JPH0824582A - Treatment of waste gas - Google Patents

Treatment of waste gas

Info

Publication number
JPH0824582A
JPH0824582A JP6186483A JP18648394A JPH0824582A JP H0824582 A JPH0824582 A JP H0824582A JP 6186483 A JP6186483 A JP 6186483A JP 18648394 A JP18648394 A JP 18648394A JP H0824582 A JPH0824582 A JP H0824582A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
porous carbon
gas
metal component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6186483A
Other languages
Japanese (ja)
Inventor
Takashi Uchida
隆 内田
Seiji Okabayashi
誠治 岡林
Kiyohiko Imai
喜代彦 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mizusawa Industrial Chemicals Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP6186483A priority Critical patent/JPH0824582A/en
Publication of JPH0824582A publication Critical patent/JPH0824582A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To obtain a method for treating a waste gas with a durable catalyst having high desulfurizing and denitrating performance by granulating a porous carbon particle having a small specific surface and contg. transition metal along with a false boehmitestructure hydrous alumina, smectite, etc., and using the granulation product in desulfurizing and denitrating the waste gas. CONSTITUTION:A waste gas 5 contg. SOx and/or NOx is brought into contact with a catalyst 3 consisting of the granulated composition contg. a transition metal component and a sulfur component, contg. a porous carbon particle having 5-50m<2>/g BET specific surface and a false boehmite-structure hydrous alumina in (1:1.4) to (3:1) weight ratio and further contg. 10-30wt.%, based on the total weight, synthetic or natural smectite-group clay mineral or synthetic or natural zeolite. The catalyst has high desulfurizing and denitrating performance and excellent resistance to powdering and durability. Since this carbon is easily available, the catalyst cost is remarkably reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、硫黄酸化物及び/また
は窒素酸化物を含有する排ガスの処理法に関するもの
で、より詳細には、特定の多孔質カーボン粒子の粒状成
形体から成る触媒を用いて上記排ガス中の各酸化物を除
去する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating exhaust gas containing sulfur oxides and / or nitrogen oxides, and more specifically to a catalyst composed of a granular formed body of specific porous carbon particles. The present invention relates to a method of removing each oxide in the above exhaust gas.

【0002】[0002]

【従来の技術】従来、燃焼炉排ガス等に含まれる硫黄酸
化物や窒素酸化物等を除去するために活性炭等の炭素質
吸着剤を用いることは古くから知られている。例えば、
特開昭58−153523号公報には、硫黄酸化物及び
窒素酸化物を含有する排ガスと炭素質吸着剤とを接触さ
せて排ガス中の硫黄酸化物の大部分を吸着除去し、次い
で排ガス中の硫黄酸化物濃度及び窒素酸化物濃度を検出
して、それらの化学当量相当のアンモニアガスを排ガス
に供給し混合させた後、排ガスと炭素質吸着剤とを接触
させることが記載されている。
2. Description of the Related Art Conventionally, it has long been known to use a carbonaceous adsorbent such as activated carbon to remove sulfur oxides, nitrogen oxides, etc. contained in combustion furnace exhaust gas. For example,
In JP-A-58-153523, exhaust gas containing sulfur oxides and nitrogen oxides is contacted with a carbonaceous adsorbent to adsorb and remove most of the sulfur oxides in the exhaust gas. It is described that the concentration of sulfur oxides and the concentration of nitrogen oxides are detected, ammonia gas equivalent to their chemical equivalents is supplied to the exhaust gas and mixed, and then the exhaust gas and the carbonaceous adsorbent are brought into contact with each other.

【0003】また、1990年(株)プロジェクト・ニ
ュース社発行の資料によると、三井鉱山株式会社は、石
炭を主原料とした多孔質吸着剤「活性コークス」を用い
て同時に脱硫・脱硝・脱塵を行い、副産物として高純度
硫黄または濃硫酸を回収する乾式脱硫脱硝装置を完成し
たこと、及びこの装置では活性コークスを充填した吸着
塔は上下2層の重力式移動層で、排ガスを下層である第
一層に導いて脱硫を行い、硫黄酸化物を除いた排ガスを
アンモニア注入後、上層である第二層に導いて脱硝を行
うことが報じられている。
Further, according to a material issued by Project News Co., Ltd. in 1990, Mitsui Mining Co., Ltd. simultaneously desulfurizes, denitrates and dedusts by using a porous adsorbent "active coke" whose main raw material is coal. And completed a dry desulfurization and denitration device for recovering high-purity sulfur or concentrated sulfuric acid as a by-product, and in this device, the adsorption tower filled with active coke is a gravity type moving bed of two upper and lower layers, and exhaust gas is the lower layer. It has been reported that desulfurization is conducted by introducing it to the first layer, and exhaust gas from which sulfur oxides have been removed is injected with ammonia, and then it is introduced into the upper second layer to perform denitration.

【0004】[0004]

【発明が解決しようとする課題】活性炭は著しく高い比
表面積を有しており、高い吸着性能を示すものの、粉化
傾向のあること及び価格が高価であることが問題であ
り、更に使用に伴って表面活性が次第に低下するのを避
け得ない。
The activated carbon has a remarkably high specific surface area and exhibits a high adsorption performance, but it has a problem that it tends to be pulverized and its price is high. It is unavoidable that the surface activity gradually decreases.

【0005】本発明者等は、比表面積の高い活性炭を用
いることにより脱硫及び脱硝の性能を高めるという従来
の考えとは全く逆に、比表面積が低くても高い脱硫性能
と脱硝性能とを示すカーボンを探索した結果、遷移金属
成分を含有する多孔質カーボンを擬ベーマイト型水和ア
ルミナ及びスメクタイト等と共に造粒したものがこの目
的に適していることを見出し、本発明に到達した。即
ち、本発明の目的は、比較的小さい比表面積を有しなが
ら、高度の脱硫性能及び脱硝性能を有し、長期間使用中
における粉化傾向や活性の低下に対しても耐性のある触
媒を用いた排ガスの処理法を提供するにある。本発明の
他の目的は、触媒コストが安価であり、従って運転コス
トも低くてすむ排ガスの脱硫及びまたは脱硝のための処
理法を提供するにある。
The present inventors show high desulfurization performance and denitration performance even when the specific surface area is low, contrary to the conventional idea that the performance of desulfurization and denitration is enhanced by using activated carbon having a high specific surface area. As a result of searching for carbon, the inventors have found that porous carbon containing a transition metal component granulated with pseudo-boehmite-type hydrated alumina, smectite, etc. is suitable for this purpose, and arrived at the present invention. That is, an object of the present invention is to provide a catalyst having a high desulfurization performance and denitration performance while having a relatively small specific surface area and having resistance to pulverization tendency and activity reduction during long-term use. It is to provide a method of treating the used exhaust gas. Another object of the present invention is to provide a treatment method for desulfurization and / or denitration of exhaust gas which has a low catalyst cost and therefore a low operating cost.

【0006】[0006]

【課題を解決するための手段】本発明によれば、遷移金
属成分及び硫黄成分を含有し且つBET比表面積が5乃
至50m2 /gの範囲にある多孔質カーボン粒子と、擬
ベーマイト型水和アルミナとを1:1.4乃至3:1の
重量比で含有し且つ全体当り10乃至30重量%の合成
乃至天然のスメクタイト族粘土鉱物或いは合成乃至天然
のゼオライトを含有する組成物の粒状成形品から成る触
媒と、硫黄酸化物及び/または窒素酸化物を含有する排
ガスとを接触させることを特徴とする排ガスの処理法が
提供される。
According to the present invention, porous carbon particles containing a transition metal component and a sulfur component and having a BET specific surface area in the range of 5 to 50 m 2 / g, and pseudo-boehmite hydration. Granular molded article of a composition containing alumina in a weight ratio of 1: 1.4 to 3: 1 and containing 10 to 30% by weight of a synthetic or natural smectite group clay mineral or a synthetic or natural zeolite. There is provided a method for treating exhaust gas, which comprises contacting a catalyst consisting of (3) with exhaust gas containing sulfur oxides and / or nitrogen oxides.

【0007】本発明において、排ガスが硫黄酸化物含有
ガスである場合、排ガスと触媒とを100乃至250℃
の温度で接触させるのがよく、一方、排ガスが窒素酸化
物含有ガスである場合、排ガスをアンモニアと共に触媒
に150乃至300℃の温度で接触させるのがよい。ま
た、排ガスが硫黄酸化物及び窒素酸化物を含有するガス
である場合、前記排ガス或いは排ガスとアンモニアとの
混合ガスを前記触媒の第一の層と80乃至150℃の温
度で接触させて、排ガス中の硫黄酸化物を除去し、接触
後のガス中にアンモニアが含有されていない場合には接
触後のガスにアンモニアを混合した後、この混合ガス前
記触媒の第2の層と200乃至300℃の温度で接触さ
せて排ガス中の窒素酸化物を除去するのがよい。
In the present invention, when the exhaust gas is a sulfur oxide-containing gas, the exhaust gas and the catalyst are mixed at 100 to 250 ° C.
When the exhaust gas is a nitrogen oxide-containing gas, it is advisable to contact the exhaust gas with the catalyst at a temperature of 150 to 300 ° C. together with ammonia. When the exhaust gas is a gas containing sulfur oxides and nitrogen oxides, the exhaust gas or a mixed gas of exhaust gas and ammonia is brought into contact with the first layer of the catalyst at a temperature of 80 to 150 ° C. The sulfur oxides therein are removed, and when the gas after contact does not contain ammonia, the gas after contact is mixed with ammonia, and the mixed gas is mixed with the second layer of the catalyst at 200 to 300 ° C. It is preferable to remove the nitrogen oxides in the exhaust gas by contacting at the temperature of.

【0008】本発明の触媒中に用いる多孔質カーボンは
遷移金属成分を1乃至30重量%及び硫黄成分を5乃至
15重量%含有するのがよく、遷移金属成分は、鉄、ニ
ッケル、コバルト及びバナジウムから成る群より選択さ
れた少なくとも1種の金属成分から成るのがよい。本発
明の触媒のもととなる多孔質カーボンは決してこれに限
定されないが、原油及び重油焚き火力発電煤塵として容
易に入手し得る。
The porous carbon used in the catalyst of the present invention preferably contains 1 to 30% by weight of a transition metal component and 5 to 15% by weight of a sulfur component, and the transition metal component is iron, nickel, cobalt and vanadium. It preferably comprises at least one metal component selected from the group consisting of: The porous carbon from which the catalyst of the present invention is based is not limited to this, but is easily available as crude oil and heavy oil-fired thermal power generation soot dust.

【0009】[0009]

【作用】本発明に用いる触媒は、(a)多孔質カーボン
粒子、(b)擬ベーマイト型水和アルミナ及び(c)ス
メクタイト族粘土鉱物或いはゼオライトの粒状成形品か
ら成るが、この多孔質カーボン粒子は、(1)遷移金属
成分及び硫黄成分を含有すること、及び(2)BET比
表面積が5乃至50m2 /g、特に10乃至50m2
gとカーボン吸着剤としては例外的に低い範囲内にある
こと、が顕著な特徴である。下記「表1」は、脱硫や脱
硝の目的に広く使用されている活性炭や活性コークスと
本発明に用いる多孔質カーボンとの比表面積を比較した
ものであり、従来のものに比して桁違いに小さな比表面
積を示す。
The catalyst used in the present invention comprises (a) porous carbon particles, (b) pseudo-boehmite-type hydrated alumina and (c) granular molded products of smectite group clay mineral or zeolite. is (1) a transition metal component and contain a sulfur component, and (2) BET specific surface area of 5 to 50 m 2 / g, especially 10 to 50 m 2 /
g and the carbon adsorbent are in an exceptionally low range, which is a remarkable feature. The following "Table 1" compares the specific surface area of activated carbon or activated coke widely used for desulfurization and denitration with the porous carbon used in the present invention, which is incomparable to that of the conventional one. Shows a small specific surface area.

【0010】[0010]

【表1】 [Table 1]

【0011】本発明によれば、この特定の多孔質カーボ
ンに擬ベーマイト型水和アルミナとスメクタイト族粘土
鉱物またはゼオライトとを一定の量比で組合せ、造粒す
ることにより粒状物の機械的(耐圧)強度や耐摩耗性が
顕著に向上するばかりではなく、脱硫性能及び脱硝性能
も顕著に向上する。
According to the present invention, the specific porous carbon is combined with a pseudo-boehmite-type hydrated alumina and a smectite group clay mineral or zeolite in a predetermined quantitative ratio and granulated to mechanically (pressure resistance) of the granular material. ) Not only the strength and abrasion resistance are remarkably improved, but also the desulfurization performance and the denitration performance are remarkably improved.

【0012】「図1」は、多孔質カーボンとして東京電
力株式会社大井原油灰及び前記品川原油灰を使用し、擬
ベーマイト型水和アルミナ及びスメクタイトと共に造粒
した触媒(詳細は後述する実施例1乃至7参照)に、S
2 及びNO含有にアンモニアを混合したものを通じた
ときの温度と脱硫率及び脱硝率との関係を示している。
この結果によると、200℃以下のよりも低温側、特に
150℃以下の低温側では、90%以上で、120℃で
97.9%にも達する脱硫率が得られ、一方200℃以
上の高温側、特に225℃以上の高温側では、65%以
上、250℃で91.5%にも達する脱硝率が得られる
ことがわかる。
[0012] "Fig. 1" is a catalyst prepared by granulating together with pseudo-boehmite-type hydrated alumina and smectite using Tokyo Electric Power Co., Inc. Oi crude oil ash and Shinagawa crude oil ash as porous carbon (Example 1 described later in detail). Through 7), S
The relationship between the temperature, the desulfurization rate, and the denitrification rate when a mixture of O 2 and NO is mixed with ammonia is shown.
According to this result, a desulfurization rate of 90% or more and 97.9% at 120 ° C. was obtained at a temperature lower than 200 ° C., particularly at a temperature lower than 150 ° C., while a high temperature of 200 ° C. or higher was obtained. On the other hand, especially on the high temperature side of 225 ° C. or higher, it can be seen that a denitrification rate of 65% or more and up to 91.5% at 250 ° C. can be obtained.

【0013】更に、「図2」は、「図1」の試験で高い
脱硫率を示したもの(大井原油灰使用)について、10
0℃での通ガス時間と平均脱硫率との関係をプロットし
たものであるが、100%の脱硫率を10時間にわたっ
て維持されるという驚くべき結果が明らかとなる。本発
明で用いる上記多孔質カーボンは、原油煤、重油煤等と
して、原油或いは重油等の燃料を使用する燃焼装置から
多量に排出されるため、著しく安価に入手でき、しかも
廃棄による環境汚染の問題なしに、脱硫乃至脱硝の目的
に再利用できるという利点をもたらす。本発明におい
て、造粒媒体として、擬ベーマイト型水和アルミナと合
成乃至天然のスメクタイト型粘土鉱物或いは合成乃至天
然のゼオライトを使用すると、粒状物の物性の点でも、
脱硫乃至脱硝の点でも顕著な利点が達成されることがわ
かった。
Further, "Fig. 2" is for the one showing a high desulfurization rate in the test of "Fig. 1" (using Oi crude oil ash).
The relationship between the gas passing time at 0 ° C. and the average desulfurization rate is plotted, and the surprising result that the desulfurization rate of 100% is maintained over 10 hours becomes clear. The above-mentioned porous carbon used in the present invention is, as crude oil soot, heavy oil soot, etc., discharged in large amounts from a combustion device that uses a fuel such as crude oil or heavy oil, so it can be obtained at extremely low cost, and the problem of environmental pollution due to disposal It has the advantage that it can be reused for desulfurization or denitration purposes. In the present invention, as the granulation medium, when using pseudo-boehmite-type hydrated alumina and synthetic or natural smectite-type clay mineral or synthetic or natural zeolite, in terms of physical properties of the granular material,
It has been found that significant advantages are achieved in terms of desulfurization and denitration.

【0014】即ち、上記水和アルミナ等は、多孔質カー
ボン粒子を所定サイズ及び所定形状の粒状物に成形する
ための作業性に優れた造粒媒体となるのみならず、成形
された粒状物の圧縮強度や耐摩耗強度を高め、しかも耐
水強度(湿潤強度)も高める高都合な作用を行う。しか
も、上記水和アルミナとスメクタイト或いはゼオライト
との組合せは、粒状成形品の比表面積を高め、吸着容量
を増大させると共に、脱硫乃至脱硝性能をも増大させる
補助作用を行う。即ち、本発明に用いるこの複合型触媒
では硫黄酸化物や窒素酸化物は先ずアルミナ表面に吸着
され、次いで多孔質カーボン上で式(1) 2SO2 +O2 +2H2 O→2H2 SO4 …(1) の反応や、式(2)、(2’) 4NO+4NH3 +O2 →4N2 +6H2 O …(2) 6NO+4NH3 →5N2 +6H2 O …(2’) の反応が進行するものと認められる。勿論、触媒中に添
加されているスメクタイトやゼオライトもこれらの吸着
促進や反応促進に寄与している。
That is, the hydrated alumina or the like not only serves as a granulation medium having excellent workability for forming porous carbon particles into granules having a predetermined size and a predetermined shape, but also the formed granules. It exerts a highly convenient action to enhance the compressive strength and abrasion resistance, and also the water resistance (wet strength). Moreover, the combination of the hydrated alumina and smectite or zeolite has an auxiliary effect of increasing the specific surface area of the granular molded product, increasing the adsorption capacity, and also increasing the desulfurization or denitration performance. That is, in this composite catalyst used in the present invention, sulfur oxides and nitrogen oxides are first adsorbed on the alumina surface, and then on the porous carbon the formula (1) 2SO 2 + O 2 + 2H 2 O → 2H 2 SO 4 ... ( It was confirmed that the reaction of 1) and the reaction of formula (2) and (2 ') 4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (2) 6NO + 4NH 3 → 5N 2 + 6H 2 O (2') proceed. To be Of course, smectite and zeolite added to the catalyst also contribute to their adsorption and reaction.

【0015】[0015]

【発明の好適態様】多孔質カーボン 本発明に用いる多孔質カーボン粒子は、遷移金属成分、
特に鉄、コバルト、ニッケル、バナジウム等の成分を一
般に酸化物の形で粒子当り1乃至30重量%、特に3乃
至26重量%含有する。この遷移金属成分は、前記式
(1)や式(2)及び(2’)の反応に触媒として作用
する。また、酸の化学吸着にも有効に作用する。また、
このカーボン粒子は硫黄成分を、粒子当り5乃至15重
量%、特に6乃至14重量%含有する。これらの硫黄成
分は元素乃至種々の酸化物の形で存在し、脱硝に有効に
作用するものと思われる。
BEST MODE FOR CARRYING OUT THE INVENTION Porous Carbon The porous carbon particles used in the present invention include a transition metal component,
In particular, components such as iron, cobalt, nickel and vanadium are generally contained in the form of oxides in an amount of 1 to 30% by weight, particularly 3 to 26% by weight, based on the particles. This transition metal component acts as a catalyst for the reactions of the above formula (1) and formulas (2) and (2 ′). It also effectively acts on the chemisorption of acid. Also,
The carbon particles contain a sulfur component in an amount of 5 to 15% by weight, and particularly 6 to 14% by weight. These sulfur components exist in the form of elements or various oxides and are considered to act effectively for denitration.

【0016】この多孔質カーボン粒子には更に、Na、
K等のアルカリ金属分やカルシウム、マグネシウム等の
アルカリ土類金属分が含有されており、その量は一般
に、粒子当り、0.1乃至2.0重量%の範囲にある。
下記「表2」は典型的な多孔質カーボン粒子の一例の組
成分析結果である。
The porous carbon particles further include Na,
It contains an alkali metal component such as K and an alkaline earth metal component such as calcium and magnesium, and the amount thereof is generally in the range of 0.1 to 2.0% by weight based on the particles.
The following “Table 2” shows the composition analysis results of an example of typical porous carbon particles.

【0017】[0017]

【表2】 [Table 2]

【0018】本発明に用いる多孔質カーボン粒子は、発
熱量が3000kcal/kg以上となるようなカーボ
ンを含有しているのがよい。本発明に用いる多孔質カー
ボンの走査型電子顕微鏡写真(倍率300)を「図3」
に示す。この図から、本発明の多孔質カーボンは、所謂
軽石状のマクロポアを有していることがわかる。BET
法で求めた比表面積は、5乃至50m2 /g、特に10
乃至50m2 /gと意外に小さくN2 吸着法で求めた細
孔容積も0.01乃至0.07ml/g、特に0.01
5乃至0.035ml/gと小さく、細孔径は一般に2
0乃至70Åの範囲にある。
The porous carbon particles used in the present invention preferably contain carbon having a calorific value of 3000 kcal / kg or more. A scanning electron micrograph (300 magnification) of the porous carbon used in the present invention is shown in FIG.
Shown in From this figure, it is understood that the porous carbon of the present invention has so-called pumice-like macropores. BET
The specific surface area determined by the method is 5 to 50 m 2 / g, especially 10
To 50 m 2 / g, which is surprisingly small, and the pore volume determined by the N 2 adsorption method is 0.01 to 0.07 ml / g, especially 0.01
It is as small as 5 to 0.035 ml / g, and the pore size is generally 2
It is in the range of 0 to 70Å.

【0019】多孔質カーボンの粒径はコールターカウン
ター法によるメジアン径で0.05乃至50μm、特に
0.5乃至30μmの範囲にある。この多孔質カーボン
は、発電所等で排出される原油煤、重油煤等を十分乾燥
させ、70〜80メッシュの篩を用いて鉄錆を除去する
ことにより得られるが、前記組成や特性を有するもので
あれば、勿論これに限定されない。
The particle diameter of the porous carbon is 0.05 to 50 μm, especially 0.5 to 30 μm in terms of median diameter by Coulter counter method. This porous carbon is obtained by sufficiently drying crude oil soot, heavy oil soot, etc. discharged from a power plant, etc., and removing iron rust using a 70-80 mesh screen, but it has the above composition and characteristics. If it is a thing, of course, it is not limited to this.

【0020】触媒 本発明では、カーボン粒子と擬ベーマイト型水和アルミ
ナとを、1:1.4乃至3:1、特に17:1乃至2.
5:1の重量比で用いる。更に、全体当り10乃至30
重量%、特に15乃至25重量%の合成乃至天然のスメ
クタイト型粘土鉱物或いは合成乃至天然のゼオライトを
併用する。
Catalyst In the present invention, carbon particles and pseudo-boehmite-type hydrated alumina are mixed in a ratio of 1: 1.4 to 3: 1, particularly 17: 1 to 2.
Used in a weight ratio of 5: 1. Furthermore, 10 to 30 per whole
%, Especially 15 to 25% by weight of synthetic or natural smectite clay mineral or synthetic or natural zeolite is used in combination.

【0021】本発明に用いる水和アルミナは、一般に5
μm以下、特に3μm以下の粒径と200乃至400m
2 /gのBET比表面積及び0.3乃至0.6ml/g
の細孔容積を有するものが好ましい。一般に擬ベーマイ
ト型水和アルミナは、アルミン酸ナトリウムを、硫酸等
の鉱酸類と反応させるか或いは、硫酸アルミニウム等の
アルミニウム塩を苛性ソーダ等のアルカリと反応させる
ことにより製造されるが、このような公知の一般的製造
法で製造される水和アルミナでも、上記要件を満足する
ものは本発明の目的に用いることができる。本発明の目
的に有利に使用される水和アルミナは、特公昭56−1
3652号公報に記載され且つ同公報に記載の方法で製
造されたものである。原料に用いる水和アルミナは、式
(3) Al2 3 ・xH2 O …(3) 式中、xは1.0乃至2.0、特に1.4乃至1.8の
数である。の組成を有するものが好ましく、特に水和ア
ルミナの中でも擬ベーマイト型水和アルミナが好まし
い。
The hydrated alumina used in the present invention is generally 5
particle size of less than μm, especially less than 3 μm and 200 to 400 m
BET specific surface area of 2 / g and 0.3 to 0.6 ml / g
Those having a pore volume of Pseudo-boehmite hydrated alumina is generally produced by reacting sodium aluminate with a mineral acid such as sulfuric acid or by reacting an aluminum salt such as aluminum sulfate with an alkali such as caustic soda. Even the hydrated alumina produced by the general production method of 1) which satisfies the above requirements can be used for the purpose of the present invention. Hydrated alumina which is advantageously used for the purpose of the present invention is disclosed in Japanese Examined Patent Publication No. 56-1.
It is manufactured by the method described in Japanese Patent No. 3652 and described in the same publication. The hydrated alumina used as the raw material has the formula (3) Al 2 O 3 .xH 2 O (3) where x is 1.0 to 2.0, and particularly 1.4 to 1.8. And a pseudo-boehmite type hydrated alumina is particularly preferred among the hydrated alumina.

【0022】天然又は合成のスメクタイト型粘土鉱物と
しては、モンモリロナイト、バイデライト、ノントロナ
イト等のジオクタヘドラル型スメクタイトや、サポナイ
ト、ヘクトライト、ソーコナイト、スチブンサイト等の
トリオクタヘドラル型スメクタイトを用いることができ
る。これらのスメクタイト族粘土鉱物は、それ自体吸着
性を有すると共に、無機バインダーとして成形物の機械
的強度や耐磨耗性を向上させる作用も有している。特に
好適なものとして、モンモリロナイトに属する酸性白土
乃至活性白土、特開昭61−10020号公報記載の合
成層状フィロケイ酸マグネシウム、特開昭61−100
21号公報記載の合成フライポンタイト、特開昭63−
50310号公報記載の活性ベントナイト、特願昭62
−20476号公報の合成スチブンサイト等を挙げるこ
とができる。これらの粘土鉱物は、一般に10μm以
下、特に3μm以下の粒径と、200乃至600m2
g、特に200乃至500m2 /gのBET比表面積と
を有することが好ましい。合成スチブンサイト、特に式
(4) MgxNaySi4 10(OH)2 ・Na2 …(4) 式中、xとyはx+y<3という条件下でxは2以上の
数であり、yは0乃至0.1の数であり、zは0乃至
1.0の数である で表される化学組成のものが好ましい。一方合成乃至天
然のゼオライトとしては、A型ゼオライト、Y型ゼオラ
イト、X型ゼオライト、P型ゼオライト、H−Y型ゼオ
ライト、モルデナイト、クリノプチロライト等を用いる
ことができる。
As the natural or synthetic smectite type clay mineral, dioctahedral type smectites such as montmorillonite, beidellite and nontronite, and trioctahedral type smectites such as saponite, hectorite, sauconite and stevensite can be used. These smectite group clay minerals have adsorbability themselves, and also have an action as an inorganic binder to improve the mechanical strength and abrasion resistance of the molded product. Particularly preferred are acid clay or activated clay belonging to montmorillonite, synthetic layered magnesium phyllosilicate described in JP-A-61-10020, JP-A-61-100.
21. Synthetic fly pontite described in JP-A No. 21-63, JP-A-63-
Active bentonite described in Japanese Patent No. 50310, Japanese Patent Application No. 62-62
The synthetic stevensite of JP-A-20476 and the like can be mentioned. These clay minerals generally have a particle size of 10 μm or less, particularly 3 μm or less, and 200 to 600 m 2 /
It is preferable to have a BET specific surface area of g, especially 200 to 500 m 2 / g. Synthetic stevensite, in particular, formula (4) MgxNaySi 4 O 10 (OH) 2 · Na 2 (4) In the formula, x and y are numbers of 2 or more and y is 0 to 0 under the condition that x + y <3. It is preferable that the chemical composition is a number of 0.1 and z is a number of 0 to 1.0. On the other hand, as synthetic or natural zeolites, A-type zeolite, Y-type zeolite, X-type zeolite, P-type zeolite, HY-type zeolite, mordenite, clinoptilolite and the like can be used.

【0023】多孔質カーボンを含有する組成物の造粒
は、押出造粒法、打錠造粒法、転動造粒法等のそれ自体
公知の手法で行うことができる。典型的な例として、多
孔質カーボン、造粒媒体及び他の助剤等を混合し、この
混合物を水分の存在下に均質化のための混練を行った
後、所定の形状に成形する。混練操作にはニーダー、ス
ーパーミキサー、一軸又は二軸押出機等を用いることが
でき、必要あれば更に真空式土練機を用いることもでき
る。粒状物の成形には、それ自体公知の各種成形機、例
えば、押出成形機、打錠機、転動造粒機等を用いること
ができる。一般に、混練成形は、押出機により行うのが
好ましく、混練は少なくとも一段、好適には多段で行う
のが望ましい。多段の混練成形に際しては、押出成形の
粒径を徐々に小さくしていくことができる。
The composition containing the porous carbon can be granulated by a method known per se such as an extrusion granulation method, a tableting granulation method, a tumbling granulation method and the like. As a typical example, porous carbon, a granulating medium, other auxiliaries and the like are mixed, and this mixture is kneaded for homogenization in the presence of water and then molded into a predetermined shape. A kneader, a super mixer, a single-screw or twin-screw extruder, etc. can be used for the kneading operation, and a vacuum-type kneader can be used if necessary. For molding the granules, various molding machines known per se, for example, an extrusion molding machine, a tableting machine, a rolling granulator and the like can be used. Generally, the kneading and molding is preferably carried out by an extruder, and the kneading is preferably carried out in at least one stage, preferably in multiple stages. In multi-stage kneading and molding, the particle size of extrusion molding can be gradually reduced.

【0024】粒状成形体を、100乃至120℃の温度
で乾燥処理に賦し、次いで200乃至400℃の温度で
仮焼する。仮焼に先だって上記温度での乾燥を行うこと
が緻密で諸特性に優れた複合吸着剤を得る上で重要であ
り、上記範囲よりも低い温度では、水分の除去が十分に
行われないために仮焼時に発泡する傾向があり、上記範
囲よりも高い温度では、水分の除去が急激に行われるた
めに乾燥時に発泡する傾向がある。仮焼の目的は、組成
物の焼き締りによる緻密化、高強度化が行われるように
すると同時に、擬ベーマイト型水和アルミナを高活性ア
ルミナに転化することにある。尚、本発明の複合吸着剤
では、高活性アルミナに転化後にも、擬ベーマイト型構
造が温存されている。熱処理の温度が上記範囲よりも低
い場合には、焼き締りによる緻密化が不十分であり、高
活性アルミナへの転化が不十分で、耐久性に劣るように
なる。一方、熱処理の温度が上記範囲よりも高い場合に
は、吸着剤の表面活性が低下する傾向がある。仮焼処理
は、一般に60乃至360分間、特に120乃至240
分間加熱することにより行うことができる。
The granular compact is subjected to a drying treatment at a temperature of 100 to 120 ° C. and then calcined at a temperature of 200 to 400 ° C. Drying at the above temperature prior to calcination is important for obtaining a dense and excellent composite adsorbent, and at a temperature lower than the above range, water is not sufficiently removed. There is a tendency for foaming during calcination, and at temperatures higher than the above range, there is a tendency for foaming during drying due to rapid removal of water. The purpose of calcination is to make the composition densified and strengthened by baking, and at the same time to convert quasi-boehmite hydrated alumina into highly active alumina. In addition, in the composite adsorbent of the present invention, the pseudo-boehmite type structure is preserved even after the conversion to high activity alumina. When the temperature of the heat treatment is lower than the above range, the densification due to quenching is insufficient, the conversion into highly active alumina is insufficient, and the durability becomes poor. On the other hand, when the heat treatment temperature is higher than the above range, the surface activity of the adsorbent tends to decrease. The calcination process is generally performed for 60 to 360 minutes, particularly 120 to 240 minutes.
It can be performed by heating for a minute.

【0025】本発明に用いる粒状成形体は、円柱状(ペ
レット状)、タブレット状、球状等の任意の形状を有す
ることができるが、その粒径は1乃至10mm、特に2
乃至5mmの範囲にあることが好ましい。本発明に用い
る好適な触媒は、全体として100乃至250m2
g、特に120乃至200m2 /gのBET比表面性を
有し、0.1乃至0.35ml/g,特に0.15乃至
0.3ml/gの細孔容積を有している。本発明におい
て、脱硫乃至脱硝性能が特に増強された触媒は、造粒前
から造粒径の任意の段階で、多孔質カーボン粒子にマイ
クロ波を照射することにより得られる。マイクロ波とし
ては、マイクロ波加熱に一般に使用されている周波数1
乃至3GHZ の範囲のものがよく、その照射エネルギー
は1kg当り0.8乃至3Wの範囲がよく、照射時間は
10乃至50秒程度の短時間でよい。
The granular molded product used in the present invention may have any shape such as a columnar shape (pellet shape), a tablet shape, a spherical shape, etc., and the particle size thereof is 1 to 10 mm, especially 2
It is preferably in the range of 5 mm to 5 mm. Suitable catalysts for use in the present invention are generally 100 to 250 m 2 /
It has a BET specific surface property of g, particularly 120 to 200 m 2 / g, and a pore volume of 0.1 to 0.35 ml / g, especially 0.15 to 0.3 ml / g. In the present invention, the catalyst having particularly enhanced desulfurization or denitration performance can be obtained by irradiating the porous carbon particles with microwaves at any stage of the particle size before granulation. As microwave, frequency 1 that is generally used for microwave heating
Or good in the range of 3GH Z, the irradiation energy may have a range of 1kg per 0.8 to 3W, irradiation time may be short time of about 10 to 50 seconds.

【0026】排ガスの処理 本発明は、硫黄酸化物及び/または窒素酸化物を含有す
る各種排ガス、例えば火力発電所排ガス、ボイラー排ガ
ス、石油精製排ガス、化学工業プロセス排ガス、加熱炉
排ガス、焼却炉排ガス、金属精練排ガス、焼結炉排ガ
ス、ガラス溶融炉排ガス等の処理に有用である。
Treatment of Exhaust Gas The present invention relates to various exhaust gases containing sulfur oxides and / or nitrogen oxides, for example, thermal power plant exhaust gas, boiler exhaust gas, petroleum refining exhaust gas, chemical industrial process exhaust gas, heating furnace exhaust gas, incinerator exhaust gas. It is useful for treating metal refining exhaust gas, sintering furnace exhaust gas, glass melting furnace exhaust gas, and the like.

【0027】排ガスの処理には、触媒を固定床、移動
床、流動床の形で使用し、一段或いは複数段の接触で脱
硫或いは脱硝操作を行う。硫黄酸化物の除去には、両者
の接触を80乃至200℃、特に100乃至150℃の
温度で行うのがよく、前記式(1)で示すように、硫黄
酸化物をSO3 或いはH2 SO4 に酸化するために、排
ガス中には4乃至5重量%の酸素や、2乃至10重量
%、特に3乃至5重量%の水分が共存しているのがよ
い。
For the treatment of exhaust gas, a catalyst is used in the form of a fixed bed, a moving bed or a fluidized bed, and desulfurization or denitration operation is carried out by contacting in one or more stages. In order to remove the sulfur oxides, it is preferable to bring them into contact with each other at a temperature of 80 to 200 ° C., particularly 100 to 150 ° C. As shown in the above formula (1), the sulfur oxides should be mixed with SO 3 or H 2 SO 2. In order to oxidize into 4 , it is preferable that 4 to 5% by weight of oxygen and 2 to 10% by weight, especially 3 to 5% by weight of water coexist in the exhaust gas.

【0028】窒素酸化物の除去には、排ガスとアンモニ
アとをほぼ化学量論的量比で混合し、両者の接触を20
0乃至300℃、特に225乃至275℃の温度で行う
のがよい。本発明では単一乃至多段の触媒充填塔を使用
して、脱硫と脱硝とを同時に行うこともできるがそれら
の最適温度が相違することから脱硫と脱硝とを別個の触
媒層で行うのが望ましい。
In order to remove nitrogen oxides, exhaust gas and ammonia are mixed in a substantially stoichiometric ratio, and contact between the two is performed.
It is preferable to carry out at a temperature of 0 to 300 ° C., particularly 225 to 275 ° C. In the present invention, desulfurization and denitration can be performed at the same time by using a single or multi-stage catalyst packed column, but it is desirable to perform desulfurization and denitration in separate catalyst layers because their optimum temperatures are different. .

【0029】一般に排ガス或いは排ガスとアンモニアと
の混合ガスを前記触媒の第一の層と100乃至150℃
の温度で接触させて、排ガス中の硫黄酸化物を除去し、
接触後のガス中にアンモニアが含有されていない場合に
は接触後のガスにアンモニアを混合した後、この混合ガ
ス前記触媒の第2の層と200乃至300℃の温度で接
触させて排ガス中の窒素酸化物を除去するのがよい。こ
の方法に使用するための装置の一例を示す「図4」にお
いて、脱硫塔1と脱硝塔2とが配置されており、これら
の塔1及び2には、前述した粒状成形品触媒3が充填さ
れている。この具体例では、各塔の触媒3は移動床とな
っており、脱硝塔2から排出される触媒3は脱硫塔1に
送られ、脱硫塔1から排出される触媒は脱着槽4へと供
給される。
Generally, exhaust gas or a mixed gas of exhaust gas and ammonia is mixed with the first layer of the catalyst at 100 to 150 ° C.
To remove the sulfur oxides in the exhaust gas,
When the gas after contact does not contain ammonia, after mixing the gas after contact with ammonia, the mixed gas is brought into contact with the second layer of the catalyst at a temperature of 200 to 300 ° C. It is better to remove nitrogen oxides. In FIG. 4 showing an example of an apparatus used for this method, a desulfurization tower 1 and a denitration tower 2 are arranged, and these towers 1 and 2 are filled with the above-mentioned granular molded article catalyst 3. Has been done. In this specific example, the catalyst 3 in each tower is a moving bed, the catalyst 3 discharged from the denitration tower 2 is sent to the desulfurization tower 1, and the catalyst discharged from the desulfurization tower 1 is supplied to the desorption tank 4. To be done.

【0030】排ガス5は、熱交換器6を経て脱硫に適し
た温度例えば100〜150℃に冷却され、脱硫塔1に
供給されて、塔内で硫黄酸化物の酸化と吸着とが行われ
る。硫黄酸化物が除去された排ガス7は熱交換器6によ
り脱硝に適した温度、例えば200〜250℃に加熱さ
れ、脱硝塔2に供給される。脱硝塔2にはアンモニアガ
ス8も同時に供給され、触媒3と接触して窒素への還元
が行われ、処理済みガス9は大気中へと放出される。
The exhaust gas 5 is cooled to a temperature suitable for desulfurization, for example, 100 to 150 ° C. through the heat exchanger 6, and is supplied to the desulfurization tower 1, where the sulfur oxides are oxidized and adsorbed. The exhaust gas 7 from which the sulfur oxides have been removed is heated by the heat exchanger 6 to a temperature suitable for denitration, for example, 200 to 250 ° C., and supplied to the denitration tower 2. Ammonia gas 8 is also simultaneously supplied to the denitration tower 2, is brought into contact with the catalyst 3 to be reduced to nitrogen, and the treated gas 9 is released into the atmosphere.

【0031】一方、脱硫塔1から硫酸を吸着した触媒
3’は脱着槽4へと送られ、水蒸気或いは噴霧水10と
接触して、硫酸11を放出し、一方触媒3は、再生塔1
2に送られて、乾燥、篩分け等により再生されて、再び
脱硝塔2に送られる。本発明に用いる触媒は、従来の活
性炭等に比べれば著しく安価であるので、ワンウェイの
触媒として用いることができ、この場合には脱着槽4か
らの触媒は廃棄処理することになる。
On the other hand, the catalyst 3'having adsorbed sulfuric acid from the desulfurization tower 1 is sent to the desorption tank 4 and comes into contact with steam or spray water 10 to release sulfuric acid 11, while the catalyst 3 is regenerated in the regeneration tower 1.
2, is regenerated by drying, sieving, etc., and is again sent to the denitration tower 2. The catalyst used in the present invention is significantly cheaper than conventional activated carbon and the like, and therefore can be used as a one-way catalyst. In this case, the catalyst from the desorption tank 4 is discarded.

【0032】また、脱硫用触媒と脱硝用触媒とは、異な
ったものであってもよい。例えば「図1」に関して説明
したとおり、遷移金属含有多孔質カーボンには、脱硫に
適したものと、脱硝に適したものとがあるので、脱硫用
触媒を専ら脱硫に使用し、脱硝用触媒を専ら脱硝に用い
ることができる。本発明を次の例で説明する。
Further, the desulfurization catalyst and the denitration catalyst may be different from each other. For example, as described with reference to FIG. 1, there are transition metal-containing porous carbons suitable for desulfurization and those suitable for denitration. Therefore, a desulfurization catalyst is used exclusively for desulfurization, and a denitration catalyst is used. It can be used exclusively for denitration. The invention is illustrated by the following example.

【0033】[0033]

【発明の効果】本発明によれば、比表面積が5乃至50
2 /gと小さくしかも遷移金属を含有する多孔質カー
ボン粒子を、擬ベーマイト型水和アルミナ及びスメクタ
イト等と共に造粒することにより、これを排ガスの脱硫
乃至脱硝に用いることにより、高い脱硫性能乃至脱硝性
能を達成することができ、しかもこのものは耐粉化性や
耐久性にも優れているという利点がある。また、このカ
ーボンは重油煤、原油煤として容易に入手し得るため、
触媒費用が著しく安価であり、全体としての運転コスト
を低減できるという利点がある。
According to the present invention, the specific surface area is 5 to 50.
Porous carbon particles having a small m 2 / g and containing a transition metal are granulated together with pseudo-boehmite-type hydrated alumina, smectite, etc., and are used for desulfurization or denitration of exhaust gas to obtain high desulfurization performance or It has the advantage that denitration performance can be achieved, and that it is also excellent in dust resistance and durability. Also, since this carbon is easily available as heavy oil soot, crude oil soot,
There is an advantage that the catalyst cost is extremely low and the operating cost as a whole can be reduced.

【0034】[0034]

【実施例】本発明における評価試験は次の方法によっ
た。 1.BET法比表面積 自動BET比表面積測定装置(CARLO−ERBA社
製 Sorptomatic Series 180
0)を用いて、試験面に単分子層で吸着する窒素ガス吸
着量Vm 〔cc/g〕を求め、下記式(5)で比表面積
を求めた。 比表面積 SA=4.35×Vm 〔m2 /g〕 …(5) 2.細孔容積 カルロエルバ(CARLO−ERBA)社製の自動N2
吸着装置(Sorptomatic Series 1
800)を用い10-2mmHg,250℃で2hr脱気
後、液体窒素温度下、N2 圧力735mmHgでのN2
吸着量から標準状態のN2 吸着量(V1)を算出し、下
記式(6)から細孔容積を求めた。
EXAMPLES The evaluation test in the present invention was carried out by the following method. 1. BET specific surface area automatic BET specific surface area measuring device (CORLO-ERBA Corp. Sorptomatic Series 180
0) was used to determine the nitrogen gas adsorption amount V m [cc / g] to be adsorbed by the monomolecular layer on the test surface, and the specific surface area was determined by the following formula (5). Specific surface area SA = 4.35 × V m [m 2 / g] (5) 2. Pore volume Automatic N 2 made by CARLO-ERBA
Adsorption device (Sorptomatic Series 1
After 2hr degassed at 10 -2 mmHg, 250 ° C. with 800), temperature of liquid nitrogen, N 2 in N 2 pressure 735mmHg
The standard state N 2 adsorption amount (V1) was calculated from the adsorption amount, and the pore volume was calculated from the following formula (6).

【0035】 細孔容積(PV)=V1×1.555×10-3(ml/g) …(6) 3.平均細孔半径(r) 細孔を円筒状と仮定して下記式(7)より平均細孔半径
〔(r),Å〕を求めた。 平均細孔半径(r)=2×細孔容積(PV)×104 /BET比表面積(SA)…(7) 4.粒子強度 木屋式硬度計(10Kg計)を用いて、250℃で2時
間乾燥した試料20個の圧壊強度を測定し、その平均値
を粒子強度とした。
Pore volume (PV) = V1 × 1.555 × 10 −3 (ml / g) (6) 3. Average Pore Radius (r) The average pore radius [(r), Å] was calculated from the following formula (7) assuming that the pores are cylindrical. Average pore radius (r) = 2 × pore volume (PV) × 10 4 / BET specific surface area (SA) (7) 4. Particle Strength Using a Kiya type hardness meter (10 Kg meter), the crush strength of 20 samples dried at 250 ° C. for 2 hours was measured, and the average value thereof was taken as the particle strength.

【0036】5.平均粒径 コールターカウンター法(Coulter Count
er,Model TA−2型)によって得られた累積
粒度曲線の体積分布50%点から求められる粒径を平均
粒径とした。 6.脱硫試験 脱硫試験はSO2 100ppmを試料充填カラムに連続
通気させ、SO2 の濃度を非分散式赤外線吸収法(日本
サーモエレクトロン711p製)により測定し求めた。 7.脱硝試験 脱硝試験はNO130ppmにNH3 130ppmを添
加し、それを試料充填カラムに連続通気させNO濃度を
減圧式化学発光法(日本サーモエレクトロン512PL
製)により測定し求めた。
5. Average particle size Coulter Count method
er, Model TA-2 type), the particle size obtained from the 50% volume distribution point of the cumulative particle size curve was taken as the average particle size. 6. Desulfurization test The desulfurization test was performed by continuously aerating 100 ppm of SO 2 through a sample packed column and measuring the concentration of SO 2 by a non-dispersive infrared absorption method (manufactured by Nippon Thermo Electron 711p). 7. Denitration test In the denitration test, 130 ppm of NH 3 was added to 130 ppm of NO, and this was continuously ventilated through a sample packed column to determine the NO concentration under reduced pressure chemiluminescence method (Japan Thermo Electron 512PL.
Manufactured).

【0037】(実施例1〜7)多孔質カーボン〔大井原
油灰(A−1)又は品川原油灰(A−2)〕及び擬ベー
マイト型水和アルミニウム(B)とMgOを含む複合酸
化物、あるいは「表3」に示す組成(C−1)〜(C−
4)のゼオライト等(C)を「表5」に示す配合量で混
合した後、ニーダーを開いて調湿しながら含水率が50
乃至60重量%になるように均質に混練した。次いでこ
の混練物を押出造粒機(不二パウダル製EXD−60
型)にかけ、粒径が0.5乃至1.5mmの円柱状物に
造粒した後、300℃で焼結成型した。上記成型品をさ
らに家庭用の電子レンジを用いて30乃至50秒間にわ
たり、マイクロ波を照射したものを用い所定の温度で、
脱硫及び脱硝試験を行った。その結果を「表5」に示
す。また実施例1及び実施例2の温度変化による脱硝
率、脱硫率を「図1」に示す。また、その試験条件を
「表4」に示す。
(Examples 1 to 7) Porous carbon [Oi crude oil ash (A-1) or Shinagawa crude oil ash (A-2)] and a composite oxide containing pseudo-boehmite hydrated aluminum (B) and MgO, Alternatively, the compositions (C-1) to (C- shown in "Table 3")
After mixing the zeolite etc. (C) of 4) in the compounding amounts shown in "Table 5", open the kneader and adjust the humidity to obtain a water content of 50.
The mixture was homogeneously kneaded to give a content of 60% by weight. Then, the kneaded product was extruded and granulated (EXD-60 manufactured by Fuji Paudal).
After molding, it was granulated into a cylindrical material having a particle size of 0.5 to 1.5 mm, and then sintered and molded at 300 ° C. The molded product was further irradiated with microwaves for 30 to 50 seconds using a household microwave oven at a predetermined temperature,
Desulfurization and denitration tests were conducted. The results are shown in "Table 5". Further, the denitration rate and the desulfurization rate according to the temperature changes in Example 1 and Example 2 are shown in "Fig. 1". The test conditions are shown in "Table 4".

【0038】(比較例1)多孔質カーボン(大井原油
灰)を用い、実施例1乃至7同様にマイクロ波を照射し
たものを用い同様に行った。その結果を「表5」に示
す。 (比較例2)多孔質カーボン(大井原油灰)及び擬ベー
マイト型水和アルミニウムを「表4」に示す配合量で混
合した以外は実施例1乃至7と同様に行った。その結果
を「表5」に示す。 (比較例3)比較例1と同様に配合量で、マイクロ波照
射しないものを用いた以外は同様に行なった。その結果
を「表5」に示す。
(Comparative Example 1) A porous carbon (Oi crude oil ash) was used, which was irradiated with microwaves in the same manner as in Examples 1 to 7, and the same procedure was performed. The results are shown in "Table 5". (Comparative Example 2) The procedure of Examples 1 to 7 was repeated except that porous carbon (Oi crude oil ash) and pseudo-boehmite hydrated aluminum were mixed in the amounts shown in "Table 4". The results are shown in "Table 5". (Comparative Example 3) The same procedure as in Comparative Example 1 was repeated except that the amount of the compound was not irradiated with microwaves. The results are shown in "Table 5".

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【表5】 [Table 5]

【0042】(実施例8)実施例1と同様の試料そ用い
て100℃における経時変化による脱硫率を測定した。
そのときの試験条件を「表6」に示し、その結果を「表
7」及び「図2」に示す。
Example 8 The same sample as in Example 1 was used to measure the desulfurization rate with time at 100 ° C.
The test conditions at that time are shown in "Table 6", and the results are shown in "Table 7" and "Fig. 2".

【0043】[0043]

【表6】 [Table 6]

【0044】(実施例9)実施例2の試料を用いた以外
は実施例8と同様に行ったその結果を「表7」及び「図
2」に示す。
(Example 9) The results obtained in the same manner as in Example 8 except that the sample of Example 2 was used are shown in "Table 7" and "Fig. 2".

【0045】[0045]

【表7】 [Table 7]

【図面の簡単な説明】[Brief description of drawings]

【図1】 多孔質カーボンの温度変化による脱硝率、脱
流率を示すグラフである。
FIG. 1 is a graph showing the denitration rate and the deflux rate of porous carbon due to temperature changes.

【図2】 100°及び200℃の温度における多孔質
カーボンの経時変化による脱流率を測定た結果を示すグ
ラフである。
FIG. 2 is a graph showing the results of measuring the outflow rate of porous carbon over time at temperatures of 100 ° and 200 ° C.

【図3】 本発明に用いる多孔質カーボンの粒子構造を
示す電子顕微鏡写真である。
FIG. 3 is an electron micrograph showing a particle structure of porous carbon used in the present invention.

【図4】 本発明の方法を使用するための装置の一例を
示す図である。
FIG. 4 shows an example of an apparatus for using the method of the invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 29/072 ZAB A 29/076 ZAB A 29/14 ZAB A 29/16 ZAB A 35/10 301 B (72)発明者 今井 喜代彦 東京都中央区日本橋室町四丁目1番21号 水澤化学工業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location B01J 29/072 ZAB A 29/076 ZAB A 29/14 ZAB A 29/16 ZAB A 35/10 301 B (72) Inventor Kiyohiko Imai 4-1-21, Nihombashi Muromachi, Chuo-ku, Tokyo Mizusawa Chemical Industry Co., Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 遷移金属成分及び硫黄成分を含有し且つ
BET比表面積が5乃至50m2 /gの範囲にある多孔
質カーボン粒子と、擬ベーマイト型水和アルミナとを
1:1.4乃至3:1の重量比で含有し且つ全体当り1
0乃至30重量%の合成乃至天然のスメクタイト族粘土
鉱物或いは合成乃至天然のゼオライトを含有する組成物
の粒状成形品から成る触媒と、硫黄酸化物及び/または
窒素酸化物を含有する排ガスとを接触させることを特徴
とする排ガスの処理法。
1. A porous carbon particle containing a transition metal component and a sulfur component and having a BET specific surface area in the range of 5 to 50 m 2 / g, and pseudo-boehmite hydrated alumina in a ratio of 1: 1.4 to 3 : 1 in a weight ratio and 1 in total
Contacting a catalyst comprising a granular molded product of a composition containing 0 to 30% by weight of a synthetic or natural smectite group clay mineral or a synthetic or natural zeolite with exhaust gas containing sulfur oxides and / or nitrogen oxides A method for treating exhaust gas, which comprises:
【請求項2】 遷移金属成分が鉄、ニッケル、コバルト
及びバナジウムから成る群より選択された少なくとも1
種の金属成分である請求項1記載の処理法。
2. The transition metal component is at least one selected from the group consisting of iron, nickel, cobalt and vanadium.
The method of claim 1 wherein the metal component is a seed.
【請求項3】 遷移金属成分が多孔質カーボン粒子中に
1乃至20重量%の量で含有されたものである請求項1
記載の処理法。
3. The transition metal component is contained in the porous carbon particles in an amount of 1 to 20% by weight.
Described processing method.
【請求項4】 硫黄成分が多孔質カーボン粒子中に5乃
至15重量%の量で含有されたものである請求項1記載
の処理法。
4. The treatment method according to claim 1, wherein the sulfur component is contained in the porous carbon particles in an amount of 5 to 15% by weight.
【請求項5】 多孔質カーボン粒子がアルカリ金属成分
及び/又はアルカリ土類金属成分を粒子全体当り0.1
乃至2.0重量%含有するものである請求項1記載の処
理法。
5. The porous carbon particles contain an alkali metal component and / or an alkaline earth metal component in an amount of 0.1 per total particle.
2. The processing method according to claim 1, wherein the content is from 2.0 to 2.0% by weight.
【請求項6】 多孔質カーボン粒子が0.07乃至50
μmのメジアン径を有するものである請求項1記載の処
理法。
6. The porous carbon particles are 0.07 to 50.
The processing method according to claim 1, which has a median diameter of μm.
【請求項7】 多孔質カーボン粒子が0.01乃至0.
07ml/gの細孔容積を有するものである請求項1記
載の処理法。
7. The porous carbon particles are 0.01 to 0.
The processing method according to claim 1, which has a pore volume of 07 ml / g.
【請求項8】 多孔質カーボン粒子が原油煤または重油
煤である請求項1記載の処理法。
8. The processing method according to claim 1, wherein the porous carbon particles are crude oil soot or heavy oil soot.
【請求項9】 前記触媒が全体として100乃至250
2 /gのBET比表面積と0.1乃至0.35ml/
gの細孔容積とを有する請求項1記載の処理法。
9. The catalyst as a whole is 100 to 250.
BET specific surface area of m 2 / g and 0.1 to 0.35 ml /
The process according to claim 1, having a pore volume of g.
【請求項10】 排ガスが硫黄酸化物含有ガスであり、
排ガスと触媒とを100乃至250℃の温度で接触させ
る請求項1記載の処理法。
10. The exhaust gas is a sulfur oxide-containing gas,
The treatment method according to claim 1, wherein the exhaust gas and the catalyst are contacted at a temperature of 100 to 250 ° C.
【請求項11】 排ガスが窒素酸化物含有ガスであり、
排ガスをアンモニアと共に触媒に150乃至300℃の
温度で接触させる請求項1記載の処理法。
11. The exhaust gas is a nitrogen oxide-containing gas,
The treatment method according to claim 1, wherein the exhaust gas is brought into contact with the catalyst together with ammonia at a temperature of 150 to 300 ° C.
【請求項12】 排ガスが硫黄酸化物及び窒素酸化物を
含有するガスであり、前記排ガス或いは排ガスとアンモ
ニアとの混合ガスを前記触媒の第1の層と80乃至15
0℃の温度で接触させて、排ガス中の硫黄酸化物を除去
し、接触後のガス中にアンモニアガ含有されていない場
合には接触後のガスにアンモニアを混合した後、この混
合ガス前記触媒の第2の層と200乃至300℃の温度
で接触させて排ガス中の窒素酸化物の除去することを特
徴とする請求項1記載の処理法。
12. The exhaust gas is a gas containing sulfur oxides and nitrogen oxides, and the exhaust gas or a mixed gas of exhaust gas and ammonia is mixed with the first layer of the catalyst in an amount of 80 to 15.
After contacting at a temperature of 0 ° C., the sulfur oxides in the exhaust gas are removed, and when the gas after contact does not contain ammonia gas, the gas after contact is mixed with ammonia, and then this mixed gas is used as the catalyst. 2. The treatment method according to claim 1, wherein the nitrogen oxide in the exhaust gas is removed by contacting the second layer with a temperature of 200 to 300 ° C.
JP6186483A 1994-07-14 1994-07-14 Treatment of waste gas Pending JPH0824582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6186483A JPH0824582A (en) 1994-07-14 1994-07-14 Treatment of waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6186483A JPH0824582A (en) 1994-07-14 1994-07-14 Treatment of waste gas

Publications (1)

Publication Number Publication Date
JPH0824582A true JPH0824582A (en) 1996-01-30

Family

ID=16189282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6186483A Pending JPH0824582A (en) 1994-07-14 1994-07-14 Treatment of waste gas

Country Status (1)

Country Link
JP (1) JPH0824582A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080313A (en) * 2006-09-29 2008-04-10 Nichias Corp Metal oxide catalyst powder, method for producing the same, purifying filter, method for decomposing volatile organic solvent, and method for decomposing nitrogen compound
KR101137469B1 (en) * 2007-12-21 2012-04-20 재단법인 포항산업과학연구원 THE METHOD FOR THE SIMULTANEOUS REMOVAL OF Sox AND NOx IN FLUE GAS AND THE CATALYST THEREFOR
CN114324435A (en) * 2020-09-29 2022-04-12 宝山钢铁股份有限公司 Method and device for evaluating desulfurization and denitrification performance of activated coke

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080313A (en) * 2006-09-29 2008-04-10 Nichias Corp Metal oxide catalyst powder, method for producing the same, purifying filter, method for decomposing volatile organic solvent, and method for decomposing nitrogen compound
KR101137469B1 (en) * 2007-12-21 2012-04-20 재단법인 포항산업과학연구원 THE METHOD FOR THE SIMULTANEOUS REMOVAL OF Sox AND NOx IN FLUE GAS AND THE CATALYST THEREFOR
CN114324435A (en) * 2020-09-29 2022-04-12 宝山钢铁股份有限公司 Method and device for evaluating desulfurization and denitrification performance of activated coke

Similar Documents

Publication Publication Date Title
US4187282A (en) Process for treating a waste gas containing sulfur oxides
US5914292A (en) Transport desulfurization process utilizing a sulfur sorbent that is both fluidizable and circulatable and a method of making such sulfur sorbent
KR101250702B1 (en) Method for cleaning exhaust gases produced by a sintering process for ores and/or other metal-containing materials in metal production
US7572421B2 (en) Mercury sorbents and methods of manufacture and use
US4259299A (en) Process for removing ozone from an ozone-containing gas
EP0719584B1 (en) Adsorbent body including activated carbon, activated alumina and inorganic binder, and method of producing the same
CN114502272B (en) Molecular sieve composite and composite material and application thereof
JPH07256093A (en) Durable zinc oxide-containing adsorbent for desulfurization of coal gas
EP0670179A2 (en) Fluidizable sulfur sorbent and fluidized sorption process
US4350670A (en) Process for treating flue gas
JPS62140642A (en) Iron-containing catalyst for reducing nitrogen oxide contentof combustion exhaust gas
JPH0339734B2 (en)
JPH08195B2 (en) Catalyst for reducing the nitrogen oxide content of combustion exhaust gases
JPH07267619A (en) Production of granular activated carbon
AU2002226715B2 (en) Activated carbon and method for production thereof
JP2002102689A (en) Carbonaceous adsorbent
JPH0824582A (en) Treatment of waste gas
JPH0871425A (en) Ozone decomposition catalyst
US6790422B1 (en) Catalytic treatment of gaseous effluents containing varying amounts of sulfur compounds
JPH09225296A (en) Solid chloride absorbent
CN100998947A (en) Magnesium oxide base calalytic-absorber for denitrogen of smoke and its preparation method
JP4596944B2 (en) Combustion exhaust gas treatment method
US3231516A (en) Catalyst containing activated bauxite
US6998100B2 (en) Sulfur oxide sorption with layered chlorite-type contact solids
CN112642396B (en) Modified activated carbon and composite material as well as preparation method and application thereof