強固に形成しているので、凝固シェルの均一な生成を促
進させ、表面性状の良好な鋳片を得ることができる。In the continuous casting mold of the present invention, on the inner surface of the mold in the vicinity of the meniscus, during continuous casting, the molten steel is slowly cooled, and the coating layer that does not adhere to and reacts with the molten powder is firmly formed. It is possible to promote the uniform formation of a solidified shell and obtain a slab with good surface properties.
【図1】本発明の実施例における連続鋳造用の鋳型の一
部を示す斜視図である。FIG. 1 is a perspective view showing a part of a casting mold for continuous casting according to an embodiment of the present invention.
【図2】本発明の実施例における連続鋳造用鋳型の被膜
の断面概要説明図である。FIG. 2 is a cross-sectional schematic explanatory view of a coating film of a continuous casting mold in an example of the present invention.
【図3】本発明の実施例における連続鋳造用鋳型の被膜
の形成例を示す拡大断面概要説明図である。FIG. 3 is an enlarged cross-sectional schematic explanatory view showing an example of forming a coating film of a continuous casting mold in an example of the present invention.
1 鋳型(銅板) 1o 凹部 1c 曲面 2 冷却箱 3 被膜層 3a 第一被膜層(ボンドコート層) 3b 第二被膜層(トップコート層) 3c 第三被膜層(オーバーコート層) 4 溶鋼 5a パウダー 5b 溶融パウダー 6 凝固シェル 1 Mold (copper plate) 1o Recess 1c Curved surface 2 Cooling box 3 Coating layer 3a First coating layer (bond coat layer) 3b Second coating layer (top coat layer) 3c Third coating layer (overcoat layer) 4 Molten steel 5a Powder 5b Molten powder 6 Solidified shell
Claims (3)
内壁面に、金属メッキあるいは金属系溶射によるボンド
コートとしての第一被膜層を形成し、この第一被膜層の
上面に、熱伝導率が20kcal/mhr℃以下の金属系合金の
溶射層からなる第二被膜層を形成し、さらに、この第二
被膜層の上面に金属メッキ層からなる第三被膜層を形成
したことを特徴とする連続鋳造用鋳型。1. A first coating layer as a bond coat by metal plating or metal-based thermal spraying is formed on the inner wall surface of a copper or copper alloy mold near the meniscus, and the thermal conductivity is on the upper surface of the first coating layer. Characterized in that a second coating layer made of a sprayed layer of a metal-based alloy having a temperature of 20 kcal / mhr ° C or less was formed, and a third coating layer made of a metal plating layer was further formed on the upper surface of the second coating layer. Continuous casting mold.
したことを特徴とする請求項1記載の連続鋳造鋳型。2. The continuous casting mold according to claim 1, wherein the second coating layer is a sprayed layer of Co-based alloy.
を、その熱抵抗Rが下式を満足するように形成したこと
を特徴とする請求項1又は請求項2記載の連続鋳造鋳
型。 19.0≦R≦37.0 R=δ/λ ここで、 δ:被膜厚み(μm) λ:熱伝導率(kcal/mhr℃)3. The continuous casting according to claim 1, wherein a coating layer composed of the first coating layer to the third coating layer is formed so that its thermal resistance R satisfies the following formula. template. 19.0 ≦ R ≦ 37.0 R = δ / λ where δ: coating thickness (μm) λ: thermal conductivity (kcal / mhr ° C.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8159595A JPH08281382A (en) | 1995-04-06 | 1995-04-06 | Mold for continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8159595A JPH08281382A (en) | 1995-04-06 | 1995-04-06 | Mold for continuous casting |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08281382A true JPH08281382A (en) | 1996-10-29 |
Family
ID=13750679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8159595A Withdrawn JPH08281382A (en) | 1995-04-06 | 1995-04-06 | Mold for continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08281382A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008049081A1 (en) * | 2006-10-18 | 2008-04-24 | Inframat Corporation | Casting molds coated for surface enhancement and methods of making them |
US9149868B2 (en) | 2005-10-20 | 2015-10-06 | Nucor Corporation | Thin cast strip product with microalloy additions, and method for making the same |
US9999918B2 (en) | 2005-10-20 | 2018-06-19 | Nucor Corporation | Thin cast strip product with microalloy additions, and method for making the same |
US10071416B2 (en) | 2005-10-20 | 2018-09-11 | Nucor Corporation | High strength thin cast strip product and method for making the same |
CN109843473A (en) * | 2016-10-19 | 2019-06-04 | 杰富意钢铁株式会社 | The continuous casing of continuous casting mold and steel |
US11193188B2 (en) | 2009-02-20 | 2021-12-07 | Nucor Corporation | Nitriding of niobium steel and product made thereby |
-
1995
- 1995-04-06 JP JP8159595A patent/JPH08281382A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9149868B2 (en) | 2005-10-20 | 2015-10-06 | Nucor Corporation | Thin cast strip product with microalloy additions, and method for making the same |
US9999918B2 (en) | 2005-10-20 | 2018-06-19 | Nucor Corporation | Thin cast strip product with microalloy additions, and method for making the same |
US10071416B2 (en) | 2005-10-20 | 2018-09-11 | Nucor Corporation | High strength thin cast strip product and method for making the same |
WO2008049081A1 (en) * | 2006-10-18 | 2008-04-24 | Inframat Corporation | Casting molds coated for surface enhancement and methods of making them |
US11193188B2 (en) | 2009-02-20 | 2021-12-07 | Nucor Corporation | Nitriding of niobium steel and product made thereby |
CN109843473A (en) * | 2016-10-19 | 2019-06-04 | 杰富意钢铁株式会社 | The continuous casing of continuous casting mold and steel |
EP3530373A4 (en) * | 2016-10-19 | 2019-08-28 | JFE Steel Corporation | Continuous casting mold and method for continuous casting of steel |
US11020794B2 (en) | 2016-10-19 | 2021-06-01 | Jfe Steel Corporation | Continuous casting mold and method for continuously casting steel |
CN109843473B (en) * | 2016-10-19 | 2022-01-28 | 杰富意钢铁株式会社 | Continuous casting mold and method for continuous casting of steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3955919B2 (en) | Protective coating for refractory material elements of metal continuous casting molds and refractory material elements protected by it | |
EP0130626A2 (en) | Composite metal articles | |
US5108668A (en) | Process for manufacturing device for casting lead grids for electric battery plates | |
US6942013B2 (en) | Casting steel strip | |
JP4336043B2 (en) | Steel strip continuous casting method | |
JPH08281382A (en) | Mold for continuous casting | |
JP5458019B2 (en) | Cast roll of twin roll type thin plate casting machine and surface treatment method thereof | |
US4688320A (en) | Method for producing dissimilar coating for continuous casting mold | |
JP3916388B2 (en) | Manufacturing method of continuous casting mold | |
US5651412A (en) | Strip casting with fluxing agent applied to casting roll | |
JPH09271904A (en) | Mold for continuous casting | |
CA1323745C (en) | Continuous casting mold with removable insert | |
EP0355940A2 (en) | Continuous casting mold with removable insert | |
JP3524684B2 (en) | Casting mold parts and casting equipment | |
US4744406A (en) | Horizontal continuous casting apparatus with break ring formed integral with mold | |
CN113015587B (en) | Mold for continuous casting of steel and method for continuous casting of steel | |
JP2000312952A (en) | Dipping nozzle for continuous casting | |
JP2941936B2 (en) | Heat-resistant body | |
JPH10175044A (en) | Mold for continuous casting and manufacture thereof | |
JP5061200B2 (en) | Mold with coating | |
JP3346089B2 (en) | Continuous casting mold | |
JPH0636963B2 (en) | Mold for continuous casting | |
JPH09164454A (en) | Continuous casting equipment of sheet metal | |
JP3380425B2 (en) | Twin drum type continuous casting drum | |
JP3634422B2 (en) | Continuous casting mold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020702 |