JPH08271832A - Micro-optical device - Google Patents

Micro-optical device

Info

Publication number
JPH08271832A
JPH08271832A JP8095890A JP9589096A JPH08271832A JP H08271832 A JPH08271832 A JP H08271832A JP 8095890 A JP8095890 A JP 8095890A JP 9589096 A JP9589096 A JP 9589096A JP H08271832 A JPH08271832 A JP H08271832A
Authority
JP
Japan
Prior art keywords
micro
individual
laser beam
optical device
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8095890A
Other languages
Japanese (ja)
Other versions
JP2991968B2 (en
Inventor
Werner Spaeth
シユペート ウエルナー
Groetsch Stefan
グレツチユ シユテフアン
Moser Ralf
モーザ ラルフ
Georg Bogner
ボークナー ゲオルク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7758100&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH08271832(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of JPH08271832A publication Critical patent/JPH08271832A/en
Application granted granted Critical
Publication of JP2991968B2 publication Critical patent/JP2991968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • G02B19/0057Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode in the form of a laser diode array, e.g. laser diode bar
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/123The splitting element being a lens or a system of lenses, including arrays and surfaces with refractive power
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping

Abstract

PROBLEM TO BE SOLVED: To provide a micro optical device easily adjustable and obtaining conversion efficiency between 90 and 100%. SOLUTION: A micro optical device converts a first laser beam flux, composed of a large number of individual beams of strip cross section radiated in an x-direction of an orthogonal coordinate system 5 from one or more laser diode bars or a plurality of individual laser diode chips, into a second laser beam flux 17. A beam parallelizing optical system 11 parallelizes the individual laser beams of strip cross section, divergent in a z-direction of the coordinate system 5, of the laser beam flux, and in succession, a deflecting mirror device converts a laser beam flux 31, formed of parallelized individual laser beams 12 of strip shape, into the second laser beam flux 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、1つまたはそれ以
上のレーザーダイオードバーまたは複数個の個別レーザ
ーダイオードチップから直交座標系のx方向に放射され
た、ストリップ状断面を有する多数の個別レーザービー
ムから成る第1のレーザービーム束を第2のレーザービ
ーム束に変換するためのマイクロ光学装置に関する。
FIELD OF THE INVENTION The present invention relates to a large number of individual laser beams having a strip-shaped cross section, which are emitted from one or more laser diode bars or a plurality of individual laser diode chips in the x direction of a Cartesian coordinate system. And a micro-optical device for converting a first laser beam bundle into a second laser beam bundle.

【0002】[0002]

【従来の技術】このようなマイクロ光学装置はたとえば
ホブス(J.R.Hobbs)著「ダイオード‐ポンプ
ド‐固体レーザー:オフセット平面鏡がレーザービーム
を変換する(「Diode pumped solid-state lasers : OF
Fset-plane mirros transformlaserbeam )」レーザー
‐フォーカス‐ワールド(Laser Focus Wprld)、199
4年5月、第47頁から知られている。そこに記載され
ているマイクロ光学装置は、間隔をおいて互いに平行に
配置されている2つの高反射性の鏡から成っている。両
鏡は互いに垂直および水平にずらされている。鏡面法線
に対して角度α、ここでは0°<α<190°で入射す
るレーザーダイオードバーの第1のレーザービーム束は
両鏡の間の適当な多数回の全反射により平行に並び合っ
て配置されているストリップ状の個別レーザービームか
ら成る第2のレーザービーム束に変換される。この鏡シ
ステムの主な難点は、有効なビーム束変換のために両鏡
の相互間の角度および鏡対と入射する第1のレーザービ
ーム束との間の角度の高精度の調整が必要であることに
ある。さらに、鏡対内での多数回反射に基づく反射損失
が非常に大きい。達成される最大変換効率は約70%で
ある。
2. Description of the Related Art Such a micro-optical device is disclosed in, for example, Hobbs (J.R. Hobbs), "Diode pumped solid-state lasers: OF".
Fset-plane mirros transform laserbeam) "Laser Focus Wprld, 199
Known from May 47, page 47. The micro-optical device described therein consists of two highly reflective mirrors arranged parallel to one another at intervals. Both mirrors are vertically and horizontally offset from each other. The first laser beam bundle of the laser diode bar, which is incident at an angle α with respect to the mirror normal, here 0 ° <α <190 °, is aligned in parallel by a suitable number of total reflections between the two mirrors. It is converted into a second laser beam bundle consisting of strip-shaped individual laser beams which are arranged. The main drawback of this mirror system is the need for precise adjustment of the angle between the two mirrors and the angle between the mirror pair and the incident first laser beam bundle for effective beam flux conversion. Especially. Furthermore, the reflection loss due to multiple reflections within the mirror pair is very large. The maximum conversion efficiency achieved is about 70%.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は、冒頭
に記載した種類のマイクロ光学装置であって、簡単に調
整可能であり、また90%と100%との間の変換効率
が得られるようなマイクロ光学装置を開発することにあ
る。さらに、この装置は望ましいコストで製造可能でな
ければならない。
The object of the present invention is a micro-optical device of the kind mentioned at the outset, which is easily adjustable and provides a conversion efficiency of between 90% and 100%. It is to develop such a micro optical device. Moreover, the device must be manufacturable at the desired cost.

【0004】[0004]

【課題を解決するための手段】この課題は、ビーム平行
化光学系がレーザービーム束の座標系のz方向に発散す
るストリップ状断面を有する個別レーザービームを平行
化し、また続いて偏向鏡装置が平行化されたストリップ
状の個別レーザービームから成るレーザービーム束を第
2のレーザービーム束に変換することにより解決され
る。
The object is to have a beam collimating optics collimate an individual laser beam having a strip-shaped cross-section diverging in the z direction of the coordinate system of the laser beam bundle, and subsequently a deflecting mirror device The solution is to convert the laser beam bundle, which consists of collimated strip-shaped individual laser beams, into a second laser beam bundle.

【0005】このマイクロ光学装置はたとえば、レーザ
ーダイオードバーから放射されるレーザー光の波長に対
して透過性の半導体材料から形成できる。レーザービー
ム束は、その場合、半導体材料内を導かれ得る。それに
よって個別レーザービームのビーム広がりが減ぜられ、
従ってまたビーム損失が減ぜられ得る。ビーム平行化光
学系および偏向鏡装置の構造は半導体技術上公知のエッ
チング技術を使用して製造され得る。それにより望まし
いコストでのマイクロ光学装置の製造が保証される。
The micro-optical device can be formed, for example, from a semiconductor material which is transparent to the wavelength of the laser light emitted from the laser diode bar. The laser beam bundle can then be guided in the semiconductor material. This reduces the beam spread of the individual laser beams,
Therefore, beam loss can also be reduced. The structure of the beam collimating optics and the deflecting mirror device can be manufactured using etching techniques known in semiconductor technology. This ensures the production of the micro-optical device at the desired cost.

【0006】[0006]

【実施例】以下、図1ないし図6と結び付けて4つの実
施例により本発明を一層詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail below with reference to four embodiments in combination with FIGS.

【0007】以下に説明する実施例はそれぞれ、図2に
よるレーザーダイオードバー6から放射されるレーザー
ビーム束8を変換する役割をする。レーザーダイオード
バー6は7つの個別レーザーダイオード7から成ってい
る。個別レーザーダイオード7のpn接合は直交座標系
5のx‐y平面に対して平行に位置している。各個別レ
ーザーダイオード7は、個別レーザーダイオードのpn
接合に対して平行には非常に弱い発散しか有しておら
ず、またこのpn接合に対して垂直には非常に強い発散
を有する幅Δyの個別レーザービーム9を送り出す。し
かし、以下では、説明を簡単にするため、個別レーザー
ダイオード7が、個別レーザーダイオード7のpn接合
に対して垂直にのみ発散し、またこのpn接合に対して
平行には平行である個別レーザービーム9を送り出すも
のと仮定する。
The embodiments described below each serve to convert the laser beam bundle 8 emitted from the laser diode bar 6 according to FIG. The laser diode bar 6 consists of seven individual laser diodes 7. The pn junction of the individual laser diode 7 is located parallel to the xy plane of the Cartesian coordinate system 5. Each individual laser diode 7 is a pn of an individual laser diode.
It emits an individual laser beam 9 of width Δy which has a very weak divergence parallel to the junction and a very strong divergence perpendicular to this pn junction. However, in the following, for the sake of simplicity of explanation, the individual laser diode 7 diverges only perpendicularly to the pn junction of the individual laser diode 7 and is parallel to and parallel to this pn junction. Suppose we are sending 9 out.

【0008】レーザーダイオードバー6の代わりに、す
べての実施例において、もちろん多数のレーザーダイオ
ードバーまたは複数個の個別レーザーダイオードチップ
が使用されていてもよい。
Instead of the laser diode bar 6, it is of course also possible to use a large number of laser diode bars or a plurality of individual laser diode chips in all embodiments.

【0009】本発明によるマイクロ光学装置の図1に概
要を示されている第1の実施例は底板1の上に構成され
ている。底板1はたとえばMo/Cu合金またはその熱
膨張係数がマイクロ光学装置の他の構成要素の熱膨張係
数に適合されている他の熱伝導性の良い材料から成って
いる。底板1の上面は垂直な段2により、直交座標系5
のx‐y平面に対して平行に位置している2つの平面
3、4に分割されている。レーザーダイオードバー6は
高いほうの平面3の上にろう付けまたは接着により、レ
ーザーダイオードバー6のレーザー光線出射面10が段
2の垂直平面と同一平面上で終わるように取付けられて
いる。個別レーザービーム9がこうしてx方向に放射さ
れる。
A first embodiment of a micro-optical device according to the present invention, which is outlined in FIG. 1, is constructed on a bottom plate 1. The bottom plate 1 is made of, for example, a Mo / Cu alloy or another material having a high thermal conductivity whose coefficient of thermal expansion is matched to that of other components of the micro-optical device. The upper surface of the bottom plate 1 is formed by the vertical step 2 and the rectangular coordinate system 5
Is divided into two planes 3, 4 lying parallel to the xy plane. The laser diode bar 6 is mounted on the upper plane 3 by brazing or gluing so that the laser beam emitting surface 10 of the laser diode bar 6 ends flush with the vertical plane of the step 2. The individual laser beam 9 is thus emitted in the x direction.

【0010】平凸円柱レンズ11が低いほうの平面4の
上に取付けられており、またその湾曲した表面でレーザ
ー光出射面10に境を接している。しかし、それは光出
射面10に対してわずかな間隔をおいて、湾曲した表面
および光出射面10が向かい合うように配置されていて
もよい。円柱レンズ11はたとえばガラス、合成樹脂ま
たは個別レーザーダイオードのレーザー光の波長に対し
て透過性の半導体材料から製造されている。半導体材料
は特にその大きい屈折率に基づいてこの応用に適してい
る。光波長λ>400nmに対してはたとえばSiC
が、λ>500nmに対してはGaPが、光波長λ>9
00nmに対してはGaAsが、またλ>1100nm
に対してはSiが使用され得る。円柱レンズ11は座標
系5のz方向に強く発散する個別レーザービーム9を平
行化する。円柱レンズ11からこうして、等しいストリ
ップ状断面を有する7つの平行化された個別レーザービ
ーム12から成るレーザービーム束31が出る。個別レ
ーザービーム12の断面‐長手方向中心軸線は座標系5
のy方向に対して平行な単一の直線の上に位置してい
る。図1中に縁側に配置されている平行化された個別レ
ーザービーム12はそれらのビーム軸線により示されて
いる。
A plano-convex cylindrical lens 11 is mounted on the lower plane 4 and its curved surface borders the laser beam emitting surface 10. However, it may be arranged such that the curved surface and the light emitting surface 10 face each other with a slight distance from the light emitting surface 10. The cylindrical lens 11 is made of, for example, glass, synthetic resin, or a semiconductor material that is transparent to the wavelength of the laser light of the individual laser diode. Semiconductor materials are particularly suitable for this application because of their high refractive index. For light wavelength λ> 400 nm, for example, SiC
However, when λ> 500 nm, GaP has a light wavelength λ> 9.
GaAs for 00 nm, and λ> 1100 nm
Si can be used for. The cylindrical lens 11 collimates the individual laser beam 9 which diverges strongly in the z direction of the coordinate system 5. The cylindrical lens 11 thus exits a laser beam bundle 31 consisting of seven collimated individual laser beams 12 of equal strip-shaped cross section. The cross section of the individual laser beam 12-the central axis of the longitudinal direction is the coordinate system 5
It is located on a single straight line parallel to the y-direction. The collimated individual laser beams 12 arranged on the edge side in FIG. 1 are indicated by their beam axes.

【0011】円柱レンズ11の代わりに回折光学系も使
用され得るし、円柱レンズおよび回折光学系の組み合わ
せも使用され得る。
A diffractive optical system can be used instead of the cylindrical lens 11, and a combination of a cylindrical lens and a diffractive optical system can also be used.

【0012】平面4の上にビーム伝播方向(+x方向)
に円柱レンズ11の後に7つの個別鏡13から成る鏡列
14が取付けられている。それはたとえば金属または半
導体材料から製造されており、また鏡面はたとえばアル
ミニウムまたはSiO2 /Siのような反射増強材料で
たとえば蒸着またはスパッタリングにより被覆および/
または研磨されている。個別鏡13の鏡面法線は平行化
された個別レーザービーム12のビーム軸線と45°の
角度を成し、また座標系5のx‐z平面に対して平行に
延びている。各個別鏡13はその隣の個別鏡13にくら
べてx方向にΔz+εだけ平行シフトされており、従っ
て鏡列14はストリップ状構造を有する。Δzはz方向
のビーム高さ、またεはレーザービーム束31をレーザ
ービーム束17に変換した後の個別レーザービーム12
の正確に長方形の結像の際にストリップ状の個別レーザ
ービーム12の間の図4中に示されている間隔である。
個別鏡13の鏡面の幅および長さはΔy+δまたは少な
くともΔz/cos45°である。Δyはレーザーダイ
オードバー6から出た後の個別レーザービーム9の幅で
あり、またδは2つの個別レーザービーム9の間の間隔
である。鏡列14により、平行化された個別レーザービ
ーム12が90°だけz方向に偏向され、また同時にx
方向に、どの2つの個別レーザービーム12もそれらの
断面‐長手方向中心軸線を共通の直線上に位置しないよ
うに互いにずらされる。鏡列14の上に、7つの個別鏡
16を有する別の鏡列15が配置されている。鏡列15
はたとえば鏡列14と全く同様に製造されている。個別
鏡16の鏡面法線は、90°だけz方向に偏向された個
別レーザービーム12と45°の角度を成し、また座標
系5のy‐z平面に対して平行に延びている。各個別鏡
16はその隣の個別鏡16にくらべてy方向にΔy+δ
だけ平行シフトされており、従って鏡列15はストリッ
プ状構造を有する。個別鏡16の鏡面の幅および長さは
Δz+δまたは(Δy+δ)/cos45°である。個
別鏡13、16は、それぞれ2つの個別鏡13、16の
鏡面の中心点がz方向に正確に合致して位置するように
互いに配置されている。鏡列15は鏡列14からz方向
に偏向された個別レーザービーム12を90°だけy方
向に偏向させ、また個別レーザービーム12を図4のよ
うに互いに平行に結像する。
Beam propagation direction (+ x direction) on the plane 4
After the cylindrical lens 11, a mirror array 14 including seven individual mirrors 13 is attached. It is produced, for example, from a metal or semiconductor material, and the mirror surface is coated and / or with a reflection-enhancing material, for example aluminum or SiO2 / Si, for example by vapor deposition or sputtering.
Or it is polished. The mirror normal of the individual mirror 13 forms an angle of 45 ° with the beam axis of the collimated individual laser beam 12 and extends parallel to the xz plane of the coordinate system 5. Each individual mirror 13 is parallel-shifted by Δz + ε in the x-direction as compared to the adjacent individual mirror 13, so that the mirror array 14 has a strip-like structure. Δz is the beam height in the z direction, and ε is the individual laser beam 12 after the laser beam bundle 31 is converted into the laser beam bundle 17.
5 is the spacing shown in FIG. 4 between the individual laser beams 12 in strip form during the exact rectangular imaging of FIG.
The width and the length of the mirror surface of the individual mirror 13 are Δy + δ or at least Δz / cos 45 °. Δy is the width of the individual laser beam 9 after exiting the laser diode bar 6 and δ is the distance between the two individual laser beams 9. The mirror array 14 deflects the collimated individual laser beam 12 in the z direction by 90 ° and at the same time x
In the direction, no two individual laser beams 12 are offset from each other so that their cross-section central longitudinal axes do not lie on a common straight line. On top of the mirror row 14, another mirror row 15 with seven individual mirrors 16 is arranged. Mirror row 15
Is manufactured in exactly the same manner as the mirror array 14, for example. The mirror normal of the individual mirror 16 makes an angle of 45 ° with the individual laser beam 12 which is deflected in the z direction by 90 ° and extends parallel to the yz plane of the coordinate system 5. Each individual mirror 16 has Δy + δ in the y direction as compared with the adjacent individual mirror 16.
Only parallel-shifted, and thus the mirror array 15 has a strip-like structure. The width and length of the mirror surface of the individual mirror 16 are Δz + δ or (Δy + δ) / cos 45 °. The individual mirrors 13 and 16 are arranged so that the center points of the mirror surfaces of the two individual mirrors 13 and 16 are located exactly in the z direction. The mirror array 15 deflects the individual laser beams 12 deflected from the mirror array 14 in the z direction by 90 ° in the y direction, and images the individual laser beams 12 parallel to each other as shown in FIG.

【0013】本発明によるマイクロ光学装置の第2の実
施例の図3中に概要を示されている偏向鏡装置は同じく
それぞれ7つの個別鏡19、20から成る2つの鏡列1
8、21から成っている。個別鏡19、20の配置およ
び大きさならびにマイクロ光学装置のその他の構成要素
の配置は第1の実施例と同一である。鏡列14、15と
の相違点は、個別レーザービーム12が円柱レンズ11
の後で空気中ではなく、個別レーザーダイオードから放
射されるレーザー光の波長に対して透過性の媒体中を導
かれていることにある。この実施例ではこうして光透過
性の媒体と空気または他の境する媒体との間の境界面が
個別鏡19、20の鏡面を構成する。個別鏡19、20
はたとえば透過性の媒体から成る単一の直方体からのク
リアランスから形成されている。媒体としてはガラスお
よび合成樹脂とならんで、たとえば光波長λ>400n
mに対してはSiCが、λ>550nmに対してはGa
Pが、光波長λ>900nmに対してはGaAsが、ま
たλ>1100nmに対してはSiが使用され得る。こ
れらの半導体材料の利点は、それらの高い屈折率に基づ
いて個別鏡19、20の鏡面の被覆が必要でないことで
ある。ガラスの使用の際には鏡面は反射特性の改善のた
めにたとえばアルミニウムまたは他の適当な材料により
被覆され得る。被覆方法としては蒸着、スパッタリン
グ、CVDまたは半導体プロセス技術から知られている
他の方法が応用され得る。
A deflecting mirror arrangement, which is shown schematically in FIG. 3 of a second embodiment of the micro-optical device according to the invention, also comprises two mirror arrays 1 each consisting of seven individual mirrors 19, 20.
It consists of 8 and 21. The arrangement and size of the individual mirrors 19 and 20 and the arrangement of the other components of the micro-optical device are the same as in the first embodiment. The difference from the mirror arrays 14 and 15 is that the individual laser beam 12 has a cylindrical lens 11
Is not guided in the air, but in a medium transparent to the wavelength of the laser light emitted from the individual laser diode. In this embodiment, the interface between the light-transmissive medium and the air or other bordering medium thus constitutes the mirror surface of the individual mirrors 19, 20. Individual mirror 19, 20
Are formed from a single rectangular parallelepiped of, for example, a permeable medium. As a medium, along with glass and synthetic resin, for example, light wavelength λ> 400n
SiC for m, Ga for λ> 550 nm
P may be GaAs for light wavelengths λ> 900 nm and Si for λ> 1100 nm. The advantage of these semiconductor materials is that, due to their high refractive index, no mirror coating of the individual mirrors 19, 20 is required. When using glass, the specular surface may be coated, for example with aluminum or other suitable material, to improve the reflective properties. As the coating method, vapor deposition, sputtering, CVD or other methods known from the semiconductor process technology can be applied.

【0014】第2の実施例では平行な個別ビーム12が
光入射面22を通って鏡列18に入り、また個別鏡19
において90°だけz方向に偏向され、また同時にx方
向に互いにずらされる。続いて個別レーザービーム12
が個別鏡20により90°だけy方向に偏向され、また
光出射面23を通って鏡列21から出る。
In the second embodiment, the parallel individual beams 12 enter the mirror array 18 through the light incident surface 22 and also the individual mirrors 19.
At 90 ° in the z direction and at the same time are offset from each other in the x direction. Then individual laser beam 12
Are deflected by 90 ° in the y direction by the individual mirrors 20 and exit the mirror array 21 through the light exit surface 23.

【0015】図4は第1および第2の実施例による偏向
鏡装置によるレーザービーム束31の変換の概要を示
す。7つの平行化された個別レーザービーム12から成
るレーザービーム束31は、間隔εをおいて平行に並び
合って配置された7つの平行化された個別レーザービー
ム12から成る長方形のレーザービーム束17に変換さ
れる。
FIG. 4 shows an outline of conversion of the laser beam bundle 31 by the deflecting mirror device according to the first and second embodiments. A laser beam bundle 31 composed of seven collimated individual laser beams 12 is converted into a rectangular laser beam bundle 17 composed of seven collimated individual laser beams 12 arranged in parallel at an interval ε. To be converted.

【0016】上記の第1および第2の実施例の簡単化
は、鏡列14または18が単一のより大きい鏡により置
換されることにより達成され得る。この鏡は、その鏡面
法線が座標系5のx‐y平面と45°の角度をなし、ま
たx‐z平面とγ>0°の角度をなすように取付けられ
ていなければならない。斜めの鏡の幅は(レーザーダイ
オードバー6の長さ)*cosyであり、また斜めの鏡
の高さは少なくともΔz/cos45°である。鏡列1
5または21は構造に関して不変にとどまる。しかし個
別鏡16または20の幅は(Δy+δ)*tanyであ
る。
A simplification of the first and second embodiments described above can be achieved in that the mirror array 14 or 18 is replaced by a single larger mirror. The mirror must be mounted such that its mirror normal forms an angle of 45 ° with the xy plane of coordinate system 5 and an angle of γ> 0 ° with the xz plane. The width of the oblique mirror is (length of the laser diode bar 6) * cosy, and the height of the oblique mirror is at least Δz / cos 45 °. Mirror row 1
5 or 21 remains unchanged with respect to structure. However, the width of the individual mirror 16 or 20 is (Δy + δ) * tany.

【0017】本発明によるマイクロ光学装置の第3の実
施例は、各々が90°偏向を行う2つの鏡列の代わりに
単一の鏡列24を有する。図5に示されているこの鏡列
24は7つの個別鏡25から成っており、これらの個別
鏡の鏡面法線は座標系5のx‐z平面と45°の角度を
なし、またx‐y平面とα>0°の角度をなしている。
個別鏡25の鏡面の中心点は、座標系5のy軸に対して
平行に延びている単一の直線の上に位置しており、また
互いにΔy+δの間隔を有する。個別鏡25の長さは少
なくともΔy/cos45°であり、またその幅は少な
くともΔz/cosαである。角度αは、各々の平行化
された個別レーザービーム12が付属の個別鏡25にお
ける反射の後に+y方向に後続の個別鏡25を越えて導
かれているように選ばれている。結像される個別レーザ
ービーム29の間の間隔ηを可能なかぎり小さくするた
め、個別鏡25の幅および角度αは可能なかぎり小さく
選び必要がある。角度αの最小の大きさは個別レーザー
ダイオードの間の間隔および個別鏡25の幅に関係して
いる。
A third embodiment of the micro-optical device according to the invention has a single mirror row 24 instead of two mirror rows, each of which makes a 90 ° deflection. This mirror row 24 shown in FIG. 5 consists of seven individual mirrors 25 whose mirror normals form an angle of 45 ° with the xz plane of the coordinate system 5 and x- It makes an angle of α> 0 ° with the y-plane.
The center points of the mirror surfaces of the individual mirrors 25 are located on a single straight line extending parallel to the y-axis of the coordinate system 5 and are spaced apart from each other by Δy + δ. The individual mirror 25 has a length of at least Δy / cos 45 ° and a width of at least Δz / cos α. The angle α is chosen such that each collimated individual laser beam 12 is guided in the + y direction over the following individual mirror 25 after reflection at the associated individual mirror 25. In order to make the spacing η between the individual laser beams 29 to be imaged as small as possible, the width of the individual mirror 25 and the angle α should be selected as small as possible. The minimum magnitude of the angle α is related to the spacing between the individual laser diodes and the width of the individual mirror 25.

【0018】本発明によるマイクロ光学装置の図6に概
要を示されている第4の実施例は原理的に第3の実施例
と同一である。相違点は、個別鏡27を有する鏡列26
が、個別レーザービームが空気中ではなく光導波媒体中
を導かれるように構成されていることである。この媒体
は個別レーザーダイオードから放射されるレーザー光の
波長に対して透過性である。鏡列27はたとえば個別レ
ーザーダイオードのレーザー光に対して透過性の媒体か
ら成る直方体からの楔状のクリアランスから形成されて
いる。鏡面はその反射特性の改善のためにたとえばアル
ミニウムマイクロプロセッサSiO2 /Si(場合によ
っては交互層、すなわち交互にSiO2およびSi)に
より被覆され、および/または研磨されている。鏡列2
6は、同じくレーザー光の波長に対して透過性の材料か
ら成る結合板28により円柱レンズ11に結合されてい
る。しかし、鏡列26および結合板28は単一の部品か
ら成っていてもよい。同じく、結合板28の代わりに、
鏡列26とレーザーダイオードバーとの間に、円柱レン
ズ11および/または他のレンズが取付けられており、
またそれらが構成されている板が配置されていてもよ
い。この板は半導体材料から成っていてよい。レンズは
従来からの半導体プロセスにより製造されていてよい。
The fourth embodiment of the micro-optical device according to the invention, which is shown schematically in FIG. 6, is identical in principle to the third embodiment. The difference is that the mirror array 26 having the individual mirrors 27
However, the individual laser beams are configured to be guided in the optical waveguide medium rather than in the air. This medium is transparent to the wavelength of the laser light emitted by the individual laser diodes. The mirror array 27 is formed of, for example, a wedge-shaped clearance from a rectangular parallelepiped made of a medium that is transparent to the laser light of the individual laser diode. The mirror surface is coated and / or polished, for example with an aluminum microprocessor SiO2 / Si (possibly alternating layers, alternating SiO2 and Si), to improve its reflection properties. Mirror row 2
6 is coupled to the cylindrical lens 11 by a coupling plate 28 which is also made of a material that is transparent to the wavelength of the laser light. However, the mirror array 26 and the coupling plate 28 may be composed of a single component. Similarly, instead of the connecting plate 28,
A cylindrical lens 11 and / or another lens is mounted between the mirror array 26 and the laser diode bar,
Moreover, the plate which comprises them may be arrange | positioned. This plate may consist of semiconductor material. The lens may be manufactured by conventional semiconductor processes.

【0019】図7は第3および第4の実施例による偏向
鏡装置によるレーザービーム束31の変換の代用を示
す。7つの平行化されたストリップ状の個別レーザービ
ーム12から成るレーザービーム束31が、間隔ηをお
いて平行に並び合って配置された7つの平行化されたス
トリップ状の個別レーザービーム29から成る平行四辺
形状のレーザービーム束30に変換される。
FIG. 7 shows a substitution of the conversion of the laser beam bundle 31 by the deflecting mirror arrangement according to the third and fourth embodiments. A laser beam bundle 31 composed of seven collimated strip-shaped individual laser beams 12 is composed of seven collimated strip-shaped individual laser beams 29 arranged in parallel at an interval η. It is converted into a quadrilateral laser beam bundle 30.

【0020】こで再び指摘すべきことは、個別レーザー
ダイオード7のpn接合に対して平行にある個別レーザ
ービーム9は先に仮定したように正確に平行ではなく弱
く発散していることである。従って、鏡寸法は相応に適
合されなければならない。先に示した最小寸法はより大
きい値に向けて変化する。同じことが、個別レーザービ
ーム12が正確に平行化されておらずに弱く発散してい
る場合にも当てはまる。計算のためにはその場合に常
に、ビーム方向に光出射面10から最も遠くに離れてい
る鏡の鏡面におけるΔyおよびΔzの値が決定的であ
る。
It should be pointed out again here that the individual laser beam 9 parallel to the pn junction of the individual laser diode 7 is not exactly parallel as previously assumed and is weakly divergent. Therefore, the mirror dimensions must be adapted accordingly. The minimum dimensions given above change towards larger values. The same applies if the individual laser beams 12 are not exactly collimated and are weakly diverging. The value of Δy and Δz at the mirror surface of the mirror furthest away from the light exit surface 10 in the beam direction is always decisive for the calculation.

【0021】光学的媒体内で個別レーザービーム9、1
2、29を導くことは、その広がりが避けられ得るとい
う利点を有する。有利なことに、第2および第3の実施
例では、円柱レンズ11の光出射面10が直接に鏡列1
8または結合板28の光入射面22または32と隣接し
得る。それによりマイクロ光学装置内で、反射損失を惹
起する光学的境界面の数が最小化され得る。鏡列および
円柱レンズを一体の部品から製造することも考えられ
る。
Individual laser beams 9, 1 in an optical medium
Guiding 2,29 has the advantage that its spread can be avoided. Advantageously, in the second and third embodiments, the light exit surface 10 of the cylindrical lens 11 is directly connected to the mirror array 1.
8 or the light incident surface 22 or 32 of the coupling plate 28 may be adjacent. Thereby, the number of optical interfaces causing reflection losses can be minimized in the micro-optical device. It is also conceivable to manufacture the mirror row and the cylindrical lens from one piece.

【0022】上記の鏡装置および円柱レンズは、それら
がコスト的に望ましい方法により製造され得る点で有利
な仕方で優れている。
The mirror devices and cylindrical lenses described above are advantageous in that they can be manufactured in a cost-desirable manner.

【0023】半導体材料から成る平凸円柱レンズはたと
えばウェハの上に公知のエッチング法により製造可能で
ある。ウェハは次いで適当な長さおよび幅の個別レンズ
に切断される。
A plano-convex cylindrical lens made of a semiconductor material can be manufactured on a wafer by a known etching method. The wafer is then cut into individual lenses of suitable length and width.

【0024】鏡列はたとえば半導体プロセス技術で公知
のエッチング法によりSi、GaP、GaAs、Si
C、金属またはガラスから製造され得る。しかし、また
合成樹脂、ガラスまたは金属に対するダイキャスト、プ
レスまたは注型法も使用され得る。型を製造するため、
たとえばいわゆるLIGA法も使用され得る。鏡構造は
たとえば微細精密ダイアモンド旋削法のような機械的方
法によっても製造され得る。構造化されたガラス板をア
ノーディック‐ボンディング、ろう付けまたは接着によ
り並べることも可能である。合成樹脂の場合は鏡構造は
機械的加工により、または射出成型部品として製造され
得る。
The mirror array is made of, for example, Si, GaP, GaAs, Si by an etching method known in the semiconductor process technology.
It can be manufactured from C, metal or glass. However, also die casting, pressing or casting methods for synthetic resins, glass or metals can be used. To make molds,
For example, the so-called LIGA method can also be used. The mirror structure can also be manufactured by mechanical methods such as, for example, fine precision diamond turning. It is also possible to line up the structured glass plates by anodic bonding, brazing or gluing. In the case of synthetic resins, the mirror structure can be manufactured by mechanical machining or as an injection-molded part.

【0025】ここで説明を完全なものとするためになお
言及すべきことは、実施例中に説明されている偏向鏡装
置は専ら7つの個別レーザービームに対して構成されて
いるが、本発明によるマイクロ光学装置は任意の数の個
別レーザービームに対して使用可能であるということで
ある。その場合、個別鏡の数が個別レーザービームの数
に適合されていさえすればよい。
For the sake of completeness of the description here, it should be mentioned that the deflecting mirror device described in the examples is designed exclusively for seven individual laser beams. Is that the micro-optical device according to can be used for any number of individual laser beams. In that case, the number of individual mirrors need only be adapted to the number of individual laser beams.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるマイクロ光学装置の第1の実施例
の概要斜視図。
FIG. 1 is a schematic perspective view of a first embodiment of a micro-optical device according to the present invention.

【図2】レーザーダイオードバーの一部分の概要図。FIG. 2 is a schematic view of a portion of a laser diode bar.

【図3】本発明によるマイクロ光学装置の第2の実施例
の偏向鏡装置の概要斜視図。
FIG. 3 is a schematic perspective view of a deflecting mirror device of a second embodiment of the micro-optical device according to the present invention.

【図4】第1および第2の実施例によるマイクロ光学装
置によるビーム束変換の概要を示す図。
FIG. 4 is a diagram showing an outline of beam bundle conversion by the micro optical device according to the first and second embodiments.

【図5】本発明によるマイクロ光学装置の第3の実施例
の偏向鏡装置の概要斜視図。
FIG. 5 is a schematic perspective view of a deflecting mirror device of a third embodiment of the micro-optical device according to the present invention.

【図6】本発明によるマイクロ光学装置の第4の実施例
の概要斜視図。
FIG. 6 is a schematic perspective view of a fourth embodiment of the micro-optical device according to the present invention.

【図7】第3および第4の実施例によるマイクロ光学装
置によるビーム束変換の概要を示す図。
FIG. 7 is a diagram showing an outline of beam bundle conversion by the micro optical device according to the third and fourth embodiments.

【符号の説明】[Explanation of symbols]

1 底板 2 段 3、4 平面 5 座標系 6 レーザーダイオードバー 7 個別レーザーダイオード 8 第1のレーザービーム束 9 個別レーザービーム 11 ビーム平行化光学系(円柱レンズ) 12、29 個別レーザービーム 14、15 鏡列 17、30 第2のレーザービーム束 24 鏡列 1 Bottom plate 2 steps 3, 4 Plane 5 Coordinate system 6 Laser diode bar 7 Individual laser diode 8 First laser beam bundle 9 Individual laser beam 11 Beam collimating optical system (cylindrical lens) 12, 29 Individual laser beam 14, 15 Mirror Row 17, 30 Second laser beam bundle 24 Mirror row

───────────────────────────────────────────────────── フロントページの続き (72)発明者 シユテフアン グレツチユ ドイツ連邦共和国 93051 レーゲンスブ ルク ルートウイツヒ‐トーマ‐シユトラ ーセ 35 (72)発明者 ラルフ モーザ ドイツ連邦共和国 93326 アベンスベル ク ゼーヴエーク 42 (72)発明者 ゲオルク ボークナー ドイツ連邦共和国 93051 レーゲンスブ ルク フランツウインチンガーヴエーク 8 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Siyuttefan Gretschyu Germany 93051 Regensbruck Ludwig-Thoma-Syutrase 35 (72) Inventor Ralph Mosa Federal Republic of Germany 93326 Abensberg Zeveak 42 (72) Inventor Georg Vokkner Germany 93051 Regensburg Franz Winchinger Wake 8

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 1つまたはそれ以上のレーザーダイオー
ドバーまたは複数個の個別レーザーダイオードチップか
ら直交座標系(5)のx方向に放射された、ストリップ
状断面を有する多数の個別レーザービーム(9)から成
る第1のレーザービーム束(8)を第2のレーザービー
ム束(17、30)に変換するためのマイクロ光学装置
において、ビーム平行化光学系(11)がレーザービー
ム束(8)の座標系(5)のz方向に発散するストリッ
プ状断面を有する個別レーザービーム(9)を平行化
し、また続いて偏向鏡装置が平行化されたストリップ状
の個別レーザービーム(12)から成るレーザービーム
束(31)を第2のレーザービーム束(17、30)に
変換することを特徴とするマイクロ光学装置。
1. A number of individual laser beams (9) having a strip-shaped cross section, emitted from one or more laser diode bars or a plurality of individual laser diode chips in the x-direction of a Cartesian coordinate system (5). In a micro-optical device for converting a first laser beam bundle (8) into a second laser beam bundle (17, 30), a beam collimating optical system (11) coordinates the laser beam bundle (8). A laser beam bundle comprising collimated individual laser beams (9) having a strip-shaped cross section diverging in the z-direction of the system (5) and subsequently consisting of strip-shaped individual laser beams (12) collimated by a deflecting mirror arrangement. A micro-optical device, characterized in that (31) is converted into a second laser beam bundle (17, 30).
【請求項2】 第1のレーザービーム束(8)の個別レ
ーザービーム(9)のストリップ状の断面の長手方向中
心軸線が、座標系(5)のy方向に延びている単一の直
線上に位置していることを特徴とする請求項1記載のマ
イクロ光学装置。
2. The longitudinal central axis of the strip-shaped cross section of the individual laser beams (9) of the first laser beam bundle (8) is on a single straight line extending in the y direction of the coordinate system (5). The micro-optical device according to claim 1, wherein the micro-optical device is located at.
【請求項3】 第2のレーザービーム束(17、30)
が多数の平行に並び合って配置されたストリップ状断面
を有する個別レーザービーム(12、29)を有するこ
とを特徴とする請求項1または2記載のマイクロ光学装
置。
3. A second laser beam bundle (17, 30)
3. Micro-optical device according to claim 1 or 2, characterized in that it comprises a number of individual laser beams (12, 29) having a strip-shaped cross section arranged side by side in parallel.
【請求項4】 平行化されたストリップ状の個別レーザ
ービーム(12)から成るレーザービーム束(31)お
よび/または第2のレーザービーム束(17、30)
が、それぞれ等しい断面を有する多数の個別レーザービ
ーム(9または12、29)を有することを特徴とする
請求項1ないし3の1つに記載のマイクロ光学装置。
4. A laser beam bundle (31) comprising collimated strip-shaped individual laser beams (12) and / or a second laser beam bundle (17, 30).
Micro-optical device according to one of the preceding claims, characterized in that it has a number of individual laser beams (9 or 12, 29) each having an equal cross section.
【請求項5】 ビーム平行化光学系が円柱レンズ(1
1)を有することを特徴とする請求項1ないし4の1つ
に記載のマイクロ光学装置。
5. The beam collimating optical system comprises a cylindrical lens (1
The micro-optical device according to claim 1, further comprising 1).
【請求項6】 ビーム平行化光学系が回折光学系を有す
ることを特徴とする請求項1ないし4の1つに記載のマ
イクロ光学装置。
6. The micro-optical device according to claim 1, wherein the beam collimating optical system has a diffractive optical system.
【請求項7】 ビーム平行化光学系が追加的に回折光学
系を有することを特徴とする請求項5記載のマイクロ光
学装置。
7. The micro-optical device according to claim 5, wherein the beam collimating optical system additionally has a diffractive optical system.
【請求項8】 偏向鏡装置が第1および第2の鏡列(1
4、15)を有し、第1の鏡列(14)が平行化された
個別レーザービーム(12)をx方向から偏向させ、ま
た同時に、平行化された個別レーザービーム(12)の
断面の長手方向中心軸線が互いに間隔をおいて平行に延
びている直線上に位置しているように、x方向に互いに
ずらし、また第2の鏡列(15)が互いにずらされた平
行化された個別レーザービーム(12)を平行に並び合
って結像することを特徴とする請求項1ないし7の1つ
に記載のマイクロ光学装置。
8. The deflecting mirror device comprises first and second mirror rows (1
4, 15), the first mirror array (14) deflects the collimated individual laser beam (12) from the x-direction and at the same time the cross section of the collimated individual laser beam (12) Parallelized individual offsets with respect to each other in the x-direction and offset with respect to each other in the x-direction, such that the central longitudinal axes lie on straight lines running parallel to one another. Micro-optical device according to one of the claims 1 to 7, characterized in that the laser beams (12) are imaged side by side in parallel.
【請求項9】 偏向鏡装置が単一の鏡列(24)を有
し、この鏡列(24)が平行化された個別レーザービー
ム(12)をx方向から偏向させ、z方向に互いにずら
し、また平行に並び合って結像することを特徴とする請
求項1ないし7の1つに記載のマイクロ光学装置。
9. The deflecting mirror device comprises a single mirror row (24), which deflects collimated individual laser beams (12) from the x-direction and shifts them from each other in the z-direction. 8. The micro-optical device according to claim 1, wherein the micro-optical devices are arranged in parallel and form an image.
【請求項10】 ビーム平行化光学系および偏向鏡装置
が、レーザーダイオードバーから放射されるレーザー光
の波長に対して透過性の半導体材料から成っており、ま
たレーザービームが半導体材料の内部に導かれているこ
とを特徴とする請求項1ないし9の1つに記載のマイク
ロ光学装置。
10. The beam collimating optical system and the deflecting mirror device are made of a semiconductor material transparent to the wavelength of the laser light emitted from the laser diode bar, and the laser beam is guided inside the semiconductor material. Micro-optical device according to one of the claims 1 to 9, characterized in that it is present.
【請求項11】 ビーム平行化光学系および偏向鏡装置
の構造が半導体技術上公知のエッチング技術により製造
されることを特徴とする請求項10記載のマイクロ光学
装置の製造方法。
11. The method of manufacturing a micro-optical device according to claim 10, wherein the structures of the beam collimating optical system and the deflecting mirror device are manufactured by an etching technique known in semiconductor technology.
JP8095890A 1995-03-29 1996-03-27 Micro optical device Expired - Lifetime JP2991968B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19511593A DE19511593C2 (en) 1995-03-29 1995-03-29 Micro-optical device
DE19511593.7 1995-03-29

Publications (2)

Publication Number Publication Date
JPH08271832A true JPH08271832A (en) 1996-10-18
JP2991968B2 JP2991968B2 (en) 1999-12-20

Family

ID=7758100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8095890A Expired - Lifetime JP2991968B2 (en) 1995-03-29 1996-03-27 Micro optical device

Country Status (9)

Country Link
US (1) US5808323A (en)
EP (1) EP0735397B1 (en)
JP (1) JP2991968B2 (en)
KR (1) KR960035074A (en)
CN (1) CN1080417C (en)
CA (1) CA2173059C (en)
DE (2) DE19511593C2 (en)
IN (1) IN187666B (en)
TW (1) TW317034B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215443A (en) * 2000-02-04 2001-08-10 Hamamatsu Photonics Kk Optical device
JP2002303837A (en) * 2000-12-16 2002-10-18 Lissotschenko Vitalij Irradiation system generating modulated light beam
US9645389B2 (en) 2012-08-29 2017-05-09 Fujikura Ltd. Light guiding device, method for producing same, and LD module
JP2017120301A (en) * 2015-12-28 2017-07-06 ウシオ電機株式会社 Prism and light source device
JP2017146602A (en) * 2016-02-15 2017-08-24 リモ パテントフェルヴァルトゥング ゲーエムベーハー ウント コー.カーゲーLIMO Patentverwaltung GmbH & Co.KG Device for shaping laser beam
US9774171B2 (en) 2012-12-27 2017-09-26 Fujikura Ltd. Multiplexer, multiplexing method, and LD module using outside-reflecting double mirrors

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124973A (en) * 1996-02-23 2000-09-26 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device for providing the cross-section of the radiation emitted by several solid-state and/or semiconductor diode lasers with a specific geometry
DE19706279A1 (en) * 1997-02-18 1998-08-20 Siemens Ag Laser device
DE19706276B4 (en) * 1997-02-18 2011-01-13 Siemens Ag A semiconductor laser device and method of manufacturing a semiconductor laser device
DE69835216T2 (en) 1997-07-25 2007-05-31 Nichia Corp., Anan SEMICONDUCTOR DEVICE OF A NITRIDE CONNECTION
DE59813644D1 (en) * 1997-09-05 2006-08-31 Osram Opto Semiconductors Gmbh Immersion System
EP0903823B1 (en) 1997-09-22 2002-12-11 Osram Opto Semiconductors GmbH & Co. OHG Laser element incorporating a laser array and method of fabrication
US6303986B1 (en) 1998-07-29 2001-10-16 Silicon Light Machines Method of and apparatus for sealing an hermetic lid to a semiconductor die
JP3770014B2 (en) 1999-02-09 2006-04-26 日亜化学工業株式会社 Nitride semiconductor device
DE60043536D1 (en) 1999-03-04 2010-01-28 Nichia Corp NITRIDHALBLEITERLASERELEMENT
US6356577B1 (en) * 1999-07-15 2002-03-12 Silicon Light Machines Method and apparatus for combining light output from multiple laser diode bars
EP1076359B1 (en) * 1999-08-13 2011-02-23 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation device
US6504650B1 (en) 1999-10-19 2003-01-07 Anthony J. Alfrey Optical transformer and system using same
US6407870B1 (en) 1999-10-28 2002-06-18 Ihar Hurevich Optical beam shaper and method for spatial redistribution of inhomogeneous beam
DE10113019A1 (en) * 2001-03-17 2002-09-19 Lissotschenko Vitalij Beam shaper has boundary surface at which sub-beams are incident from different directions; one sub-beam passes through surface, the other is reflected to combine beams
CA2442712C (en) * 2001-03-30 2010-06-29 Nippon Steel Corporation Semiconductor laser device and solid-state laser device using the same
US6707591B2 (en) 2001-04-10 2004-03-16 Silicon Light Machines Angled illumination for a single order light modulator based projection system
US6782205B2 (en) 2001-06-25 2004-08-24 Silicon Light Machines Method and apparatus for dynamic equalization in wavelength division multiplexing
US6747781B2 (en) 2001-06-25 2004-06-08 Silicon Light Machines, Inc. Method, apparatus, and diffuser for reducing laser speckle
US6829092B2 (en) 2001-08-15 2004-12-07 Silicon Light Machines, Inc. Blazed grating light valve
US6800238B1 (en) 2002-01-15 2004-10-05 Silicon Light Machines, Inc. Method for domain patterning in low coercive field ferroelectrics
FI116010B (en) * 2002-05-22 2005-08-31 Cavitar Oy Method and laser device for producing high optical power density
US6767751B2 (en) 2002-05-28 2004-07-27 Silicon Light Machines, Inc. Integrated driver process flow
US6728023B1 (en) 2002-05-28 2004-04-27 Silicon Light Machines Optical device arrays with optimized image resolution
US6822797B1 (en) 2002-05-31 2004-11-23 Silicon Light Machines, Inc. Light modulator structure for producing high-contrast operation using zero-order light
US6829258B1 (en) 2002-06-26 2004-12-07 Silicon Light Machines, Inc. Rapidly tunable external cavity laser
US6714337B1 (en) 2002-06-28 2004-03-30 Silicon Light Machines Method and device for modulating a light beam and having an improved gamma response
US6813059B2 (en) 2002-06-28 2004-11-02 Silicon Light Machines, Inc. Reduced formation of asperities in contact micro-structures
US6801354B1 (en) 2002-08-20 2004-10-05 Silicon Light Machines, Inc. 2-D diffraction grating for substantially eliminating polarization dependent losses
CN2566292Y (en) * 2002-09-03 2003-08-13 钱定榕 Light beam distributor
US6712480B1 (en) 2002-09-27 2004-03-30 Silicon Light Machines Controlled curvature of stressed micro-structures
JP4153438B2 (en) 2003-01-30 2008-09-24 富士フイルム株式会社 Laser beam multiplexing method and apparatus
US6829077B1 (en) 2003-02-28 2004-12-07 Silicon Light Machines, Inc. Diffractive light modulator with dynamically rotatable diffraction plane
US6806997B1 (en) 2003-02-28 2004-10-19 Silicon Light Machines, Inc. Patterned diffractive light modulator ribbon for PDL reduction
CA2443494C (en) 2003-09-30 2009-04-07 Institut National D'optique Apparatus for reshaping an optical beam bundle
US20060280209A1 (en) * 2005-02-11 2006-12-14 Hans-Georg Treusch Beam combining methods and devices with high output intensity
US7830608B2 (en) * 2006-05-20 2010-11-09 Oclaro Photonics, Inc. Multiple emitter coupling devices and methods with beam transform system
US20070268572A1 (en) * 2006-05-20 2007-11-22 Newport Corporation Multiple emitter coupling devices and methods with beam transform system
US7680170B2 (en) * 2006-06-15 2010-03-16 Oclaro Photonics, Inc. Coupling devices and methods for stacked laser emitter arrays
US20070291373A1 (en) * 2006-06-15 2007-12-20 Newport Corporation Coupling devices and methods for laser emitters
US7866897B2 (en) * 2006-10-06 2011-01-11 Oclaro Photonics, Inc. Apparatus and method of coupling a fiber optic device to a laser
CN102545062A (en) * 2007-12-17 2012-07-04 奥兰若光电公司 Laser emitter modules and methods of assembly
CN102089943B (en) * 2008-05-08 2017-05-03 奥兰若光子公司 High brightness diode output methods and devices
TWI362769B (en) 2008-05-09 2012-04-21 Univ Nat Chiao Tung Light emitting device and fabrication method therefor
WO2010084001A1 (en) * 2009-01-23 2010-07-29 Limo Patentverwaltung Gmbh & Co. Kg Beam forming device for laser diode arrays
JP5299251B2 (en) * 2009-12-09 2013-09-25 セイコーエプソン株式会社 Light emitting device and projector
JP5740654B2 (en) 2010-01-22 2015-06-24 トゥー−シックス レイザー エンタープライズ ゲーエムベーハー Homogenization of far-field fiber-coupled radiation
DE102010031199B4 (en) 2010-07-09 2020-05-14 Jenoptik Optical Systems Gmbh Beam shaping apparatus and method
DE102010038571A1 (en) * 2010-07-28 2012-02-02 Jenoptik Laser Gmbh Device for beam shaping radiation beams of e.g. semiconductor laser elements, has reflective mirrors arranged in direction of radiation beams emitted by light sources and displaced with respect to each other
DE102010038572A1 (en) * 2010-07-28 2012-02-02 Jenoptik Laser Gmbh Apparatus and method for beam shaping
US8644357B2 (en) 2011-01-11 2014-02-04 Ii-Vi Incorporated High reliability laser emitter modules
DE102012107456A1 (en) * 2012-08-14 2014-02-20 Limo Patentverwaltung Gmbh & Co. Kg Arrangement for shaping laser radiation
WO2014167904A1 (en) * 2013-04-12 2014-10-16 シャープ株式会社 Reflective type image forming element and method for manufacturing reflective type image forming element
JP5767684B2 (en) * 2013-11-15 2015-08-19 株式会社フジクラ Light guiding device, manufacturing method, and LD module
JP5781188B1 (en) * 2014-03-26 2015-09-16 株式会社フジクラ Light guiding device, manufacturing method, and LD module
US9513483B2 (en) 2015-03-16 2016-12-06 Igor Gurevich Beam shaper system for laser diode array
CN105891977B (en) * 2016-06-16 2018-08-17 韩涛 A kind of compact laser
CN112394436B (en) * 2020-11-25 2021-07-06 中国科学院上海光学精密机械研究所 Asymmetric structure all-dielectric reflection type beam combination grating with 1064-nanometer waveband

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212066A (en) * 1988-02-18 1989-08-25 Fuji Photo Film Co Ltd Multi semiconductor laser beam source device
US5168401A (en) * 1991-05-07 1992-12-01 Spectra Diode Laboratories, Inc. Brightness conserving optical system for modifying beam symmetry
JPH05236216A (en) * 1992-02-24 1993-09-10 Ricoh Co Ltd Light source equipment in optical scanner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823357A (en) * 1986-11-10 1989-04-18 The United States Of America As Represented By The Secretary Of The Air Force Diffraction limited dichroic combiner diode laser
US5333077A (en) * 1989-10-31 1994-07-26 Massachusetts Inst Technology Method and apparatus for efficient concentration of light from laser diode arrays
US5369659A (en) * 1993-12-07 1994-11-29 Cynosure, Inc. Fault tolerant optical system using diode laser array
DE4438368C3 (en) * 1994-10-27 2003-12-04 Fraunhofer Ges Forschung Arrangement for guiding and shaping beams of a straight-line laser diode array

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212066A (en) * 1988-02-18 1989-08-25 Fuji Photo Film Co Ltd Multi semiconductor laser beam source device
US5168401A (en) * 1991-05-07 1992-12-01 Spectra Diode Laboratories, Inc. Brightness conserving optical system for modifying beam symmetry
JPH05236216A (en) * 1992-02-24 1993-09-10 Ricoh Co Ltd Light source equipment in optical scanner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215443A (en) * 2000-02-04 2001-08-10 Hamamatsu Photonics Kk Optical device
JP2002303837A (en) * 2000-12-16 2002-10-18 Lissotschenko Vitalij Irradiation system generating modulated light beam
US9645389B2 (en) 2012-08-29 2017-05-09 Fujikura Ltd. Light guiding device, method for producing same, and LD module
US9774171B2 (en) 2012-12-27 2017-09-26 Fujikura Ltd. Multiplexer, multiplexing method, and LD module using outside-reflecting double mirrors
JP2017120301A (en) * 2015-12-28 2017-07-06 ウシオ電機株式会社 Prism and light source device
JP2017146602A (en) * 2016-02-15 2017-08-24 リモ パテントフェルヴァルトゥング ゲーエムベーハー ウント コー.カーゲーLIMO Patentverwaltung GmbH & Co.KG Device for shaping laser beam

Also Published As

Publication number Publication date
TW317034B (en) 1997-10-01
DE19511593C2 (en) 1997-02-13
DE19511593A1 (en) 1996-10-24
US5808323A (en) 1998-09-15
CA2173059A1 (en) 1996-09-30
EP0735397B1 (en) 2002-06-12
EP0735397A3 (en) 1997-04-02
EP0735397A2 (en) 1996-10-02
JP2991968B2 (en) 1999-12-20
KR960035074A (en) 1996-10-24
CN1080417C (en) 2002-03-06
IN187666B (en) 2002-06-01
CA2173059C (en) 2000-03-14
CN1164657A (en) 1997-11-12
DE59609313D1 (en) 2002-07-18

Similar Documents

Publication Publication Date Title
JP2991968B2 (en) Micro optical device
US5592333A (en) Device for optically rotating light beams in a beam array
US6044096A (en) Packaged laser diode array system and method with reduced asymmetry
US9341856B2 (en) High brightness diode output methods and devices
US6778732B1 (en) Generation of high-power, high brightness optical beams by optical cutting and beam-shaping of diode lasers
EP2003484B1 (en) A Light Source
JP3649737B2 (en) Beam guidance formation mechanism from linear laser diode array
US8891579B1 (en) Laser diode apparatus utilizing reflecting slow axis collimators
JP4980329B2 (en) High power laser diode array including at least one high power diode laser and laser light source including the same
JP3589299B2 (en) Beam shaping device
US5986794A (en) Laser optics and diode laser
US5877898A (en) Arrangement for combining and shaping the radiation of a plurality of laser diode lines
US9235053B2 (en) Device and method for beam shaping
US20080019010A1 (en) High power and high brightness diode-laser array for material processing applications
US8358892B2 (en) Connection structure of two-dimensional array optical element and optical circuit
CN104820286B (en) Single emitter harness system
US6400512B1 (en) Refractive/reflective optical element multiple beam spacer
JP3043718B2 (en) Laser device and manufacturing method thereof
JPS58153388A (en) Monitoring method for semiconductor laser output beam
CN112310800A (en) Compact optical fiber coupling output semiconductor laser
JP2009168846A (en) Light condensing device and light condensing method
JP4084116B2 (en) Light source module and light source device
US6023548A (en) Device for the conversion of a plurality of light beams into a more compact arrangement of light beams
JP4740221B2 (en) Light source module and light source device
JP2005012105A (en) Semiconductor laser module

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990907

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term