JPH08248077A - Impulse response measuring method - Google Patents

Impulse response measuring method

Info

Publication number
JPH08248077A
JPH08248077A JP4804295A JP4804295A JPH08248077A JP H08248077 A JPH08248077 A JP H08248077A JP 4804295 A JP4804295 A JP 4804295A JP 4804295 A JP4804295 A JP 4804295A JP H08248077 A JPH08248077 A JP H08248077A
Authority
JP
Japan
Prior art keywords
tsp
error
impulse response
signal
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4804295A
Other languages
Japanese (ja)
Inventor
Yutaka Kaneda
豊 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4804295A priority Critical patent/JPH08248077A/en
Publication of JPH08248077A publication Critical patent/JPH08248077A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To detect an optimum measuring signal level and to obtain the measured result by a minimum error by measuring the impulse response of a system to be measured by using a time stretching pulse(TSP) signals having different pulse widths. CONSTITUTION: First, switches 15, 18, 20 are respectively connected to TSP 1, an inverted TSP (ITSP) 1 and an impulse response storage unit (Imp.) 1. Then, a TSP signal is generated from the tsp 2, and input to a system 12 to be measured. The output of the system 12 and an ITSP signal to be output from the ITSP 1 are calculated by a convolution arithmetic unit 19, and the obtained impulse response measured result is stored in the Imp. 1. Then, the switches 15, 18, 20 are respectively connected to the TSP 2, ITSP 2 and Imp. 2, and similar measurement is conducted. The TSP 2 generates the TSP signal having different pulse width. The measured result is stored in the Imp. 2. Eventually, twice measured results are input from the imps. 1, 2 to a correlation calculator 23, and the value of the overall error is calculated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、音響伝達特性を始めと
した各種の信号伝達特性の基本となるインパルス応答測
定に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to impulse response measurement which is the basis of various signal transfer characteristics including acoustic transfer characteristics.

【0002】[0002]

【従来の技術】音響の分野において被測定系(例えば、
スピーカなどの音響機器、室内などの音響伝達系)のイ
ンパルス応答を測定することはたいへん重要である。そ
の理由は、測定したインパルス応答をフーリエ変換する
ことで、スピーカの感度周波数特性、室内の音響伝達特
性などの重要な特性量が得られるからである。
In the field of acoustics, the system under test (for example,
It is very important to measure the impulse response of acoustic devices such as speakers and acoustic transmission systems in rooms. The reason is that Fourier transform of the measured impulse response makes it possible to obtain important characteristic quantities such as the sensitivity frequency characteristic of the speaker and the acoustic transfer characteristic of the room.

【0003】インパルス応答を測定する代表的方法とし
ては、パルス同期加算法、M系列法、TSP(Time Str
etched Pulse)法などが知られている。これらの中で
も、現在は、周波数特性が聴覚的にも確認できるなどの
理由から、TSP法が多く利用されている。以下にTS
P法によるインパルス応答の測定手順を説明する。
Typical methods for measuring the impulse response are the pulse synchronous addition method, the M-sequence method, and the TSP (Time Strut).
Etched Pulse) method is known. Among these, at present, the TSP method is widely used for the reason that the frequency characteristics can be confirmed auditorily. Below TS
The procedure of measuring the impulse response by the P method will be described.

【0004】TSP法ではまず、TSP信号 h(k) を合
成する。具体的には、次式で示すN個のディジタル周波
数成分をIDFT(逆ディジタルフーリエ変換)するこ
とで、 h(k) が得られる。
In the TSP method, first, the TSP signal h (k) is synthesized. Specifically, h (k) is obtained by performing IDFT (Inverse Digital Fourier Transform) on the N digital frequency components represented by the following equation.

【0005】[0005]

【数1】 [Equation 1]

【0006】[0006]

【数2】 [Equation 2]

【0007】[0007]

【数3】 ただし、n は周波数を表す整数パラメータ(0≦n<N)、a
0 は定数、j は複素単位、N は信号長、m はパルス幅を
表す整数パラメータ、* は複素共役、k は時間を表す整
数パラメータである。式(3)により得られたTSP信
号 h(k) は周波数が高い周波数から低い周波数へと変化
する掃引正弦波となっている。TSP信号の代表的波形
を図3に示す。図の上に示した矢印のついた範囲31は
TSP信号のパルス幅を表している。
(Equation 3) However, n is an integer parameter that represents the frequency (0 ≤ n <N), a
0 is a constant, j is a complex unit, N is a signal length, m is a pulse width integer parameter, * is a complex conjugate, and k is an integer parameter time. The TSP signal h (k) obtained by the equation (3) is a swept sine wave whose frequency changes from a high frequency to a low frequency. A typical waveform of the TSP signal is shown in FIG. A range 31 with an arrow shown at the top of the figure represents the pulse width of the TSP signal.

【0008】次に、TSP信号を用いて系のインパルス
応答を測定するためのブロック図を図4に示す。図にお
いて、41はインパルス応答測定装置、42は被測定
系、43はTSP信号発生器、44はITSP(逆TS
P:Inverse TPS )信号発生器、45は畳み込み演算器
である。ただし、ITSP信号 h-1(k) とは、次式
Next, FIG. 4 shows a block diagram for measuring the impulse response of the system using the TSP signal. In the figure, 41 is an impulse response measuring device, 42 is a measured system, 43 is a TSP signal generator, and 44 is an ITSP (inverse TS).
P: Inverse TPS) signal generator, and 45 is a convolution calculator. However, the ITSP signal h -1 (k) is

【0009】[0009]

【数4】 で表される信号である。このITSP信号 h-1(k) を、
TSP信号 h(k) と畳み込んだ結果は単位パルスとな
る。このことより、被測定系42にTSP信号 h(k) を
入力した時の出力 y(k) に対して、このITSP信号 h
-1(k) を畳み込み演算器45で畳み込めば、系のインパ
ルス応答 g(k) が算出されることが証明されている(鈴
木、他:電子通信情報学会技術報告,EA92-86, 199
2)。
[Equation 4] Is a signal represented by. This ITSP signal h -1 (k) is
The result of convolution with the TSP signal h (k) becomes a unit pulse. From this, the ITSP signal h for the output y (k) when the TSP signal h (k) is input to the system under test 42
It has been proved that the impulse response g (k) of the system can be calculated by convolving -1 (k) with the convolution calculator 45 (Suzuki, et al. Technical Report of IEICE, EA92-86, 199).
2).

【0010】さて、インパルス応答の測定において、測
定された結果に含まれる誤差の大きさを把握することは
重要である。測定誤差は以下の2つが代表的である。即
ち、(1)周囲の騒音や電気的雑音によって生じる雑音
性誤差、(2)系の非線形歪によって生じる非線形誤
差、の2つである。これら2つの誤差の大きさは測定時
の信号レベルに依存する。このことを模式的に図5に示
した。図において、横軸は信号レベルを、縦軸は誤差の
大きさを表す。曲線51は雑音性誤差、52は非線形誤
差、53は雑音性誤差と非線形誤差を加算した総合誤差
を表している。この図からわかるように、信号レベルが
小さいと測定時のSN比が悪いので、雑音性誤差が大き
い。信号レベルを増加していくとSN比が向上していく
ので、雑音性誤差は低下していく。しかし、信号レベル
が大きくなりすぎると測定系の要素(例えばスピーカ)
に非線形歪が発生し、非線形誤差が増加する。
In measuring the impulse response, it is important to understand the magnitude of the error included in the measured result. The following two measurement errors are typical. That is, (1) a noise error caused by ambient noise and electrical noise, and (2) a nonlinear error caused by nonlinear distortion of the system. The magnitude of these two errors depends on the signal level at the time of measurement. This is schematically shown in FIG. In the figure, the horizontal axis represents the signal level and the vertical axis represents the error magnitude. A curve 51 represents a noise error, 52 represents a non-linear error, and 53 represents a total error obtained by adding the noise error and the non-linear error. As can be seen from this figure, when the signal level is low, the SN ratio at the time of measurement is poor, so the noise error is large. As the signal level is increased, the SN ratio is improved, so the noise error is decreased. However, if the signal level becomes too high, the measurement system element (eg speaker)
Non-linear distortion occurs and the non-linear error increases.

【0011】インパルス応答の測定値に含まれる総合誤
差はこれら2つの誤差の和であるので、曲線53に示す
ように最小値を持つ。従って、誤差が最小となるような
最適信号レベルにおいて測定を行う必要があるが、測定
結果に含まれる誤差の大きさを知ることは、必ずしも簡
単ではない。
Since the total error contained in the measured value of the impulse response is the sum of these two errors, it has the minimum value as shown by the curve 53. Therefore, it is necessary to perform the measurement at the optimum signal level that minimizes the error, but it is not always easy to know the magnitude of the error included in the measurement result.

【0012】図6は、測定誤差とインパルス応答波形の
関係を表す。横軸は時間であり、縦軸は振幅を表す。図
において、61はインパルス応答波形を、62は誤差波
形を模式的に表している。この例の場合、誤差は全時間
区間に一様に分布している。63は、インパルス応答を
含む時間区間、64はインパルス応答が減衰してしまっ
ており、誤差のみが含まれる時間区間を表す。
FIG. 6 shows the relationship between the measurement error and the impulse response waveform. The horizontal axis represents time and the vertical axis represents amplitude. In the figure, 61 schematically shows an impulse response waveform and 62 schematically shows an error waveform. In the case of this example, the error is uniformly distributed over the entire time interval. Reference numeral 63 represents a time section including the impulse response, and 64 represents a time section in which the impulse response is attenuated and includes only an error.

【0013】測定結果に含まれる誤差の大きさとは、区
間63に含まれるインパルス応答61に重畳した誤差の
大きさである。この例のように誤差が全時間区間に一様
に分布している場合には、これを知ることは容易であ
る。即ち、誤差のみが存在する区間64における誤差の
大きさ(誤差波形の2乗平均値)を計算すれば、その値
を区間63における誤差の大きさの推定値とすることが
できる。
The magnitude of the error included in the measurement result is the magnitude of the error superimposed on the impulse response 61 included in the section 63. When the error is uniformly distributed over the entire time period as in this example, it is easy to know this. That is, if the magnitude of the error in the section 64 in which only the error exists (the mean square value of the error waveform) is calculated, that value can be used as the estimated value of the magnitude of the error in the section 63.

【0014】一般に、雑音性誤差は、測定法によらず時
間区間に一様に分布する。また、M系列を用いた測定結
果に含まれる非線形誤差も、時間区間にほぼ一様に分布
する。従って、M系列法による測定結果に対しては、各
信号レベルに対する誤差の大きさ、即ち、図5に示すよ
うな総合誤差の曲線53を描くことは可能である。
Generally, the noise error is distributed uniformly in the time interval regardless of the measuring method. Further, the non-linear error included in the measurement result using the M series is also distributed almost uniformly in the time section. Therefore, for the measurement result by the M-series method, it is possible to draw the magnitude of the error for each signal level, that is, the curve 53 of the total error as shown in FIG.

【0015】次に、TSP法において生じる非線形誤差
の模式図を図7に示す。横軸は時間であり、縦軸は振幅
を表す。図において、71はインパルス応答波形を、7
2は誤差波形を模式的に表している。73は、インパル
ス応答を含む時間区間、74はインパルス応答が減衰し
てしまっており、誤差のみが含まれる時間区間である。
図に示すようにTSP法においては、非線形誤差は非一
様な分布となる。従って、M系列法の場合のように、区
間74で誤差の大きさを計算したとしても、その値を区
間73に含まれる誤差の推定量とすることはできない。
従って、TSP法の場合には、M系列法の場合と同様の
方法でインパルス応答の測定結果に含まれる誤差を推定
することはできない。
Next, FIG. 7 shows a schematic diagram of a non-linear error occurring in the TSP method. The horizontal axis represents time and the vertical axis represents amplitude. In the figure, 71 is an impulse response waveform, 7
2 schematically shows an error waveform. Reference numeral 73 is a time section including the impulse response, and 74 is a time section in which the impulse response is attenuated and only the error is included.
As shown in the figure, in the TSP method, the non-linear error has a non-uniform distribution. Therefore, even if the magnitude of the error is calculated in the section 74 as in the case of the M-sequence method, the value cannot be used as the estimated amount of the error included in the section 73.
Therefore, in the case of the TSP method, the error included in the measurement result of the impulse response cannot be estimated by the same method as in the case of the M-sequence method.

【0016】[0016]

【発明が解決しようとする課題】このように、TSP法
においては、誤差の大きさを推定する方法は知られてお
らず、従って、誤差を最小にするような最適信号レベル
も定めることができないという問題点があった。
As described above, in the TSP method, there is no known method for estimating the magnitude of the error, and therefore, the optimum signal level that minimizes the error cannot be determined. There was a problem.

【0017】この発明の目的は、TSP法における測定
結果に含まれる誤差の大きさを推定することができない
ため、最適信号レベルを決定することができないという
問題を解決するインパルス応答測定方法を提供すること
である。
An object of the present invention is to provide an impulse response measuring method which solves the problem that the optimum signal level cannot be determined because the magnitude of the error included in the measurement result in the TSP method cannot be estimated. That is.

【0018】[0018]

【課題を解決するための手段】本発明では以下の原理に
基づいてTSP法の測定結果に含まれる誤差の大きさを
推定する。
In the present invention, the magnitude of the error included in the measurement result of the TSP method is estimated based on the following principle.

【0019】まず、2つの測定結果を g'1 (k),g'
2 (k) と表す。これらには、真のインパルス応答 g(k)
に加えて、雑音性誤差 n1 (k),n2 (k) および非線形誤
差 d1 (k),d2 (k) が含まれているものとする。即ち、
次の関係が成立する。
First, the two measurement results are g ′ 1 (k), g ′
Expressed as 2 (k). These include the true impulse response g (k)
In addition, noise errors n 1 (k) and n 2 (k) and nonlinear errors d 1 (k) and d 2 (k) are assumed to be included. That is,
The following relationship holds.

【0020】[0020]

【数5】 (Equation 5)

【0021】[0021]

【数6】 この時、 g'1 (k)および g'2 (k)の相関係数ρを考える(Equation 6) In this case, consider the correlation coefficient g '1 (k) and g' 2 (k) ρ

【0022】[0022]

【数7】 ただし、数式の上線は時間平均を表す。ここで、インパ
ルス応答、雑音性誤差、非線形誤差、はそれぞれ無相関
であるとする。また、雑音性誤差は測定毎に無相関な誤
差が発生するものとする。即ち、次式を仮定する。
(Equation 7) However, the upper line in the equation represents the time average. Here, the impulse response, the noise error, and the non-linear error are assumed to be uncorrelated. Further, it is assumed that the noise-like error is an uncorrelated error for each measurement. That is, the following equation is assumed.

【0023】[0023]

【数8】 (Equation 8)

【0024】[0024]

【数9】 [Equation 9]

【0025】[0025]

【数10】 [Equation 10]

【0026】[0026]

【数11】 式(5)(6)を(7)に代入し、(8)(9)(1
0)(11)の関係を用いれば、
[Equation 11] Substituting equations (5) and (6) into (7), (8) (9) (1
Using the relationship of 0) (11),

【0027】[0027]

【数12】 となる。ただし、(Equation 12) Becomes However,

【0028】[0028]

【数13】 (Equation 13)

【0029】[0029]

【数14】 [Equation 14]

【0030】[0030]

【数15】 (Equation 15)

【0031】[0031]

【数16】 ここで、2回の測定において、雑音性誤差のパワーの大
きさ、および非線形誤差の大きさはそれぞれほぼ等し
い、即ち、
[Equation 16] Here, in the two measurements, the magnitude of the noise error power and the magnitude of the non-linearity error are substantially equal to each other, that is,

【0032】[0032]

【数17】 [Equation 17]

【0033】[0033]

【数18】 が成立するものと仮定する。この関係を式(12)に代
入すれば、
(Equation 18) Is assumed to hold. Substituting this relationship into equation (12),

【0034】[0034]

【数19】 となる。この時、 1 −ρを考えると、[Formula 19] Becomes At this time, considering 1-ρ,

【0035】[0035]

【数20】 となる。ただし、2番目の近似は、誤差は真の値に比べ
て十分に小さい、即ち、Pg 》Pn1 十Pd1 と考えた。
この式からわかるように、 1 −ρは、総合誤差のパワ
ーPn1 十Pd1 から、非線形誤差の相関Cd を引き算し
たものを真の値のパワーPg で正規化した値となってい
る。従って、Cd =0 であれば、 1 −ρは総合誤差の
大きさを表すことが理解できる。しかし、実際には、同
じ条件で測定した場合の非線形誤差は高い相関値を持つ
ため、Cd =0 とみなすことはできないという問題があ
る。
(Equation 20) Becomes However, in the second approximation, the error was considered to be sufficiently smaller than the true value, that is, P g >> P n1 + P d1 .
As can be seen from this equation, 1−ρ is a value obtained by subtracting the correlation C d of the nonlinear error from the power P n1 + P d1 of the total error, and normalizing the power P g of the true value. . Therefore, it can be understood that 1−ρ represents the magnitude of the total error if C d = 0. However, in reality, there is a problem that it cannot be regarded as C d = 0 because the nonlinear error when measured under the same conditions has a high correlation value.

【0036】そこで、パルス幅が異なったTSP信号を
用いて2回の測定を行うことを考えた。TSP信号は図
3に示したように掃引正弦波であるので、パルス幅31
が異なる2つのTSP信号は位相のズレを生じ、互いに
無相関な信号となる。このように、無相関な測定信号を
用いれば、その測定信号の振幅の大きな部分において発
生する非線形歪に起因する非線形誤差も無相関なものに
なるのではないかと考えた。このことを図6に示すよう
な飽和形の非線形系を用いたシミュレーション実験を行
った結果、非線形誤差の相関値Cd は約 0.2Pd1である
ことが確認された。この結果を式(20)に代入すれ
ば、
Therefore, it was considered to perform the measurement twice using TSP signals having different pulse widths. Since the TSP signal is a swept sine wave as shown in FIG.
Two TSP signals with different values are out of phase with each other and are uncorrelated signals. In this way, it was thought that if a non-correlated measurement signal is used, the non-linear error caused by the non-linear distortion generated in a large amplitude portion of the measurement signal will also be non-correlated. As a result of conducting a simulation experiment using a saturated type nonlinear system as shown in FIG. 6, it was confirmed that the correlation value C d of the nonlinear error is about 0.2 P d1 . Substituting this result into equation (20),

【0037】[0037]

【数21】 となる。 0.8Pd1という値はPd1とは 1 dB 以内の範囲
であるので、 1 −ρ の値を総合誤差の推定値とみなす
ことができる。
[Equation 21] Becomes Since the value of 0.8P d1 is within the range of 1 dB with respect to P d1 , the value of 1 −ρ can be regarded as the estimated value of the total error.

【0038】[0038]

【作用】本発明のインパルス応答測定方法は、周波数が
高い周波数から低い周波数へと変化する掃引正弦波であ
るパルス幅の異なる2つのTSP信号を用いて被測定系
のインパルス応答を測定し、2つの測定結果の間の相関
係数をρとし、 1 − ρの値を計算して、これを測定誤
差の推定値とする。その結果、誤差の推定が行えるよう
になり、最適な測定信号レベルを見いだし、測定結果を
最小誤差で得られる。
According to the impulse response measuring method of the present invention, the impulse response of the system to be measured is measured by using two TSP signals having different pulse widths, which are swept sine waves whose frequencies change from a high frequency to a low frequency. Let ρ be the correlation coefficient between two measurement results, calculate the value of 1 − ρ, and use this as the estimated value of the measurement error. As a result, the error can be estimated, the optimum measurement signal level can be found, and the measurement result can be obtained with the minimum error.

【0039】[0039]

【実施例】以下、本発明の実施例を図面により詳細に説
明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0040】図1は本発明のインパルス応答測定方法の
一実施例を示した図である。この図において、11はイ
ンパルス応答測定誤差計算装置、12は被測定系、13
は第1のTSP信号発生器(以下TPS1と称す)、1
4は第2のTSP信号発生器(以下TPS2と称す)、
15は第1のスイッチ、16は第1のITSP信号発生
器(以下ITPS1と称す)、17は第2のITSP信
号発生器(以下ITPS2と称す)、18は第2のスイ
ッチ、19は畳み込み演算器、20は第3のスイッチ、
21は第1のインパルス応答蓄積器(以下Imp.1と
称す)、22は第2のインパルス応答蓄積器(以下Im
p.2と称す)、23は相関演算器である。
FIG. 1 is a diagram showing an embodiment of the impulse response measuring method of the present invention. In this figure, 11 is an impulse response measurement error calculation device, 12 is a measured system, and 13
Is a first TSP signal generator (hereinafter referred to as TPS1), 1
4 is a second TSP signal generator (hereinafter referred to as TPS2),
Reference numeral 15 is a first switch, 16 is a first ITSP signal generator (hereinafter referred to as ITPS1), 17 is a second ITSP signal generator (hereinafter referred to as ITPS2), 18 is a second switch, and 19 is a convolution operation. Vessel, 20 is the third switch,
Reference numeral 21 is a first impulse response accumulator (hereinafter referred to as “Imp. 1”), and 22 is a second impulse response accumulator (hereinafter referred to as Im.
p. 2) and 23 are correlation calculators.

【0041】この実施例の動作は以下のようである。ま
ず、スイッチ15と、スイッチ18と、スイッチ20
を、それぞれTPS1と、ITPS1と、Imp.1に
接続させておく。次に、TPS1よりTSP信号を発生
させて被測定系12に入力する。次に、被測定系12の
出力と、ITPS1から出力されるITSP信号を畳み
込み演算器19で計算する。計算結果として第1のイン
パルス応答測定結果が得られるので、これをImp.1
に蓄積する。
The operation of this embodiment is as follows. First, the switch 15, the switch 18, and the switch 20
, TPS1, ITPS1, and Imp. Keep it connected to 1. Next, a TSP signal is generated from TPS1 and input to the system under test 12. Next, the convolution calculator 19 calculates the output of the system under measurement 12 and the ITSP signal output from the ITPS 1. As the calculation result, the first impulse response measurement result is obtained. 1
Accumulate in.

【0042】次に、スイッチ15と、スイッチ18と、
スイッチ20を、それぞれTSP2と、ITPS2と、
Imp.2に接続させて、同様の測定を行う。ただし、
TSP2は、TSP1とはパルス幅が異なったTSP信
号を発生するものとする。測定結果は、Imp.2に蓄
積する。
Next, the switch 15, the switch 18,
The switches 20 are respectively TSP2, ITPS2,
Imp. Connect to 2 and perform similar measurements. However,
It is assumed that TSP2 generates a TSP signal having a pulse width different from that of TSP1. The measurement result is Imp. Accumulate to 2.

【0043】最後に、Imp.1およびImp.2か
ら、2回のインパルス測定結果を相関演算器23に入力
して総合誤差の値、即ち、 1 −ρ の値を計算する。た
だし、ρの計算は式(7)に基づく。以上の操作によっ
て、上記本発明の主旨が実行される。
Finally, Imp. 1 and Imp. From two times, the results of two impulse measurements are input to the correlation calculator 23 to calculate the value of the total error, that is, the value of 1−ρ. However, the calculation of ρ is based on the equation (7). With the above operation, the gist of the present invention is executed.

【0044】図2は本発明のインパルス応答測定方法の
有効性を確認するために行った実験結果である。実験は
小形フルレンジスピーカのインパルス応答をM系列法、
およびTSP法によって測定した。図において破線はM
系列法による測定誤差の推定値である。先に説明したよ
うに、M系列法の誤差は時間区間に一様に分布するの
で、従来技術により、ほぼ正確な誤差推定が行える。一
方、実線は本発明のインパルス応答測定方法によって得
られた、TSP信号による測定結果に含まれる誤差の推
定値である。同一の被測定系に対して同一の信号レベル
で測定した場合の測定誤差は、測定方法に依らず等しい
と考えられるので、これら2つの曲線がほぼ一致してい
ることは本発明のインパルス応答測定方法が有効である
ことを示している。
FIG. 2 shows the result of an experiment conducted to confirm the effectiveness of the impulse response measuring method of the present invention. In the experiment, the impulse response of a small full-range loudspeaker was determined by the M-sequence method,
And TSP method. In the figure, the broken line is M
It is an estimated value of the measurement error by the series method. As described above, since the error of the M-sequence method is uniformly distributed in the time section, the error can be estimated almost accurately by the conventional technique. On the other hand, the solid line is the estimated value of the error included in the measurement result by the TSP signal, which is obtained by the impulse response measuring method of the present invention. It is considered that the measurement error when the same signal level is measured for the same system to be measured is the same regardless of the measurement method. Therefore, these two curves are almost coincident with each other in the impulse response measurement of the present invention. It shows that the method is valid.

【0045】[0045]

【発明の効果】以上説明したように、本発明のインパル
ス応答測定方法は、パルス幅の異なる2つのTSP信号
を用いて測定したインパルス応答の相関値を利用して、
測定結果に含まれる誤差の大きさを推定する方法を提供
するものであり、誤差の推定が行えるようになった結
果、最適な測定信号レベルを見いだすことが可能にな
り、測定結果を最小誤差で得ることが可能になる。
As described above, the impulse response measuring method of the present invention utilizes the correlation value of the impulse response measured using two TSP signals having different pulse widths,
It provides a method for estimating the magnitude of the error included in the measurement result.As a result of being able to estimate the error, it is possible to find the optimum measurement signal level, and the measurement result can be obtained with the minimum error. It will be possible to obtain.

【0046】本発明のインパルス応答測定方法は、音響
インパルス応答のみではなく、電気回路や機械系のイン
パルス応答などの測定誤差推定にも、そのまま適用する
ことが可能であるという効果がある。
The impulse response measuring method of the present invention has an effect that it can be applied as it is to not only acoustic impulse response but also measurement error estimation of impulse response of electric circuits and mechanical systems.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のインパルス応答測定方法の一実施例の
ブロック図。
FIG. 1 is a block diagram of an example of an impulse response measuring method according to the present invention.

【図2】本発明の有効性を確認するために行った実験結
果を表す図。
FIG. 2 is a diagram showing the results of an experiment conducted to confirm the effectiveness of the present invention.

【図3】TSP信号の代表的波形を表す図。FIG. 3 is a diagram showing a typical waveform of a TSP signal.

【図4】TSP信号を用いてインパルス応答を測定する
ためのブロック図。
FIG. 4 is a block diagram for measuring an impulse response using a TSP signal.

【図5】測定誤差の大きさと信号レベルの関係を表す模
式図。
FIG. 5 is a schematic diagram showing the relationship between the magnitude of measurement error and the signal level.

【図6】インパルス応答と一様に分布する測定誤差との
関係を表す模式図。
FIG. 6 is a schematic diagram showing a relationship between an impulse response and a uniformly distributed measurement error.

【図7】インパルス応答と非一様に分布する測定誤差と
の関係を表す模式図。
FIG. 7 is a schematic diagram showing a relationship between an impulse response and a non-uniformly distributed measurement error.

【図8】シミュレーションに用いた飽和形の非線形特
性。
FIG. 8 shows a saturated nonlinear characteristic used in the simulation.

【符号の説明】 11 インパルス応答測定誤差計算装置 12 被測定系 13 第1のTSP信号発生器(TSP1) 14 第2のTSP信号発生器(TSP2) 15 第1のスイッチ 16 第1のITSP信号発生器(ITPS1) 17 第2のITSP信号発生器(ITPS2) 18 第2のスイッチ 19 畳み込み演算器 20 第3のスイッチ 21 第1のインパルス応答蓄積器(Imp.1) 22 第2のインパルス応答蓄積器(Imp.2) 23 相関演算器[Explanation of Codes] 11 Impulse Response Measurement Error Calculator 12 System Under Test 13 First TSP Signal Generator (TSP1) 14 Second TSP Signal Generator (TSP2) 15 First Switch 16 First ITSP Signal Generation Device (ITPS1) 17 second ITSP signal generator (ITPS2) 18 second switch 19 convolutional calculator 20 third switch 21 first impulse response accumulator (Imp.1) 22 second impulse response accumulator (Imp.2) 23 Correlation calculator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 周波数が高い周波数から低い周波数へと
変化する掃引正弦波であるパルス幅の異なる2つのTS
P信号を用いて被測定系のインパルス応答を測定し、2
つの測定結果の間の相関係数をρと表したとき、 1 −
ρの値を計算して、これを測定誤差の推定値とするイン
パルス応答測定方法。
1. Two TSs having different pulse widths, which are swept sine waves whose frequencies change from a high frequency to a low frequency.
The impulse response of the system under measurement is measured using the P signal, and 2
When the correlation coefficient between two measurement results is expressed as ρ, 1 −
An impulse response measurement method in which the value of ρ is calculated and used as the estimated value of the measurement error.
JP4804295A 1995-03-08 1995-03-08 Impulse response measuring method Pending JPH08248077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4804295A JPH08248077A (en) 1995-03-08 1995-03-08 Impulse response measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4804295A JPH08248077A (en) 1995-03-08 1995-03-08 Impulse response measuring method

Publications (1)

Publication Number Publication Date
JPH08248077A true JPH08248077A (en) 1996-09-27

Family

ID=12792277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4804295A Pending JPH08248077A (en) 1995-03-08 1995-03-08 Impulse response measuring method

Country Status (1)

Country Link
JP (1) JPH08248077A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025998A1 (en) * 2000-09-20 2002-03-28 Leonhard Research A/S A method of measuring the impulse response capability of a system
US7260227B2 (en) 2002-12-09 2007-08-21 Etani Electronics Co., Ltd. Method and device for measuring sound wave propagation time between loudspeaker and microphone
JPWO2006011356A1 (en) * 2004-07-29 2008-05-01 国立大学法人 和歌山大学 Impulse response measuring method and apparatus
EP1781069A3 (en) * 2005-10-31 2009-11-04 Sony Corporation Method for measuring frequency characteristic and rising edge of impulse response, and sound field correcting apparatus
US7746964B2 (en) 2005-12-13 2010-06-29 Sony Corporation Signal processing apparatus and signal processing method
US8150069B2 (en) 2006-03-31 2012-04-03 Sony Corporation Signal processing apparatus, signal processing method, and sound field correction system
US8199932B2 (en) 2006-11-29 2012-06-12 Sony Corporation Multi-channel, multi-band audio equalization
US8280075B2 (en) 2007-02-05 2012-10-02 Sony Corporation Apparatus, method and program for processing signal and method for generating signal
JP2013181978A (en) * 2013-02-15 2013-09-12 Toshiba Corp Measuring device and measuring method
JP2013181783A (en) * 2012-02-29 2013-09-12 Toshiba Corp Measuring device and measuring method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025998A1 (en) * 2000-09-20 2002-03-28 Leonhard Research A/S A method of measuring the impulse response capability of a system
US7260227B2 (en) 2002-12-09 2007-08-21 Etani Electronics Co., Ltd. Method and device for measuring sound wave propagation time between loudspeaker and microphone
JP4552016B2 (en) * 2004-07-29 2010-09-29 国立大学法人 和歌山大学 Impulse response measuring method and apparatus
JPWO2006011356A1 (en) * 2004-07-29 2008-05-01 国立大学法人 和歌山大学 Impulse response measuring method and apparatus
EP2203002A3 (en) * 2005-10-31 2011-06-08 Sony Corporation Method for measuring frequency characteristic and rising edge of impulse response, and sound field correcting apparatus
EP1781069A3 (en) * 2005-10-31 2009-11-04 Sony Corporation Method for measuring frequency characteristic and rising edge of impulse response, and sound field correcting apparatus
KR101358182B1 (en) * 2005-10-31 2014-02-07 소니 주식회사 Method for measuring frequency characteristic and rising edge of impulse response, and sound field correcting apparatus
US7746964B2 (en) 2005-12-13 2010-06-29 Sony Corporation Signal processing apparatus and signal processing method
US8150069B2 (en) 2006-03-31 2012-04-03 Sony Corporation Signal processing apparatus, signal processing method, and sound field correction system
US8199932B2 (en) 2006-11-29 2012-06-12 Sony Corporation Multi-channel, multi-band audio equalization
US8280075B2 (en) 2007-02-05 2012-10-02 Sony Corporation Apparatus, method and program for processing signal and method for generating signal
JP2013181783A (en) * 2012-02-29 2013-09-12 Toshiba Corp Measuring device and measuring method
JP2013181978A (en) * 2013-02-15 2013-09-12 Toshiba Corp Measuring device and measuring method

Similar Documents

Publication Publication Date Title
JP4300253B2 (en) Vector network analyzer calibration method
US7940056B2 (en) Time-domain reflectometry
US6594604B2 (en) S-parameter measurement system for wideband non-linear networks
US9084049B2 (en) Automatic equalization using adaptive frequency-domain filtering and dynamic fast convolution
JPH08248077A (en) Impulse response measuring method
RU2007142625A (en) METHOD FOR CORRECTION OF ACOUSTIC PARAMETERS OF ELECTRO-ACOUSTIC CONVERTERS AND DEVICE FOR ITS IMPLEMENTATION
EP3792640A1 (en) A method of monitoring electrical loads, corresponding circuit, amplifier and audio system
CN104869519A (en) Method and system for testing background noise of microphone
JP3237529B2 (en) Transmission line propagation delay time measurement device
US5402495A (en) Method and apparatus for evaluating audio distortion
US5563953A (en) Apparatus and method for evaluating audio distorting
JP6910791B2 (en) Signal measurement method
JP2003124851A (en) Method of measuring distance to fault
JPH05118906A (en) Method and device for acoustic measurement
JPH11258034A (en) Delay time measuring system
JP2004150825A (en) Spectral analysis apparatus and method
KR102036790B1 (en) Condition Assessment System and Method for Cables via Stepped-Frequency Waveform Reflectometry
JP3277440B2 (en) Acoustic characteristics measurement device
CN110574289B (en) Method and apparatus for adjusting audio signal and audio system
Moriya et al. Study of harmonic distortion on impulse response measurement with logarithmic time stretched pulse
Liu et al. An approach to power system harmonic analysis based on triple-line interpolation discrete Fourier transform
Dwisetyo et al. Realization of Total Harmonic Distortion Measurement of Acoustic Source Signal System for Frequency of 125 Hz and 1000 Hz
JP3244252B2 (en) Background noise average level prediction method and apparatus
US6693435B2 (en) Method and apparatus for measuring a measuring signal and reflected measuring signal
Kwon et al. Time-selective windowing technique in free-field microphone reciprocity calibration