JPH0824950B2 - Method of reducing tip warpage in plate rolling - Google Patents

Method of reducing tip warpage in plate rolling

Info

Publication number
JPH0824950B2
JPH0824950B2 JP4228844A JP22884492A JPH0824950B2 JP H0824950 B2 JPH0824950 B2 JP H0824950B2 JP 4228844 A JP4228844 A JP 4228844A JP 22884492 A JP22884492 A JP 22884492A JP H0824950 B2 JPH0824950 B2 JP H0824950B2
Authority
JP
Japan
Prior art keywords
cooling
temperature
rolled material
rolling
finish rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4228844A
Other languages
Japanese (ja)
Other versions
JPH0671325A (en
Inventor
太次 上田
憲一 大江
篤男 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4228844A priority Critical patent/JPH0824950B2/en
Publication of JPH0671325A publication Critical patent/JPH0671325A/en
Publication of JPH0824950B2 publication Critical patent/JPH0824950B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱間圧延ラインにおい
て厚板圧延材の先端部に発生する反りが最小となるよう
に制御できる厚板圧延における先端反り低減方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing tip warpage in thick plate rolling, which can be controlled so as to minimize the warp generated at the tip of the thick rolled material in a hot rolling line.

【0002】[0002]

【従来の技術】厚板圧延工程において、圧延時に圧延材
の先端部に反りが発生することがあり、設備破損の危険
性や不均一冷却による品質不良などを招く原因となって
いる。この先端反りは、板厚方向での上下の非対称性に
起因して発生することが知られており、この非対称性を
生じさせる要因としては、圧延材の上下面の温度差、上
下ワークロールの周速度差、ピックアップなどが挙げら
れる。その中で厚板圧延の場合には、主に圧延工程での
デスケーリング水等による上面温度低下に伴う板厚方向
での上下温度偏差に起因することが知られている。
2. Description of the Related Art In a plate rolling process, the tip of a rolled material may be warped during rolling, which causes a risk of equipment damage and poor quality due to uneven cooling. It is known that this tip warp occurs due to the vertical asymmetry in the plate thickness direction.The factors that cause this asymmetry are the temperature difference between the upper and lower surfaces of the rolled material, the upper and lower work rolls. There are differences in peripheral speed, pickup, etc. Among them, in the case of thick plate rolling, it is known that this is mainly due to the vertical temperature deviation in the plate thickness direction due to the lowering of the upper surface temperature due to descaling water or the like in the rolling process.

【0003】従来、このような先端反りを防止する方法
として、仕上圧延工程において上記のような非対称要因
を制御する方法が採用されてきた。即ち、前パスでの反
り状態等から制御量を決めて、仕上圧延時に、上下ワー
クロールの周速度差を制御する方法、板厚方向の上下面
温度差を制御する方法、ピックアップ量を制御する方法
などが挙げられる。
Conventionally, as a method of preventing such warp of the tip, a method of controlling the above-mentioned asymmetry factor in the finish rolling process has been adopted. That is, the control amount is determined from the warpage state in the previous pass, and the method for controlling the peripheral speed difference between the upper and lower work rolls, the method for controlling the upper and lower surface temperature difference in the plate thickness direction, and the pickup amount are controlled during finish rolling. Method etc. are mentioned.

【0004】[0004]

【発明が解決しようとする課題】しかし、仕上圧延工程
前に圧延材を所定の温度に水冷した後に仕上圧延を行う
圧延方法においては、従来の仕上圧延工程における先端
反り制御だけでは、材質上の制約、圧延機の構造上ある
いは操業条件上の制約等により、発生する先端反り量に
対して必要な制御量を確保できない等の問題があって、
確実に先端反りを制御できない場合がしばしばあった。
However, in the rolling method in which the rolled material is water-cooled to a predetermined temperature before the finish rolling step and then the finish rolling is performed, the tip warpage control in the conventional finish rolling step is not enough to improve the material quality. Due to restrictions, structural restrictions of rolling mills, operational conditions, etc., there is a problem that the required control amount cannot be secured for the amount of tip warpage that occurs,
In many cases, the tip warp could not be reliably controlled.

【0005】本発明は、このような問題点の解消を図る
ために成されたものであり、本発明の目的は、粗圧
、粗圧延後圧延材の水冷と、それに引き続く仕上圧
延とが行われる熱間圧延ラインにおいて、仕上圧延にお
ける先端反りを効果的に低減することによって、仕上圧
延時の先端反りの制御の容易化を図らせることにある。
[0005] The present invention has been made in order to solve such problems, an object of the present invention, coarse rolling
When, water cooling and, pressure finishing subsequent to that of the rolled material after the rough rolling
In a hot rolling line where rolling is performed , the tip warp in finish rolling is effectively reduced to facilitate control of the tip warp during finish rolling.

【0006】[0006]

【課題を解決するための手段】本発明は、上記の目的を
達成するため以下に述べる構成としたものである。即
ち、本発明は、粗圧延と、粗圧延後の圧延材の水冷と、
それに引き続く仕上圧延とが行われる熱間圧延ラインに
おいて、粗圧延機と仕上圧延機の間に、圧延材上下面に
対する冷却条件を個別に制御可能な水冷設備が設けら
れ、前記水冷設備による圧延材の冷却条件を算定する条
件算定手段と、圧延材の板厚方向の各位置における温度
を算出する温度算出手段とが前記水冷設備に関連して設
けられ、前記温度算出手段によって算出された圧延材の
板厚方向の各位置における温度と圧延材固有の熱間変形
抵抗の温度特性との関係に基づいて、圧延時に発生する
先端反りを算出して、仕上圧延工程で発生する先端反り
量が最小値となるように、冷却停止時の圧延材の上下面
温度と熱間変形抵抗の温度特性との関係に基づき、前記
水冷設備によって圧延材を冷却することにより、冷却停
止時の圧延材の上下面に所定の温度差を付与することを
特徴とする厚板圧延における先端反り低減方法である。
The present invention has the following configuration to achieve the above object. That is, the present invention, rough rolling, water cooling of the rolled material after rough rolling,
In the hot rolling line where subsequent finish rolling is performed
In the between the rough rolling mill and the finish rolling mill, a water cooling facility capable of individually controlling cooling conditions for the rolled material upper and lower surfaces is provided, and condition calculation means for calculating the cooling condition of the rolled material by the water cooling facility, and temperature calculation means for calculating the temperature in the plate thickness direction the position of the rolled material is provided in association with the water cooling facility, the temperature in the thickness direction each position of the rolled material which has been calculated by prior Symbol temperature calculating means based on the relationship between the temperature characteristics of the strip-specific hot deformation resistance, and calculates the tip warpage generated during rolling, so that the tip warpage generated in Finish rolling process becomes minimum, when the cooling stop Based on the relationship between the upper and lower surface temperature of the rolled material and the temperature characteristic of hot deformation resistance, by cooling the rolled material by the water cooling equipment, a predetermined temperature difference is applied to the upper and lower surfaces of the rolled material when cooling is stopped. Thick plate rolling characterized by It is a definitive tip warp reduction method.

【0007】[0007]

【作用】本発明方法の実施に当たって、熱間変形抵抗が
図1に示すような温度特性を有する圧延材に対して、冷
却工程において種々の上下冷却条件で冷却を行い、板厚
方向の上下面で温度差を付与した後に、仕上圧延を行っ
た場合の先端反り状態を剛塑性有限要素法を用いた解析
により調べた。その結果の一例を図2に示す。
In carrying out the method of the present invention, a rolled material having a hot deformation resistance having temperature characteristics as shown in FIG. 1 is cooled under various up-down cooling conditions in the cooling step, and the upper and lower surfaces in the plate thickness direction are cooled. After the temperature difference was applied by the method, the tip warpage state in the case of finish rolling was investigated by the analysis using the rigid-plastic finite element method. An example of the result is shown in FIG.

【0008】[0008]

【表1】 [Table 1]

【0009】図2は、板厚60mmの圧延材を、上記
〔表1〕に示すように、冷却工程において 冷却停止
時の上面温度が下面温度より50℃高くなるように冷却
した場合、 (黒塗り丸印で示す) 冷却停止時の上下温度が同一となるように冷却した場
合、(黒塗り三角印で示す) 冷却停止時の上面温度が下面温度より50℃低くなる
ように冷却した場合、 (白抜き丸印で示す)につ
いて、それぞれ仕上圧延において発生する圧延材L方向
トップ部の先端反り状態を表している。なお、〔表1〕
は、温調シャワでの冷却停止時の上下面温度を示してい
る。この結果より、冷却工程において冷却停止時におけ
る板厚方向の上下面温度差により、仕上圧延での先端反
り状態は大きく異なっており、本条件下では、冷却工程
において上面温度が下面温度より低くなるように冷却し
た場合に、反り量は最も小さくなることが判る。
FIG. 2 shows that when a rolled material having a plate thickness of 60 mm is cooled so that the upper surface temperature at the time of cooling stop becomes 50 ° C. higher than the lower surface temperature in the cooling step, as shown in the above (Table 1), When it is cooled so that the upper and lower temperatures are the same when cooling is stopped, (when it is shown by the black triangle), when the upper surface temperature is 50 ° C lower than the lower surface temperature when cooling is stopped, (Indicated by white circles) shows the tip warpage state of the rolled material L-direction top portion that occurs in finish rolling. In addition, [Table 1]
Shows the upper and lower surface temperatures when cooling is stopped in the temperature control shower. From this result, the tip warpage state in finish rolling greatly differs due to the difference in the upper and lower surface temperatures in the plate thickness direction during the cooling process in the cooling process, and under these conditions, the upper surface temperature becomes lower than the lower surface temperature in the cooling process. It can be seen that the amount of warp is the smallest when cooled like this.

【0010】その原因は以下に述べるとおりである。冷
却工程において冷却停止時の上下面温度によの相変態に
伴い、図3に示すように板厚方向の上面付近と下面付近
とにおいて温度分布が異なる割合で、α(フェライト)
相が形成される。その生成したα相は、冷却後から圧延
までの復熱後においても、図4に示すようにα相の温度
がAC3点以上とならない限りすべてが逆変態することは
ないために、図5のように冷却時において生じたα相が
残存した状態で圧延される。このような状態下では、板
厚方向の変形抵抗分布は、γ(オーステナイト)相と冷
却時に形成されたα相の割合、各相の熱間変形抵抗の温
度依存性及び板厚方向の温度分布により決まるようにな
る。その結果、図6に示すように、冷却停止時の上下温
度差に依存して、圧延時における板厚方向の変形抵抗分
布は異なり、反り状態に差が生じるようになるのであ
る。
The cause is as described below. As a result of the phase transformation due to the upper and lower surface temperatures when cooling is stopped in the cooling process, as shown in FIG. 3, α (ferrite) has a different temperature distribution in the vicinity of the upper surface and the lower surface in the plate thickness direction.
A phase is formed. Even after the heat recovery from cooling to rolling, all the generated α phase does not undergo reverse transformation unless the temperature of the α phase is equal to or higher than the A C3 point as shown in FIG. As described above, rolling is performed with the α phase generated during cooling remaining. Under these conditions, the deformation resistance distribution in the plate thickness direction is determined by the ratio of the γ (austenite) phase to the α phase formed during cooling, the temperature dependence of the hot deformation resistance of each phase, and the temperature distribution in the plate thickness direction. Will be decided by. As a result, as shown in FIG. 6, the distribution of deformation resistance in the plate thickness direction during rolling differs depending on the difference in temperature between the upper and lower sides when cooling is stopped, resulting in a difference in warpage.

【0011】このことを図2の場合について説明する。
冷却停止時の上面温度と下面温度とが同一の場合、冷却
工程で生じたα相の量は図7に示すように上下面付近で
ほぼ等しい。その結果、仕上圧延工程での先端反り量は
上下面温度差によりほぼ決まるようになるため、デスケ
ーリング水の沿い流れ等による上面温度の低下に伴い、
大きな上反りが発生する。また、冷却停止時の上面温度
が下面温度より高い場合には、図8に示すように上面付
近に較べて下面付近で形成されるα相の量は大きい。そ
の結果、仕上圧延工程において、上面温度の低下に加え
て、γ相に比較して熱間変形抵抗値の低いα相(同一温
度下)の量が上面付近より下面付近で大きいために、更
に大きな上反りが発生する。
This will be described with reference to the case of FIG.
When the upper surface temperature and the lower surface temperature at the time of cooling stop are the same, the amount of α phase generated in the cooling step is almost equal near the upper and lower surfaces as shown in FIG. 7. As a result, the amount of warp at the tip in the finish rolling process is almost determined by the temperature difference between the upper and lower surfaces.
A large warp occurs. When the upper surface temperature at the time of cooling stop is higher than the lower surface temperature, the amount of α phase formed near the lower surface is larger than that near the upper surface as shown in FIG. As a result, in the finish rolling process, in addition to the lowering of the upper surface temperature, the amount of α phase (at the same temperature), which has a lower hot deformation resistance value than the γ phase, is larger near the lower surface than near the upper surface. A large warp occurs.

【0012】これに対して、冷却停止時の上面温度が下
面温度よりも低い場合には、図9に示すように下面付近
に較べて上面付近で形成されるα相の量は大きい。その
結果から明らかなように、仕上圧延工程において上面温
度が低下しても、α相の量が下面付近より上面付近で大
きいために、比較的小さな上反りとなる。
On the other hand, when the upper surface temperature when cooling is stopped is lower than the lower surface temperature, the amount of α phase formed near the upper surface is larger than that near the lower surface as shown in FIG. As is clear from the result, even if the upper surface temperature is lowered in the finish rolling step, the amount of α phase is larger in the vicinity of the upper surface than in the vicinity of the lower surface, so that the warpage is relatively small.

【0013】以上のことから、本発明のように、冷却工
程において熱間変形抵抗の温度特性に応じて、冷却停止
時に適切な圧延材表裏面温度差を付与することにより、
仕上圧延において発生する先端反り量を低減することが
でき、仕上圧延での先端反り制御が効果的に行えるよう
になるのである。
From the above, according to the present invention, by providing an appropriate temperature difference between the front and back surfaces of the rolled material when cooling is stopped in accordance with the temperature characteristic of hot deformation resistance in the cooling step,
The amount of tip warpage that occurs in finish rolling can be reduced, and tip warpage control in finish rolling can be effectively performed.

【0014】その際、冷却工程において冷却停止時に付
与する最適な温度差は、各種鋼についての冷却工程にお
ける上下面の冷却条件と仕上圧延における先端反り量と
の関係を種々実験により調べたデータから容易に推定す
ることが出来る。
At this time, the optimum temperature difference to be applied when cooling is stopped in the cooling process is based on data obtained by conducting various experiments to investigate the relationship between the cooling conditions of the upper and lower surfaces in the cooling process of various steels and the amount of tip warpage in finish rolling. It can be easily estimated.

【0015】[0015]

【実施例】以下、本発明の実施例について添付図面を参
照しながら説明する。本発明の有効性を確認するため
に、490N級の船体構造用鋼板を用いて先端反り制御
の実験を本発明方法と従来方法(比較例)とについて実
施した。実験に際しては、圧延材の長手方向のトップ部
を制御対象とするために、実験対象材を表す下記〔表
2〕に示す奇数パス(No.1,3,5,7)について
のみ考慮した。また、加熱条件とパススケジュールにつ
いては、以下に示す本発明例、比較例のいずれの場合も
略同じである。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In order to confirm the effectiveness of the present invention, an experiment of tip warpage control was carried out for the method of the present invention and the conventional method (comparative example) using a 490N class steel plate for hull structure. In the experiment, in order to control the top part in the longitudinal direction of the rolled material, only the odd-numbered paths (No. 1, 3, 5, 7) shown in the following [Table 2] representing the experimental material were considered. Further, the heating conditions and the pass schedule are substantially the same in both the present invention example and the comparative example shown below.

【0016】[0016]

【表2】 [Table 2]

【0017】なお、図10は、本発明を適用した場合に
ついて、仕上圧延の各奇数パスで発生した先端反り量を
示したものであり、即ち、粗圧延工程で板厚65mmま
で圧延後、冷却工程において、冷却停止時の圧延材の上
面温度が下面温度より70℃低くなるように冷却した場
合の反り量を示したものである。そのときの冷却条件は
〔表3〕に、仕上圧延における圧延温度(圧延材の上面
温度)は〔表4〕にそれぞれ示すとおりである。
FIG. 10 shows the amount of tip warpage occurring in each odd pass of finish rolling in the case of applying the present invention, that is, after rolling to a plate thickness of 65 mm in the rough rolling step, and then cooling. In the process, the amount of warpage when the rolled material is cooled so that the upper surface temperature thereof is 70 ° C. lower than the lower surface temperature when cooling is stopped is shown. The cooling conditions at that time are shown in [Table 3], and the rolling temperature (upper surface temperature of the rolled material) in finish rolling is as shown in [Table 4].

【0018】一方、図11は、冷却工程において従来通
り、冷却停止時の圧延材の上下面温度が同一となるよう
に冷却した場合について仕上圧延の各奇数パスで発生し
た反り量を示し、そのときの冷却条件は表5に、仕上圧
延における圧延温度は〔表6〕にそれぞれ示すとおりで
ある。
On the other hand, FIG. 11 shows the amount of warpage that occurs in each odd pass of finish rolling in the case where cooling is performed so that the upper and lower surface temperatures of the rolled material are the same when cooling is stopped in the conventional cooling process. The cooling conditions at this time are as shown in Table 5, and the rolling temperature in finish rolling is as shown in [Table 6].

【0019】[0019]

【表3】 注1:上面側は、鋼板上での冷却水の滞留を考慮した
値,
[Table 3] Note 1: The upper surface is a value that considers the retention of cooling water on the steel plate,

【0020】[0020]

【表4】 [Table 4]

【0021】[0021]

【表5】 注2:上面側は、鋼板上での冷却水の滞留を考慮した
値,
[Table 5] Note 2: The upper surface is a value that considers the retention of cooling water on the steel plate,

【0022】[0022]

【表6】 [Table 6]

【0023】上述の実験結果から明らかであるが、本発
明例の場合は、最大でも200mm(No.1パス)、
最小で50mm(No.5パス)の上反りに抑えられて
いるのに対して、一方、比較例では、最大700mm
(No.5パス)までの大きな上反りが発生していて、
従って、本発明方法の有効性が顕著であることが立証さ
れる。
As is clear from the above experimental results, in the case of the present invention example, the maximum is 200 mm (No. 1 pass),
While the minimum warpage is suppressed to 50 mm (No. 5 pass), the maximum is 700 mm in the comparative example.
(No.5 pass) a large warp has occurred,
Therefore, it is proved that the effectiveness of the method of the present invention is remarkable.

【0024】[0024]

【発明の効果】以上述べた通り、本発明によれば、仕上
圧延において発生する先端反りを効果的に低減すること
が可能であり、しかも冷却停止時の圧延材の上下面温度
と熱間変形抵抗の温度特性を算出して、この算出結果に
応じて冷却停止時の圧延材の上下面に所定値の温度差を
付与するという簡単な手段によって行えることから、実
用的価値は頗る大きい。
As described above, according to the present invention, it is possible to effectively reduce the tip warpage that occurs in finish rolling, and moreover, the upper and lower surface temperatures and hot deformation of the rolled material when cooling is stopped. It is of great practical value because it can be performed by a simple means of calculating the temperature characteristic of resistance and applying a temperature difference of a predetermined value to the upper and lower surfaces of the rolled material when cooling is stopped according to the calculation result.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施に係る圧延材の熱間変形抵抗
−温度特性線図である。
FIG. 1 is a hot deformation resistance-temperature characteristic diagram of a rolled material according to the method of the present invention.

【図2】本発明方法の実施に係る温調シャワ適用材の仕
上圧延工程における反り挙動線図である。
FIG. 2 is a warpage behavior diagram in a finish rolling process of a temperature control shower applied material according to an embodiment of the method of the present invention.

【図3】熱間圧延ラインにおける冷却工程での冷却停止
時における圧延材の板厚方向温度分布図である。
FIG. 3 is a temperature distribution diagram in the plate thickness direction of a rolled material when cooling is stopped in a cooling process in a hot rolling line.

【図4】図3に示される冷却工程の後の復熱時における
圧延材の板厚方向温度分布図である。
4 is a temperature distribution diagram in the plate thickness direction of the rolled material at the time of recuperation after the cooling step shown in FIG.

【図5】圧延材の温度変化に対する熱間変形抵抗履歴線
図である。
FIG. 5 is a history diagram of hot deformation resistance with respect to temperature change of a rolled material.

【図6】熱間圧延ラインにおける冷却工程の後の復熱時
における圧延材の板厚方向変形抵抗分布図である。
FIG. 6 is a deformation resistance distribution diagram of a rolled material in the plate thickness direction at the time of recuperation after the cooling step in the hot rolling line.

【図7】熱間圧延ラインにおける冷却停止時(上面温度
=下面温度)の板厚方向温度分布図である。
FIG. 7 is a temperature distribution diagram in the plate thickness direction when cooling is stopped in the hot rolling line (upper surface temperature = lower surface temperature).

【図8】熱間圧延ラインにおける冷却停止時(上面温度
>下面温度)の板厚方向温度分布図である。
FIG. 8 is a temperature distribution diagram in the plate thickness direction when cooling is stopped in the hot rolling line (upper surface temperature> lower surface temperature).

【図9】熱間圧延ラインにおける冷却停止時(上面温度
<下面温度)の板厚方向温度分布図である。
FIG. 9 is a temperature distribution diagram in the plate thickness direction when cooling is stopped in the hot rolling line (upper surface temperature <lower surface temperature).

【図10】本発明方法の実施に係る圧延材の仕上圧延に
おける各奇数パスでの反り量を表す図である。
FIG. 10 is a diagram showing the amount of warpage in each odd pass in finish rolling of a rolled material according to the method of the present invention.

【図11】従来方法の実施に係る比較例である圧延材の
仕上圧延における各奇数パスでの反り量を表す図であ
る。
FIG. 11 is a diagram showing the amount of warpage in each odd pass in finish rolling of a rolled material which is a comparative example related to implementation of the conventional method.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B21B 37/76 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B21B 37/76

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粗圧延と、粗圧延後の圧延材の水冷と、
それに引き続く仕上圧延とが行われる熱間圧延ラインに
おいて、粗圧延機と仕上圧延機の間に、圧延材上下面に
対する冷却条件を個別に制御可能な水冷設備が設けら
れ、前記水冷設備による圧延材の冷却条件を算定する条
件算定手段と、圧延材の板厚方向の各位置における温度
を算出する温度算出手段とが前記水冷設備に関連して設
けられ、前記温度算出手段によって算出された圧延材の
板厚方向の各位置における温度と圧延材固有の熱間変形
抵抗の温度特性との関係に基づいて、圧延時に発生する
先端反りを算出して、仕上圧延工程で発生する先端反り
量が最小値となるように、冷却停止時の圧延材の上下面
温度と熱間変形抵抗の温度特性との関係に基づき、前記
水冷設備によって圧延材を冷却することにより、冷却停
止時の圧延材の上下面に所定の温度差を付与することを
特徴とする厚板圧延における先端反り低減方法。
1. Rough rolling and water cooling of the rolled material after rough rolling,
In the hot rolling line where subsequent finish rolling is performed
In the between the rough rolling mill and the finish rolling mill, a water cooling facility capable of individually controlling cooling conditions for the rolled material upper and lower surfaces is provided, and condition calculation means for calculating the cooling condition of the rolled material by the water cooling facility, and temperature calculation means for calculating the temperature in the plate thickness direction the position of the rolled material is provided in association with the water cooling facility, the temperature in the thickness direction each position of the rolled material which has been calculated by prior Symbol temperature calculating means based on the relationship between the temperature characteristics of the strip-specific hot deformation resistance, and calculates the tip warpage generated during rolling, so that the tip warpage generated in Finish rolling process becomes minimum, when the cooling stop Based on the relationship between the upper and lower surface temperature of the rolled material and the temperature characteristic of hot deformation resistance, by cooling the rolled material by the water cooling equipment, a predetermined temperature difference is applied to the upper and lower surfaces of the rolled material when cooling is stopped. Thick plate rolling characterized by Tip warp reduction method definitive.
JP4228844A 1992-08-27 1992-08-27 Method of reducing tip warpage in plate rolling Expired - Lifetime JPH0824950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4228844A JPH0824950B2 (en) 1992-08-27 1992-08-27 Method of reducing tip warpage in plate rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4228844A JPH0824950B2 (en) 1992-08-27 1992-08-27 Method of reducing tip warpage in plate rolling

Publications (2)

Publication Number Publication Date
JPH0671325A JPH0671325A (en) 1994-03-15
JPH0824950B2 true JPH0824950B2 (en) 1996-03-13

Family

ID=16882757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4228844A Expired - Lifetime JPH0824950B2 (en) 1992-08-27 1992-08-27 Method of reducing tip warpage in plate rolling

Country Status (1)

Country Link
JP (1) JPH0824950B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081201A (en) * 1996-09-11 1998-03-31 Toyota Motor Corp Engine start controlling device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741303B2 (en) * 1988-12-28 1995-05-10 新日本製鐵株式会社 Cooling control device for hot rolled steel sheet

Also Published As

Publication number Publication date
JPH0671325A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
JP2001137907A (en) Hot-rolling method and steckel hot-rolling mill
EP0920929B1 (en) Method and System for suppressing surface oxide film during hot finish rolling
JPH0824950B2 (en) Method of reducing tip warpage in plate rolling
JP2786772B2 (en) Tip Warpage Control Method in Hot Rolling
JPH0325487B2 (en)
JP2826002B2 (en) Hot rolling method to reduce edge cracks in grain-oriented electrical steel sheets
JP3777076B2 (en) Thick steel plate cooling method
JP3661434B2 (en) Controlled cooling method for hot rolled steel sheet
JPH07112565B2 (en) Tip warpage control method in plate rolling
JP3475785B2 (en) Hot rolling method and apparatus for thin steel sheet
JP3526763B2 (en) Warpage prevention method in steel plate rolling
JPH08243615A (en) Method for controlling nose camber in hot rolling
JPH11123437A (en) Manufacture of steel sheet having thin scale
JP2545468B2 (en) Cold rolling method for stainless steel strip
JP5577654B2 (en) Manufacturing method of high-strength hot-rolled steel strip
JP4349504B2 (en) Manufacturing method of high gloss BA finish stainless steel using tandem mill
JPH10296305A (en) Manufacture of hot rolled steel plate and its device
JP3283444B2 (en) Hot rolling method
JP2505188B2 (en) Hot rolling method for stainless steel sheet
JPH0751732A (en) Hot rolling method of steel sheet with superior surface property
JP3445993B2 (en) Manufacturing method of hot-rolled steel sheet with small deformation after cutting
JPH10156401A (en) Method for hot-rolling dead soft steel
JP3235698B2 (en) Manufacturing method of controlled cooling steel sheet
JP2001058202A (en) Hot rolling mill, and hot rolling method
JP2001098324A (en) Ear cracking preventive hot rolling method for stainless steel to prevent

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960827