JPH08270930A - Dust removing filter for coal burning and pressurized fluidized bed boiler - Google Patents

Dust removing filter for coal burning and pressurized fluidized bed boiler

Info

Publication number
JPH08270930A
JPH08270930A JP7860095A JP7860095A JPH08270930A JP H08270930 A JPH08270930 A JP H08270930A JP 7860095 A JP7860095 A JP 7860095A JP 7860095 A JP7860095 A JP 7860095A JP H08270930 A JPH08270930 A JP H08270930A
Authority
JP
Japan
Prior art keywords
filter
fluidized bed
combustion
negative catalyst
pressurized fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7860095A
Other languages
Japanese (ja)
Inventor
Kosuke Kusakari
浩介 草刈
Yukio Saito
幸雄 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7860095A priority Critical patent/JPH08270930A/en
Publication of JPH08270930A publication Critical patent/JPH08270930A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To reduce a thermal shock to be given at the time of backwash to a filter used for a coal burning and pressurized fluidized bed boiler in a coal burning and pressurized fluidized bed power generation system by allowing a ceramic porous body to carry a combustion negative catalyst, preferably a combustion negative catalyst composed of TiO2 and/or Nb2 O5 . CONSTITUTION: A ceramic porous body is allowed to carry a combustion negative catalyst, preferably a combustion negative catalyst composed of TiO2 and/or Nb2 O5 . The ceramic porous body may be the one which is selected from cordierite or from a-Al2 O3 and which has fine pores being-of the order of micron or submicron. A dust removing filter is made by such a method that the powder of a raw material for a ceramic filter, with which the combustion negative catalyst of TiO2 and/or Nb2 O5 is mixed, is sintered, or that a sintered ceramic porous body is impregnated with a solvent with the combustion negative catalyst dispersed therein, or such a solvent is applied to a sintered ceramic porous body, so that the combustion negative catalyst can be carried on the dust removing filter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、石炭加圧流動床発電シ
ステムの加圧流動床ボイラに関し、特にセラミックフィ
ルタを脱塵手段として用いる石炭加圧流動床ボイラ用脱
塵フィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressurized fluidized bed boiler for a coal pressurized fluidized bed power generation system, and more particularly to a dedusting filter for a coal pressurized fluidized bed boiler using a ceramic filter as a dust removing means.

【0002】[0002]

【従来の技術】省エネルギ並びに石油資源涸渇対策を目
的として、石炭の高効率利用が見直され、発電効率の高
い石炭加圧流動床発電システムが注目されている。
2. Description of the Related Art For the purpose of energy saving and measures against oil resource depletion, high efficiency utilization of coal has been reviewed and attention has been paid to a coal pressure fluidized bed power generation system having high power generation efficiency.

【0003】石炭加圧流動床発電システムは、加圧流動
床ボイラで発生する高温の石炭燃焼ガスを直接ガスター
ビンに送り発電するシステムで、高温での高効率脱塵技
術が必要不可欠である。
A coal pressurized fluidized bed power generation system is a system for directly sending high temperature coal combustion gas generated in a pressurized fluidized bed boiler to a gas turbine for power generation, and a high efficiency dedusting technique at high temperature is essential.

【0004】加圧流動床ボイラの石炭燃焼ガス(燃焼ガ
スと云う)は約800℃の高温であり、未燃固体炭素を
主体とする塵芥を数100mg/Nm3と多量に含む。
塵芥を多量に含有する燃焼ガスがガスタービンに送られ
ると、ガスタービン部品が激しくエロージョンしてしま
うので、塵芥を燃焼ガスから高効率で除去する必要があ
る。
The coal combustion gas (referred to as combustion gas) of the pressurized fluidized bed boiler has a high temperature of about 800 ° C. and contains a large amount of dust, which is mainly composed of unburned solid carbon, of several 100 mg / Nm 3 .
When the combustion gas containing a large amount of dust is sent to the gas turbine, the gas turbine parts are eroded violently, and therefore the dust needs to be removed from the combustion gas with high efficiency.

【0005】その脱塵手段としては、多段サイクロンの
使用も可能であるが集塵効率が低く、特に、燃焼ガス量
の変動によって、サイクロンの集塵効率が低下するとガ
スタービン動翼破損等が懸念される。
A multi-stage cyclone can be used as the dust removing means, but the dust collecting efficiency is low, and in particular, if the dust collecting efficiency of the cyclone is reduced due to fluctuations in the amount of combustion gas, there is concern that the turbine blades of the gas turbine will be damaged. To be done.

【0006】こうした観点から、最近ではCeramics B
ulltin,vol.70,No.9(1991)1491や、
旭硝子研究報告 vol.42,No.1(1992)81
に見られるように、高温燃焼ガス中の高効率脱塵手段と
してセラミックフィルタの使用が注目されている。
From this point of view, recently, Ceramics B
ulltin, vol. 70, No. 9 (1991) 1491,
Asahi Glass Research Report vol. 42, No. 1 (1992) 81
As can be seen from the above, the use of a ceramic filter has attracted attention as a highly efficient dust removing means in high temperature combustion gas.

【0007】これは、コージェライト、アルミナ、ムラ
イト、SiC等のミクロンないしサブミクロンオーダの
微細孔を持つ多孔質セラミックからなるフィルタを設け
たものである。上記多孔質セラミックの微細孔により高
い集塵効率が得られ、ガスタービンのエロージョンの問
題は解消される。
This is a filter provided with a porous ceramic such as cordierite, alumina, mullite, or SiC, which has micropores of micron or submicron order. Due to the fine pores of the porous ceramic, high dust collection efficiency is obtained, and the problem of erosion of the gas turbine is solved.

【0008】[0008]

【発明が解決しようとする課題】しかし、セラミックフ
ィルタは熱衝撃に弱いので破損し易いという問題があ
る。特に、スタートアップ時や運転条件変更時等に発生
し易い未燃固体炭素(未燃炭素と云う)がフィルタ表面
に堆積すると、差圧が大きくなるので、堆積した塵芥を
表面から定期的に除去する必要がある。
However, since the ceramic filter is vulnerable to thermal shock, it has a problem that it is easily damaged. In particular, when unburned solid carbon (called unburned carbon), which tends to be generated at startup or when operating conditions are changed, accumulates on the filter surface, the differential pressure increases, so the accumulated dust is regularly removed from the surface. There is a need.

【0009】これは数分に1回の割合で瞬時に通常のガ
ス流の向きの逆方向から空気を吹き付けることで行われ
る。加圧流動床ボイラから発生する未燃炭素分は、通常
の負荷運転では微量であるが、発電システムのスタート
アップ時や負荷変更時等は多くなる。未燃炭素を多く含
有する塵芥がフィルタ上に堆積した所に逆洗を行うと、
逆洗空気で未燃炭素が急激に燃焼し、フィルタの表面温
度が短時間に、通常の使用温度である約800℃から約
1200℃へ急激に上昇することがある。このためフィ
ルタの温度も急上昇し、その熱衝撃によってフィルタが
破損し、発電システムが停止する場合がある。このよう
にフィルタの信頼性が発電システム全体の信頼性を左右
し、特に、逆洗時の熱衝撃が石炭加圧流動床発電システ
ムの信頼性を低下させる一因となっている。
This is done by blowing air from the opposite direction of the normal gas flow instantly once every few minutes. The unburned carbon content generated from the pressurized fluidized bed boiler is very small during normal load operation, but it is large at the time of start-up of the power generation system or when the load is changed. If backwashing is performed on the filter where dust containing a large amount of unburned carbon is deposited,
The unburned carbon may be abruptly combusted by the backwash air, and the surface temperature of the filter may be rapidly increased from a normal operating temperature of about 800 ° C to about 1200 ° C in a short time. For this reason, the temperature of the filter also rises sharply, and the thermal shock may damage the filter and stop the power generation system. As described above, the reliability of the filter affects the reliability of the entire power generation system, and in particular, the thermal shock during backwashing is one of the factors that reduce the reliability of the coal pressurized fluidized bed power generation system.

【0010】本発明の目的は、石炭加圧流動床発電シス
テムの石炭加圧流動床ボイラに使用されるフィルタに対
する逆洗時の熱衝撃を緩和してフィルタの破損を防止
し、石炭加圧流動床発電システムの信頼性を向上できる
脱塵フィルタを提供することにある。
An object of the present invention is to reduce the thermal shock at the time of backwashing a filter used in a coal pressure fluidized bed boiler of a coal pressure fluidized bed power generation system to prevent the filter from being damaged, and It is to provide a dust filter that can improve the reliability of a floor power generation system.

【0011】[0011]

【課題を解決するための手段】本発明者は逆洗時にフィ
ルタに加わる熱衝撃を緩和するために堆積未燃炭素の燃
焼を抑える方法について種々検討し本発明に至った。上
記課題を解決する本発明の要旨は、次のとおりである。
The present inventor has conducted various studies on a method of suppressing combustion of accumulated unburned carbon in order to alleviate thermal shock applied to a filter during backwashing, and arrived at the present invention. The gist of the present invention for solving the above problems is as follows.

【0012】〔1〕 セラミックス多孔質体に燃焼負触
媒を担持させたことを特徴とする石炭加圧流動床ボイラ
用脱塵フィルタ。
[1] A dust removal filter for a coal pressurized fluidized bed boiler, characterized in that a combustion negative catalyst is supported on a porous ceramic body.

【0013】〔2〕 セラミックス多孔質体にTiO2
および/またはNb25からなる燃焼負触媒を担持させ
たことを特徴とする石炭加圧流動床ボイラ用脱塵フィル
タ。
[2] TiO 2 is added to the ceramic porous body.
And / or a combustion negative catalyst composed of Nb 2 O 5 is carried, and a dust filter for a coal pressurized fluidized bed boiler.

【0014】〔3〕 セラミック多孔質体の表面層に燃
焼負触媒を担持させたことを特徴とする石炭加圧流動床
ボイラ用脱塵フィルタ。
[3] A dedusting filter for a coal pressurized fluidized bed boiler, characterized in that a negative combustion catalyst is supported on the surface layer of a porous ceramic body.

【0015】〔4〕 セラミックス多孔質体の表面層に
TiO2および/またはNb25からなる燃焼負触媒を
担持させたことを特徴とする石炭加圧流動床ボイラ用脱
塵フィルタ。
[4] A dedusting filter for a coal pressurized fluidized bed boiler, wherein a combustion negative catalyst made of TiO 2 and / or Nb 2 O 5 is carried on the surface layer of the ceramic porous body.

【0016】〔5〕 前記セラミック多孔質体がコージ
ェライト、または、α−Al23から選ばれるミクロン
ないしサブミクロンオーダの微細孔を持つ多孔質セラミ
ックである前記の石炭加圧流動床ボイラ用脱塵フィル
タ。
[5] For the coal pressurized fluidized bed boiler, wherein the ceramic porous body is cordierite or a porous ceramic having fine pores of micron to submicron order selected from α-Al 2 O 3 . Dust filter.

【0017】本発明の前記脱塵フィルタは、TiO2
Nb25の燃焼負触媒をセラミックフィルタの原料粉末
に混合して焼結するか、上記燃焼負触媒を分散させた溶
媒を用いて、焼結後のセラミック多孔質体に含浸,塗布
等により担持させることができる。
The dust filter according to the present invention comprises TiO 2 ,
The Nb 2 O 5 combustion negative catalyst is mixed with the raw material powder of the ceramic filter and sintered, or the sintered ceramic porous body is impregnated or coated with a solvent in which the combustion negative catalyst is dispersed. It can be supported.

【0018】なお、上記燃焼負触媒は、セラミック多孔
質体に対し1重量%以上、好ましくは1〜20重量%担
持させるのがよい。
The above-mentioned combustion negative catalyst should be supported on the ceramic porous body in an amount of 1% by weight or more, preferably 1 to 20% by weight.

【0019】また、前記セラミック多孔質体は連通気孔
からなり、その気孔率は10〜40%(体積比)のもの
が好ましい。
Further, it is preferable that the ceramic porous body is composed of continuous ventilation holes and has a porosity of 10 to 40% (volume ratio).

【0020】[0020]

【作用】一般に、高温部材が使用中に受ける熱衝撃は、
部材中に内在するクラックやポアのような微少欠陥を成
長させるために強度低下を招き、部材は破壊に至る。こ
のような破壊現象を防止するには、部材が受ける熱衝撃
を小さくすればよい。
Operation: Generally, the thermal shock that a high temperature member receives during use is
The growth of minute defects such as cracks and pores inherent in the member leads to a decrease in strength, and the member is destroyed. In order to prevent such a destruction phenomenon, the thermal shock received by the member may be reduced.

【0021】加圧流動床ボイラに用いる多孔質フィルタ
の熱衝撃は、前述のように逆洗時が特に大きい。これは
フィルタ表面に堆積した未燃炭素が逆洗のための空気に
より急激に燃焼して温度が上がるためである。従って、
フィルタ上の未燃炭素の燃焼を抑制できれば、急激な熱
の発生を抑えフィルタが受ける熱衝撃を緩和できる。
As described above, the thermal shock of the porous filter used in the pressurized fluidized bed boiler is particularly large during backwashing. This is because the unburned carbon deposited on the filter surface is rapidly burned by the air for backwashing and the temperature rises. Therefore,
If the combustion of unburned carbon on the filter can be suppressed, abrupt heat generation can be suppressed and the thermal shock received by the filter can be mitigated.

【0022】負触媒効果を持つTiO2やNb25を多
孔質フィルタに担持することにより、空気逆洗時のフィ
ルタ上に堆積した未燃炭素の急激な燃焼を抑えることが
でき、フィルタの急激な温度上昇が防止できる。
By supporting TiO 2 or Nb 2 O 5 having a negative catalytic effect on the porous filter, it is possible to suppress the rapid combustion of unburned carbon deposited on the filter during backwashing with air, and A sudden temperature rise can be prevented.

【0023】[0023]

【実施例】実施例により本発明を更に詳細に説明する。The present invention will be described in more detail by way of examples.

【0024】〔実施例 1〕炭素としてグラファイト、
セラミックフィルタとしてα−Al23(平均粒径0.
6μm)、炭素燃焼負触媒としてBaO(平均粒径0.
3μm)、MgO(平均粒径0.7μm)、Nb2
5(平均粒径0.6μm)、SiO2(平均粒径0.4μ
m)およびTiO2(平均粒径0.6μm)を選定し、こ
れらの炭素燃焼触媒活性を調べた。
[Example 1] Graphite as carbon,
As a ceramic filter, α-Al 2 O 3 (average particle size:
6 μm), BaO as a carbon burning negative catalyst (average particle size of 0.1).
3 μm), MgO (average particle size 0.7 μm), Nb 2 O
5 (average particle size 0.6 μm), SiO 2 (average particle size 0.4 μm
m) and TiO 2 (average particle size 0.6 μm) were selected and their carbon combustion catalytic activities were investigated.

【0025】グラファイト60重量部に対しα−Al2
330重量部に対し、各炭素燃焼負触媒をそれぞれ1
0重量部を混合した粉末を示査熱天秤(TG)を用いて
熱分析し、重量減少開始点をもって燃焼開始温度とし
た。
Α-Al 2 for 60 parts by weight of graphite
For each 30 parts by weight of O 3 , one carbon combustion negative catalyst was used.
The powder in which 0 part by weight was mixed was subjected to thermal analysis using a thermogravimetric balance (TG), and the starting point of weight reduction was defined as the combustion starting temperature.

【0026】炭素燃焼負触媒(負触媒)の活性度は、
(グラファイト)+(α−Al23)の混合粉末の燃焼
開始温度と、(負触媒)+(グラファイト)+(α−A
23)の混合粉末の燃焼開始温度との差で示す。この
温度差が小さいほど、その負触媒活性度が大きい。
The activity of the carbon burning negative catalyst (negative catalyst) is
The combustion start temperature of the mixed powder of (graphite) + (α-Al 2 O 3 ) and (negative catalyst) + (graphite) + (α-A
(1 2 O 3 ) It is shown by the difference from the combustion start temperature of the mixed powder. The smaller the temperature difference, the greater the negative catalyst activity.

【0027】最初にグラファイトのみの燃焼開始温度を
測定したところ、その温度は630℃であった。これに
対して、グラファイトとα−Al23との混合粉末の燃
焼開始温度は573℃であった。グラファイト単味の燃
焼開始温度と比較すると、α−Al23の負触媒活性度
は57℃であった。
First, when the combustion starting temperature of only graphite was measured, the temperature was 630 ° C. On the other hand, the combustion starting temperature of the mixed powder of graphite and α-Al 2 O 3 was 573 ° C. The negative catalytic activity of α-Al 2 O 3 was 57 ° C. as compared with the combustion starting temperature of graphite alone.

【0028】α−Al23には炭素の燃焼を促進する、
つまり炭素燃焼触媒効果があり、逆洗時、堆積している
未燃炭素の燃焼を促進し、フィルタに加わる熱衝撃を増
加させる可能性がある。
Α-Al 2 O 3 promotes the combustion of carbon,
That is, it has a carbon combustion catalytic effect, and may promote the combustion of unburned carbon that has accumulated during backwashing and increase the thermal shock applied to the filter.

【0029】次に、BaO、MgO、Nb25、SiO
2およびTiO2をそれぞれグラファイトとα−Al23
に混合して、これらの負触媒活性度を測定した。
Next, BaO, MgO, Nb 2 O 5 , SiO
2 and TiO 2 are graphite and α-Al 2 O 3 respectively.
And the negative catalytic activity thereof was measured.

【0030】その結果を表1に示すが、いずれも負触媒
作用を持つ。しかし、BaO、MgOおよびSiO2
負触媒活性度は低く、TiO2とNb25のそれが高
い。このことから、負触媒としては、TiO2とNb2
5が好ましいことが分かった。
The results are shown in Table 1, which all have a negative catalytic action. However, the negative catalytic activity of BaO, MgO and SiO 2 is low, and that of TiO 2 and Nb 2 O 5 is high. Therefore, TiO 2 and Nb 2 O are used as the negative catalyst.
It turns out that 5 is preferred.

【0031】[0031]

【表1】 [Table 1]

【0032】次に、負触媒効果を示したTiO2をセラ
ミックフィルタに担持し、逆洗時の熱衝撃によるフィル
タの機械的特性の劣化抑制効果を確認した。
Next, TiO 2 exhibiting a negative catalytic effect was loaded on a ceramic filter, and the effect of suppressing deterioration of mechanical properties of the filter due to thermal shock during backwashing was confirmed.

【0033】平均粒径0.6μmのα−Al23粉末8
0重量部と平均粒径0.7μmのTiO2粉末20重量部
の混合粉末に対し、エチルアルコール300重量部とバ
インダとしてポリビニルブチラールを3重量部を加え、
ボールミルで24時間混合した。
Α-Al 2 O 3 powder 8 having an average particle size of 0.6 μm
300 parts by weight of ethyl alcohol and 3 parts by weight of polyvinyl butyral as a binder were added to a mixed powder of 0 parts by weight and 20 parts by weight of TiO 2 powder having an average particle size of 0.7 μm,
Mix for 24 hours on a ball mill.

【0034】得られたスラリをスプレードライヤで噴霧
造粒し造粒粉を得た。この造粒粉を金型で成形し、80
0℃で2時間仮焼し、その後1250℃で30分焼結し
て、気孔率が25%の多孔質セラミックス焼結体を得
た。得られたセラミックフィルタの表面をSEM/ED
Xで観察および分析を行った。表面にはTiO2が均一
に分散していた。これにより多孔質セラミックフィルタ
の表面にTiO2負触媒が担持されていることが確認さ
れた。
The obtained slurry was spray granulated with a spray dryer to obtain granulated powder. This granulated powder is molded with a mold,
It was calcined at 0 ° C. for 2 hours and then sintered at 1250 ° C. for 30 minutes to obtain a porous ceramics sintered body having a porosity of 25%. The surface of the obtained ceramic filter is SEM / ED
Observations and analyzes were performed at X. TiO 2 was uniformly dispersed on the surface. This confirmed that the TiO 2 negative catalyst was supported on the surface of the porous ceramic filter.

【0035】こうして得られたTiO2担持セラミック
スフィルタを、小型模擬試験装置に組み込み、表面温度
を測定しながら脱塵実験を行った。
The TiO 2 -supported ceramics filter thus obtained was incorporated in a small-sized simulation test apparatus, and a dust removal experiment was conducted while measuring the surface temperature.

【0036】通常運転時の表面温度は平均796℃であ
ったが、逆洗時に表面温度は最高996℃に上昇した。
通常運転⇔逆洗のサイクルを100回繰り返した後、供
試したTiO2担持セラミックフィルタの一部を切り出
し、強度を評価した強度試験結果を図1に示す。4点曲
げ強度は、初期の83MPaから75MPaへ低下し、
約10%の強度低下が見られた。
The surface temperature during normal operation was 796 ° C. on average, but the surface temperature rose to a maximum of 996 ° C. during backwashing.
After repeating the cycle of normal operation ⇔ backwash 100 times, a part of the TiO 2 -supported ceramic filter tested was cut out and the strength test results are shown in FIG. 1. The 4-point bending strength decreased from 83 MPa in the initial stage to 75 MPa,
A strength decrease of about 10% was observed.

【0037】1000サイクル後までは上記セラミック
フィルタの破損は見られず、4点曲げ強度も72MPa
であった。
The ceramic filter was not damaged until 1000 cycles, and the 4-point bending strength was 72 MPa.
Met.

【0038】比較例として、触媒を担持させていない気
孔率25%のα−Al23多孔質セラミックスを用いて
上記と同様の脱塵実験を行った。通常作動時のフィルタ
の表面温度は平均803℃であったが、逆洗時には表面
温度が最高1220℃に上昇した。通常運転⇔逆洗の1
00サイクル後、供試セラミックフィルタの一部を切り
出し、強度を評価した。
[0038] As a comparative example, a catalyst with a porosity of 25% α-Al 2 O 3 porous ceramic that has not been supported was subjected to the same dust removal experiment above. The surface temperature of the filter during normal operation was 803 ° C. on average, but the surface temperature rose to a maximum of 1220 ° C. during backwashing. Normal operation ⇔ backwash 1
After 00 cycles, a part of the test ceramic filter was cut out and the strength was evaluated.

【0039】4点曲げ強度は、初期の85MPaから7
1MPaへ低下し、約17%の強度低下が見られた。ま
た、1000サイクル後では、4点曲げ強度は54MP
aへ低下し、約36%の強度低下が見られた。
The four-point bending strength is 7 MPa from the initial 85 MPa.
The strength decreased to 1 MPa, and a strength decrease of about 17% was observed. After 1000 cycles, the 4-point bending strength is 54MP.
to 36%, and a strength reduction of about 36% was observed.

【0040】〔実施例 2〕平均粒径1μmの結晶化コ
ージェライト粉末100重量部に対し、エチルアルコー
ル300重量部と、バインダとしてポリビニルブチラー
ル3重量部とを、ボールミルで24時間混合した。得ら
れたスラリをスプレードライヤで噴霧造粒し、造粒粉を
得た。この造粒粉を金型で成形し、800℃で2時間仮
焼し、その後1300℃で30分焼結して、気孔率が1
5%の多孔質セラミックス焼結体を得た。
Example 2 300 parts by weight of ethyl alcohol and 3 parts by weight of polyvinyl butyral as a binder were mixed with 100 parts by weight of crystallized cordierite powder having an average particle size of 1 μm in a ball mill for 24 hours. The obtained slurry was spray granulated with a spray dryer to obtain granulated powder. This granulated powder is molded in a mold, calcined at 800 ° C. for 2 hours, and then sintered at 1300 ° C. for 30 minutes to give a porosity of 1
A 5% porous ceramics sintered body was obtained.

【0041】このコージェライト焼結体を、Ti(OC
H(CH3)2)4の5重量%エチルアルコール溶液に含浸
し、エチルアルコール溶液が蒸発するまで加熱した。そ
の後、1000℃で1時間焼成して、TiO2担持セラ
ミックフィルタを得た。
This cordierite sintered body was formed into Ti (OC)
A 5% by weight solution of H (CH 3 ) 2 ) 4 in ethyl alcohol was impregnated and heated until the ethyl alcohol solution had evaporated. Then, it was fired at 1000 ° C. for 1 hour to obtain a TiO 2 -supported ceramic filter.

【0042】得られたTiO2担持セラミックフィルタ
の表面をSEM/EDXで観察および分析を行った。表
面にTiO2が均一に分散した多孔質コージェライトフ
ィルタであることを確認した。このTiO2担持コージ
ェライトフィルタを小型模擬試験装置に組み込み、表面
温度を測定しながら脱塵実験を行った。
The surface of the obtained TiO 2 -supported ceramic filter was observed and analyzed by SEM / EDX. It was confirmed to be a porous cordierite filter in which TiO 2 was uniformly dispersed on the surface. This TiO 2 -supported cordierite filter was incorporated into a small-sized simulated test device, and a dust removal experiment was conducted while measuring the surface temperature.

【0043】通常運転時の表面温度は平均805℃であ
ったが、逆洗時に表面温度は最高984℃に上昇した。
通常運転⇔逆洗の100サイクル後、TiO2担持セラ
ミックフィルタの一部を切り出し、強度を評価した。4
点曲げ強度は、初期の90MPaから83MPaへ低下
し、約10%の強度低下が見られた。1000サイクル
後もセラミックフィルタの破損は見られず、4点曲げ強
度は81MPaであった。
The surface temperature during normal operation was 805 ° C. on average, but the surface temperature rose to a maximum of 984 ° C. during backwashing.
After 100 cycles of normal operation and backwashing, a part of the TiO 2 -supported ceramic filter was cut out and the strength was evaluated. Four
The point bending strength decreased from 90 MPa in the initial stage to 83 MPa, and a strength decrease of about 10% was observed. The ceramic filter was not damaged even after 1000 cycles, and the 4-point bending strength was 81 MPa.

【0044】比較例として、触媒を担持させていない気
孔率15%のコージェライト多孔質セラミックフィルタ
を用いて上記と同様の脱塵実験を行った。通常作動時の
フィルタの表面温度は平均807℃であったが、逆洗時
には表面温度が最高1215℃に上昇した。通常運転⇔
逆洗の10サイクル後、供試コージェライトフィルタの
一部を切り出し、強度を評価した。
As a comparative example, the same dedusting experiment as described above was carried out using a cordierite porous ceramic filter having a porosity of 15% which does not support a catalyst. The surface temperature of the filter during normal operation was 807 ° C. on average, but the surface temperature rose to a maximum of 1215 ° C. during backwashing. Normal operation ⇔
After 10 cycles of backwashing, a part of the sample cordierite filter was cut out and the strength was evaluated.

【0045】4点曲げ強度は、初期の90MPaから7
5MPaへ低下し、約17%の強度低下が見られた。ま
た、1000サイクル後では、4点曲げ強度は58MP
aへ低下し、約36%の強度低下が見られた。
The four-point bending strength is from the initial 90 MPa to 7
The strength decreased to 5 MPa, and a strength decrease of about 17% was observed. After 1000 cycles, the 4-point bending strength is 58MP.
to 36%, and a strength reduction of about 36% was observed.

【0046】〔実施例 3〕平均粒径1μmのα−Al
23粉末100重量部に対し、エチルアルコール300
重量部と、バインダとしてポリビニルブチラールを重量
部とを、ボールミルを用いて24時間混合してスラリを
作製した。これをスプレードライヤで噴霧造粒し、造粒
粉を得た。この造粒粉を金型成形し、800℃で2時間
仮焼し、その後1300℃で30分焼結し、気孔率が約
20%の多孔質セラミックス焼結体を得た。
Example 3 α-Al having an average particle size of 1 μm
Ethyl alcohol 300 per 100 parts by weight of 2 O 3 powder
Part by weight and polyvinyl butyral as a binder were mixed by weight for 24 hours using a ball mill to prepare a slurry. This was spray-granulated with a spray dryer to obtain granulated powder. This granulated powder was molded into a mold, calcined at 800 ° C. for 2 hours, and then sintered at 1300 ° C. for 30 minutes to obtain a porous ceramics sintered body having a porosity of about 20%.

【0047】このα−Al23多孔質表面にNb(OC3
5)5の5重量%エチルエチルアルコール溶液を表面積
1cm2当たり10ml噴霧して、乾燥器で200℃で
5時間乾燥させた。その後、1000℃で1時間焼成し
て、Nb25担持セラミックフィルタを得た。
[0047] Nb (OC 3 in the α-Al 2 O 3 porous surface
A 5% by weight solution of H 5 ) 5 in ethylethyl alcohol was sprayed at 10 ml per 1 cm 2 of surface area, and dried in a dryer at 200 ° C. for 5 hours. Then baked 1 hour at 1000 ° C., to obtain a Nb 2 0 5 supported ceramic filter.

【0048】得られたNb25担持セラミックフィルタ
の表面をSEM/EDXで観察および分析を行った。表
面にNb25が均一に分散したNb25担持α−Al2
3セラミックフィルタであることを確認した。このN
25担持α−Al23セラミックフィルタを小型模擬
試験装置に組み込み、表面温度を測定しながら脱塵実験
を行った。
[0048] The resulting Nb 2 0 5 surface bearing ceramic filter was observed and analyzed by SEM / EDX. Nb 2 O 5 -supporting α-Al 2 with Nb 2 O 5 uniformly dispersed on the surface
It was confirmed to be an O 3 ceramic filter. This N
A b 2 O 5 -supporting α-Al 2 O 3 ceramic filter was incorporated into a small-sized simulation test apparatus, and a dust removal experiment was conducted while measuring the surface temperature.

【0049】通常運転時の表面温度は平均805℃であ
ったが、逆洗時に表面温度は最高984℃に上昇した。
通常運転⇔逆洗の100サイクル後、Nb25担持セラ
ミックフィルタの一部を切り出し、強度を評価した。4
点曲げ強度は初期の90MPaから83MPaへ低下
し、約10%の強度低下が見られた。1000サイクル
後もセラミックフィルタの破損は見られず、4点曲げ強
度は81MPaであった。
The surface temperature during normal operation was 805 ° C. on average, but the surface temperature rose to a maximum of 984 ° C. during backwashing.
After 100 cycles of normal operation and backwash, a part of the Nb 2 O 5 -supported ceramic filter was cut out and the strength was evaluated. Four
The point bending strength decreased from 90 MPa in the initial stage to 83 MPa, and a strength decrease of about 10% was observed. The ceramic filter was not damaged even after 1000 cycles, and the 4-point bending strength was 81 MPa.

【0050】比較例として、触媒を担持させていない気
孔率20%のα−Al23多孔質セラミックフィルタを
用いて上記と同様の脱塵実験を行った。100サイクル
後のは4点曲げ強度は71MPa、1000サイクル後
では60MPaに低下した。
As a comparative example, a dusting test similar to the above was carried out using an α-Al 2 O 3 porous ceramic filter having no porosity of 20% and supporting no catalyst. The 4-point bending strength after 100 cycles was 71 MPa, and after 1000 cycles it was reduced to 60 MPa.

【0051】[0051]

【発明の効果】本発明は、石炭加圧流動床発電システム
の加圧流動床ボイラの石炭燃焼ガスの脱塵手段として用
いるセラミックフィルタに、燃焼負触媒を坦持させたこ
とにより、フィルタ上に堆積する未燃固形炭素を含有し
た塵埃の逆洗時の急速な燃焼による熱衝撃が緩和され、
フィルタの信頼性を向上することができた。この効果に
より石炭加圧流動床発電システムの信頼性を向上するこ
とができる。
INDUSTRIAL APPLICABILITY The present invention makes a ceramic filter used as a dust removing means for coal combustion gas of a pressurized fluidized bed boiler of a coal pressurized fluidized bed power generation system carry a combustion negative catalyst, thereby providing a filter on the filter. Thermal shock due to rapid combustion during backwashing of dust containing unburned solid carbon that accumulates is mitigated,
The reliability of the filter could be improved. This effect can improve the reliability of the coal pressurized fluidized bed power generation system.

【図面の簡単な説明】[Brief description of drawings]

【図1】逆洗による熱衝撃のサイクル回数とフィルタの
4点曲げ強度との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the number of thermal shock cycles by backwashing and the four-point bending strength of a filter.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス多孔質体に燃焼負触媒を担
持させたことを特徴とする石炭加圧流動床ボイラ用脱塵
フィルタ。
1. A dedusting filter for a coal pressurized fluidized bed boiler, which comprises a porous ceramics carrying a combustion negative catalyst.
【請求項2】 セラミックス多孔質体にTiO2および
/またはNb25からなる燃焼負触媒を担持させたこと
を特徴とする石炭加圧流動床ボイラ用脱塵フィルタ。
2. A dedusting filter for a coal pressure fluidized bed boiler, comprising a porous ceramics carrying a combustion negative catalyst composed of TiO 2 and / or Nb 2 O 5 .
【請求項3】 セラミック多孔質体の表面層に燃焼負触
媒を担持させたことを特徴とする石炭加圧流動床ボイラ
用脱塵フィルタ。
3. A dedusting filter for a coal pressurized fluidized bed boiler, wherein a combustion negative catalyst is supported on a surface layer of a ceramic porous body.
【請求項4】 セラミックス多孔質体の表面層にTiO
2および/またはNb25からなる燃焼負触媒を担持さ
せたことを特徴とする石炭加圧流動床ボイラ用脱塵フィ
ルタ。
4. The surface layer of the porous ceramic body is made of TiO.
A dedusting filter for a coal pressurized fluidized bed boiler, which carries a combustion negative catalyst composed of 2 and / or Nb 2 O 5 .
【請求項5】 前記セラミック多孔質体がコージェライ
ト、または、α−Al23から選ばれるミクロンないし
サブミクロンオーダの微細孔を持つ多孔質セラミックで
ある請求項1〜4のいずれかに記載の石炭加圧流動床ボ
イラ用脱塵フィルタ。
5. The porous ceramic body according to claim 1, which is a cordierite or a porous ceramic having fine pores of micron to submicron order selected from α-Al 2 O 3. Dust filter for coal pressurized fluidized bed boiler.
【請求項6】 前記セラミック多孔質体の気孔率が10
〜40%(体積比)の多孔質セラミックである請求項1
〜4のいずれかに記載の石炭加圧流動床ボイラ用脱塵フ
ィルタ。
6. The porosity of the ceramic porous body is 10.
4. A porous ceramic of -40% (volume ratio).
The dust removal filter for coal pressurization fluidized bed boilers in any one of Claims 1-4.
JP7860095A 1995-04-04 1995-04-04 Dust removing filter for coal burning and pressurized fluidized bed boiler Pending JPH08270930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7860095A JPH08270930A (en) 1995-04-04 1995-04-04 Dust removing filter for coal burning and pressurized fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7860095A JPH08270930A (en) 1995-04-04 1995-04-04 Dust removing filter for coal burning and pressurized fluidized bed boiler

Publications (1)

Publication Number Publication Date
JPH08270930A true JPH08270930A (en) 1996-10-18

Family

ID=13666402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7860095A Pending JPH08270930A (en) 1995-04-04 1995-04-04 Dust removing filter for coal burning and pressurized fluidized bed boiler

Country Status (1)

Country Link
JP (1) JPH08270930A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009079A1 (en) * 2004-07-15 2006-01-26 Ishikawajima-Harima Heavy Industries Co., Ltd. Method and apparatus for removing gaseous mercury in exhaust gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009079A1 (en) * 2004-07-15 2006-01-26 Ishikawajima-Harima Heavy Industries Co., Ltd. Method and apparatus for removing gaseous mercury in exhaust gas
JP2006029673A (en) * 2004-07-15 2006-02-02 Ishikawajima Harima Heavy Ind Co Ltd Method and device for removing gaseous mercury in exhaust gas
US7618604B2 (en) 2004-07-15 2009-11-17 Ihi Corporation Method and apparatus for removing gaseous mercury in flue gas
JP4503378B2 (en) * 2004-07-15 2010-07-14 株式会社Ihi Method and apparatus for removing gaseous mercury in exhaust gas

Similar Documents

Publication Publication Date Title
JP5142532B2 (en) Honeycomb structure
US7785695B2 (en) Honeycomb structured body
CN101954246B (en) Double-layer asymmetrical surface film of porous ceramic filter tube for dust filter and preparation method thereof
JP4870657B2 (en) Ceramic honeycomb structure and manufacturing method thereof
JP3997825B2 (en) Ceramic filter and ceramic filter with catalyst
JP2017121624A (en) Catalyzed soot filter manufacture and systems
US9890673B2 (en) Honeycomb filter
JP5140004B2 (en) Honeycomb structure
EP2108439A1 (en) Catalytic diesel particulate filter and manufacturing method thereof
JPWO2006035822A1 (en) Honeycomb structure
JPWO2007058006A1 (en) Honeycomb structure
JP2009000663A (en) Exhaust gas purifying filter and its manufacturing method
JP2009502710A (en) High specific surface area silicon carbide catalyst filter and support
JP2022115873A (en) Catalyst coating gasoline particulate filter and manufacturing method of the same
JP2021155236A (en) Manufacturing method of honeycomb structure containing silicon carbide
JP2002054422A (en) Ceramic filter, and method of manufacturing same
JP4429756B2 (en) Filter catalyst
JPH08270930A (en) Dust removing filter for coal burning and pressurized fluidized bed boiler
KR20090106483A (en) Method for obtaining a porous structure based on silicon carbide
JP2005224668A (en) Filter catalyst manufacturing method
JP2011524247A (en) Catalytic filter or substrate comprising silicon carbide and aluminum titanate
JP2004188278A (en) Honeycomb filter for exhaust gas cleaning
JPH01307452A (en) Waste gas purification catalyst
JP4997090B2 (en) Porous fired body and method for producing the same
JP2009247995A (en) Exhaust gas cleaning catalyst and production method thereof