JPH08242259A - Testing device of digital equipment and method therefor - Google Patents

Testing device of digital equipment and method therefor

Info

Publication number
JPH08242259A
JPH08242259A JP7041940A JP4194095A JPH08242259A JP H08242259 A JPH08242259 A JP H08242259A JP 7041940 A JP7041940 A JP 7041940A JP 4194095 A JP4194095 A JP 4194095A JP H08242259 A JPH08242259 A JP H08242259A
Authority
JP
Japan
Prior art keywords
digital
error rate
signal
ber
bit error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7041940A
Other languages
Japanese (ja)
Inventor
Koji Asami
幸司 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP7041940A priority Critical patent/JPH08242259A/en
Publication of JPH08242259A publication Critical patent/JPH08242259A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31901Analysis of tester Performance; Tester characterization

Abstract

PURPOSE: To rightly evaluate a digital equipment by estimating the bit error rate characteristic curve of the digital equipment from a calculated bit error rate, based on the ideal bit error rate characteristic curve of the digital equipment. CONSTITUTION: The demodulation digital data from a data demodulator is stored in a miry 23. For required various kinds of testing signals of C/N, the output from a demodulator is fetched into the memory 23 in the same way. Subsequently, the data of the memory 23 is successively read by a digital signal processor, the data is compared with an expected value by a comparison means 41 and a bit error rate BER is calculated for the comparison result by a BER arithmetic means 42. The BER calculated for each C/N is averaged and the BER is used as the subsequent BER. Namely, a BER characteristic curve is estimated by a BE:R characteristic curve estimation means 43 based on the ideal BER curve of a digital demodulator by using this BER and the corresponded C/N. As a result, the BER characteristic can be obtained in short measuring time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は例えば移動通信におけ
るデジタル復調器のようにデジタル信号で変調された搬
送波を処理するデジタル機器、或いはデジタル信号によ
り搬送波を発生して出力するデジタル変調器のようなデ
ジタル機器のビット誤り率特性を試験する試験装置及び
その試験方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a digital device for processing a carrier wave modulated by a digital signal such as a digital demodulator in mobile communication, or a digital modulator for generating and outputting a carrier wave by a digital signal. The present invention relates to a test apparatus and a test method for testing the bit error rate characteristic of digital equipment.

【0002】[0002]

【従来の技術】デジタル移動通信の復調器として半導体
集積回路により構成されたものがあるが、このようなも
のを含めて上記デジタル機器を評価する上でビット誤り
率(以下BERと記す)特性は重要なパラメータであ
る。BER特性は変調方式や復調方式によっても異な
る。このBER特性は理論的に求められることができ、
その計算手法が知られ理想的なBER特性は演算により
求めることができる。
2. Description of the Related Art There is a demodulator for digital mobile communication, which is composed of a semiconductor integrated circuit, and the bit error rate (hereinafter referred to as BER) characteristic in evaluating the above digital equipment including such a demodulator It is an important parameter. The BER characteristic also differs depending on the modulation method and demodulation method. This BER characteristic can be theoretically obtained,
The calculation method is known, and the ideal BER characteristic can be calculated.

【0003】例えばπ/4DQPSKの受信を遅延検波
で行う復調器においては、図3Aに示すように入力変調
搬送波信号r(t)が入力される。このr(t)は送信
変調搬送波信号s(t)に雑音n(t)が加わったもの
となる。 s(t)=AIk cos (2πfc t)−AQk sin (2
πfc t) と表わせる。ここでAIk ,AQk は変調搬送波信号s
(t)の振幅Aの同相成分、直交成分である。このs
(t)にn(t)が加わった受信入力n(t)は次式で
表わされる。
For example, in a demodulator that receives π / 4DQPSK by differential detection, an input modulated carrier signal r (t) is input as shown in FIG. 3A. This r (t) is the transmission modulated carrier signal s (t) plus noise n (t). s (t) = AI k cos (2πf c t) -AQ k sin (2
πf c t) and can be expressed. Here, AI k and AQ k are modulated carrier signals s
The in-phase component and the quadrature component of the amplitude A of (t). This s
The reception input n (t) obtained by adding n (t) to (t) is expressed by the following equation.

【0004】r(t)={AIk +x(t)}cos (2
πfc t){AQk +y(t)}sin (2πfc t) ここでx(t),y(t)はそれぞれ雑音n(t)の同
相成分及び直交成分であり、それぞれがσ2 の分散のガ
ウス分布となる。前記入力変調搬送波信号r(t)は帯
域通過フィルタ11で不用成分が除去され、1シンボル
遅延手段12と乗算器13,14とにそれぞれ供給され
る。遅延手段12の出力はそのまま乗算器13に基準信
号として供給されると共に、移相器15でπ/2シフト
されて乗算器14に基準信号として供給される。乗算器
13,14の各出力は低域通過フィルタとされてそれぞ
れベースバンド信号としてcos (Δθ)、sin (Δθ)
が取り出され、これらは識別手段18で2値信号として
識別され、更に並列/直列変換器19によって復調デジ
タルデータとして出力される。遅延検波の同相成分の確
率密度関数pi(z)は次式で表わせる。
R (t) = {AI k + x (t)} cos (2
πf c t) {AQ k + y (t)} sin (2πf c t) where x (t), y (t ) are in phase and quadrature components of the noise n (t) respectively, each of the sigma 2 Gaussian distribution of variance. The input modulated carrier signal r (t) has its unnecessary component removed by a bandpass filter 11 and is supplied to a 1-symbol delay means 12 and multipliers 13 and 14, respectively. The output of the delay means 12 is supplied as it is to the multiplier 13 as a reference signal, and is also shifted by π / 2 in the phase shifter 15 and supplied to the multiplier 14 as a reference signal. The outputs of the multipliers 13 and 14 are low-pass filters, and are cos (Δθ) and sin (Δθ) as baseband signals.
Are extracted, these are identified as binary signals by the identifying means 18, and are further output as demodulated digital data by the parallel / serial converter 19. The probability density function pi (z) of the in-phase component of the differential detection can be expressed by the following equation.

【0005】Pi(z)={1/((2π)1/2 ・2
1/2 σ)}exp〔−〔z−Acos (Δθ)2 /(2−2
σ2 )〕 ここでΔθは(Ik ,Qk )と(Ik-1 ,Qk-1 )との
位相差である。同様にして遅延検波の直交成分の確率密
度関数Pq(z)は次式で表わせる。 Pq(z)={1/(2π)1/2 ・21/2 σ)}exp
〔−{z+Asin (Δθ)}2 /(2−2σ2 )〕 π/4DQPSKではΔθ=±π/4,±3π/4のい
ずれかをとり、誤り率はどのΔθも同等に起こる。ここ
ではΔθ=−π/4として計算する。この時信号点は第
1象限に来る。このため遅延検波出力の同相成分及び直
交成分の誤り率Pi,Pqはそれぞれ次式で表わせる。
Pi (z) = {1 / ((2π) 1/2 · 2
1/2 σ)} exp [-[z-Acos (Δθ) 2 / (2-2
σ 2 )] where Δθ is the phase difference between (I k , Q k ) and (I k-1 , Q k-1 ). Similarly, the probability density function Pq (z) of the orthogonal component of the differential detection can be expressed by the following equation. Pq (z) = {1 / (2π) 1/2・ 2 1/2 σ)} exp
[-{Z + A sin (Δθ)} 2 / (2-2σ 2 )] In π / 4DQPSK, either Δθ = ± π / 4 or ± 3π / 4 is taken, and the error rate occurs equally in any Δθ. Here, Δθ = −π / 4 is calculated. At this time, the signal point is in the first quadrant. Therefore, the error rates Pi and Pq of the in-phase component and the quadrature component of the differential detection output can be expressed by the following equations, respectively.

【0006】[0006]

【数1】 [Equation 1]

【0007】[0007]

【数2】 ここで∫は−∞から0まで、γ2 はC/Nであり、er
fは erf(x)=(2/√π)∫exp(−z2 )dz ∫はxから∞まで これより復調器全体の誤り率Peは次のようになる。
[Equation 2] Where ∫ is −∞ to 0, γ 2 is C / N, and er
f is erf (x) = (2 / √π) ∫exp (-z 2 ) dz∫ from x to ∞ From this, the error rate Pe of the entire demodulator is as follows.

【0008】 Pe=Pi+Pq−Pi×Pq =erf(γ/2)−(1/4){erf(γ/2)}2 ≒erf(γ/2) (1) このようにBERは計算で求めることができるが、実際
には識別レベルの変動、角度変動、クロック位相誤差な
どによりBERが劣化する。このため各デジタル機器に
ついてBER特性を測定してその機器を評価することが
望まれている。
Pe = Pi + Pq−Pi × Pq = erf (γ / 2) − (1/4) {erf (γ / 2)} 2 ≈erf (γ / 2) (1) Thus, the BER is calculated. However, in reality, the BER is deteriorated due to the fluctuation of the discrimination level, the angle fluctuation, the clock phase error, and the like. Therefore, it is desired to measure the BER characteristics of each digital device and evaluate the device.

【0009】BER特性を測定により求めるには、各種
の搬送波レベル/雑音レベル(以下C/Nと記す)のデ
ジタル信号により変調された搬送波信号(以下変調搬送
波信号と記す)を発生し、これを試験信号として被試験
機器、例えばデジタル復調器へ供給し、その復調デジタ
ル信号を期待値と比較してその誤った比率(BER)を
計算し、各C/Nについて前記演算したBERについて
求めてBER特性を得ている。
In order to obtain the BER characteristic by measurement, a carrier signal (hereinafter referred to as a modulated carrier signal) modulated by a digital signal of various carrier level / noise level (hereinafter referred to as C / N) is generated, and this is generated. It is supplied as a test signal to a device under test, for example, a digital demodulator, the demodulated digital signal is compared with an expected value to calculate an erroneous ratio (BER), and the calculated BER is calculated for each C / N to obtain the BER. It has the characteristics.

【0010】[0010]

【発明が解決しようとする課題】BERを正確に測定す
るには、入力信号のC/Nに対するBERの逆数の10
00倍以上のデータをとる必要がある。一方、PHS
(Personal Handy System)の受
信機においてはBERが10-8以上であることが要求さ
れ、従ってこのデジタル復調器のBER特性を測定する
にはPHSのビット速度が380kb/sであるため3
日以上の日数を必要とする。このため大量に生産される
デジタル復調器について1個ずつBER特性の評価をす
ることは現実的には困難で、従来は省略されていた。
To accurately measure the BER, the reciprocal of the BER with respect to the C / N of the input signal is set to 10.
It is necessary to take 00 times more data. On the other hand, PHS
In the (Personal Handy System) receiver, the BER is required to be 10 -8 or more. Therefore, the PHS bit rate is 380 kb / s to measure the BER characteristics of this digital demodulator.
Need more days. For this reason, it is practically difficult to evaluate the BER characteristics of each of the mass-produced digital demodulators, and it has been omitted in the past.

【0011】[0011]

【課題を解決するための手段】請求項1の発明によれば
各種のC/Nを持ち、デジタル信号に変調された搬送波
信号の試験信号が試験信号発生器から発生されて被試験
デジタル機器へ供給される。その被試験デジタル機器か
らの出力のBERが演算され、各種のC/Nについての
測定BERから上記被試験デジタル機器の理想BER特
性曲線に基づいてその被試験デジタル機器のBER特性
曲線を推定する。
According to the invention of claim 1, a test signal of a carrier signal having various C / Ns and modulated into a digital signal is generated from a test signal generator to a digital device under test. Supplied. The BER of the output from the digital device under test is calculated, and the BER characteristic curve of the digital device under test is estimated from the measured BER for various C / Ns based on the ideal BER characteristic curve of the digital device under test.

【0012】この推定は、理想BER特性曲線に対し、
未知剰数が付加された曲線について演算BERとそのC
/Nとを代入して、未知剰数を測定誤差が最小になるよ
うに決定する。デジタル機器としてデジタル信号で搬送
波信号を変調する変調器のようなものについては、試験
信号発生器においてはデジタルの試験信号を発生し、か
つそのデジタル信号のパラメータを制御して理想的なデ
ジタル機器の場合における出力された信号のC/Nを設
定できるようにされる。また被試験デジタル機器は、変
調搬送波信号を入力して変調搬送波信号を出力する場合
は、その出力信号をBER特性が既知の復調器で復調し
てBERを演算する。
This estimation is based on the ideal BER characteristic curve
Operation BER and its C for a curve with unknown residue
Substitute / N and determine the unknown residue so that the measurement error is minimized. As a digital device such as a modulator that modulates a carrier signal with a digital signal, a test signal generator generates a digital test signal and controls the parameters of the digital signal to generate an ideal digital device. The C / N of the output signal in the case can be set. Also, when the modulated carrier signal is input and the modulated carrier signal is output, the digital device under test demodulates the output signal with a demodulator having a known BER characteristic to calculate the BER.

【0013】[0013]

【実施例】図1Aにこの発明の実施例を示す。試験信号
発生器21からの試験信号を被試験デジタル機器22へ
供給し、その被試験デジタル機器22の出力をメモリ2
3に、一旦取り込み、その後メモリから読み出してデジ
タル信号処理器(DSP)でBERの演算及びBER特
性曲線の推定などを行ってその結果を表示器25に表示
する。
Embodiment FIG. 1A shows an embodiment of the present invention. The test signal from the test signal generator 21 is supplied to the digital device under test 22, and the output of the digital device under test 22 is stored in the memory 2.
Then, the digital signal processor (DSP) calculates the BER and estimates the BER characteristic curve, and displays the result on the display 25.

【0014】以下に被試験デジタル機器22としてデジ
タル移動通信における半導体集積回路として構成された
デジタル復調器に対する試験を例として説明する。この
場合の試験信号発生器21は予め決められた各種C/N
の変調搬送波信号を発生することができるものである。
例えば図1Bに示すように、9段のPNパターン発生器
26から384kb/sの速度で擬似ランダムパターン
が発生され、このデジタル信号はπ/4DQPSK変換
器27へ供給されてπ/4DQPSK信号に変換され
る。その同相信号は加算器28でガウス雑音n(t)の
同相成分x(t)が加算され、変調信号の直交成分にn
(t)の直交成分y(t)が加算器29で加算され、こ
れら加算器の出力は乗算器31,32へ供給され、搬送
波発生器33からの1.2MHzの搬送波信号、それが
π/2位相シフトされたものとそれぞれ乗算される。こ
れら乗算出力は加算器34で加算されて変調搬送波信号
の試験信号が得られる。この搬送波信号は通常デジタル
復調器の入力となる中間周波信号とされている。
An example of a test on a digital demodulator configured as a semiconductor integrated circuit in digital mobile communication as the digital device under test 22 will be described below. In this case, the test signal generator 21 has various predetermined C / N.
The modulated carrier signal can be generated.
For example, as shown in FIG. 1B, a 9-stage PN pattern generator 26 generates a pseudo random pattern at a speed of 384 kb / s, and this digital signal is supplied to a π / 4DQPSK converter 27 and converted into a π / 4DQPSK signal. To be done. The in-phase signal is added with the in-phase component x (t) of the Gaussian noise n (t) by the adder 28, and n is added to the quadrature component of the modulation signal.
The quadrature component y (t) of (t) is added by the adder 29, the outputs of these adders are supplied to the multipliers 31 and 32, and the carrier signal of 1.2 MHz from the carrier generator 33, which is π / They are each multiplied by the two phase shifted ones. These multiplication outputs are added by the adder 34 to obtain a test signal of the modulated carrier signal. This carrier signal is usually an intermediate frequency signal that is an input to the digital demodulator.

【0015】加えるガウス雑音n(t)の大きさにより
得られる変調搬送波信号のC/Nを変更する。試験信号
の発生ごとに、目的とするC/Nに対応する大きさの雑
音を加えてもよいが、予め必要とする各種C/Nに対応
した雑音を加えた試験信号を予め作っておき、これらを
デジタルデータとして試験信号発生器21内の波形メモ
リ361 乃至36n にそれぞれ記憶しておき、これら波
形メモリから読出したデータをアナログ信号に変換し
て、試験信号として出力するようにすることができる。
The C / N of the modulated carrier signal obtained depends on the magnitude of the Gaussian noise n (t) to be added. Each time the test signal is generated, noise of a magnitude corresponding to the target C / N may be added, but a test signal to which noise corresponding to various required C / Ns is added is created in advance, These are stored as digital data in the waveform memories 36 1 to 36 n in the test signal generator 21, respectively, and the data read from these waveform memories are converted into analog signals and output as test signals. You can

【0016】試験信号発生器21からの試験信号をその
C/Nに応じた繰り返し回数だけ発生させて、デジタル
復調器22に供給する。デジタル復調器22よりの復調
デジタルデータはメモリ23に記憶される。必要とする
C/Nの各種試験信号について、同様にしてデジタル復
調器よりの出力をメモリ23に取込む。その後、デジタ
ル信号処理器24でメモリ23のデータを順次読出し、
図2Aに示すように期待値と比較手段41で比較し、そ
の比較結果についてBER演算手段42でBERを演算
する。各C/Nについて演算したBERを平均してその
後のBERとして用いる。つまり、このBERと対応す
るC/Nとを用いてBER特性曲線推定手段43でデジ
タル復調器22の理想BER特性曲線に基き、BER特
性曲線を推定する。
The test signal from the test signal generator 21 is generated by the number of repetitions corresponding to the C / N and supplied to the digital demodulator 22. The demodulated digital data from the digital demodulator 22 is stored in the memory 23. Similarly, the outputs from the digital demodulators are taken into the memory 23 for various test signals of C / N required. After that, the digital signal processor 24 sequentially reads the data in the memory 23,
As shown in FIG. 2A, the expected value is compared with the comparison means 41, and the BER calculation means 42 calculates the BER for the comparison result. The BER calculated for each C / N is averaged and used as the subsequent BER. That is, the BER characteristic curve estimating means 43 estimates the BER characteristic curve based on the ideal BER characteristic curve of the digital demodulator 22 using the BER and the corresponding C / N.

【0017】たとえば、前述したπ/4DQPSKの遅
延検波復調においては、理想BER特性曲線は(1)式
で示され、これは図2Bの曲線45で示される。前述し
たように、復調器のBER劣化要因は種々あるが、その
劣化要因はC/Nに換算でき、固定的なものである場
合、その復調器のBER特性曲線は理想特性曲線45を
平行移動させたものとなる。各種の劣化要因の発生確率
も考慮すると、復調器のBER(Pn)は次式で表わさ
れる。
For example, in the above-described π / 4DQPSK differential detection demodulation, the ideal BER characteristic curve is shown by the equation (1), which is shown by the curve 45 in FIG. 2B. As described above, although there are various causes of BER deterioration of the demodulator, the deterioration factor can be converted into C / N, and when it is fixed, the BER characteristic curve of the demodulator moves in parallel with the ideal characteristic curve 45. It will be what was made. Considering the occurrence probabilities of various deterioration factors, the BER (Pn) of the demodulator is expressed by the following equation.

【0018】 Pn=a・erf(b・γ/2) (2) 従って、先に求めたC/Nに対するBERを(2)式に
代入して、測定値との誤差が最小になるようにa及びb
をたとえば、回帰処理により求める。この際に、前記B
ERの測定は、理想BER特性曲線45における曲りが
比較的大きな部分、つまりBERが10-4程度となるC
/NよりもC/Nが小さな試験信号について行う。
Pn = a · erf (b · γ / 2) (2) Therefore, the BER for the C / N obtained previously is substituted into the equation (2) to minimize the error from the measured value. a and b
Is obtained by regression processing, for example. At this time, the B
The ER is measured at a portion where the bend in the ideal BER characteristic curve 45 is relatively large, that is, C where the BER is about 10 −4.
The test signal having C / N smaller than / N is performed.

【0019】A社のICよりなるデジタル復調器につい
て上述した手法によりBERを測定した、その結果は図
2B中の黒点で示す状態となった。このデータから
(2)式におけるa,bを求めた結果、0.5,0.8
79とになった。これら値を(2)式に代入して、各種
C/NにつきBERを計算し、推定BER特性曲線46
を得た。同様にB社の製品について測定した結果は、図
2B中×印となり、a,bはそれぞれ0.5,0.73
3となり、推定BER特性曲線は図2B中の曲線47と
なった。
The BER of the digital demodulator consisting of the IC of Company A was measured by the above-mentioned method, and the result was in the state shown by the black dots in FIG. 2B. As a result of obtaining a and b in the equation (2) from this data, 0.5 and 0.8
It became 79. Substituting these values into the equation (2), the BER is calculated for each C / N, and the estimated BER characteristic curve 46
I got Similarly, the result of the measurement of the product of the company B becomes a mark X in FIG. 2B, and a and b are 0.5 and 0.73, respectively.
3 and the estimated BER characteristic curve is the curve 47 in FIG. 2B.

【0020】これら曲線46からC/Nが18dBのB
ERは7.76×10-7となり、一方従来の手法でC/
Nが18dBの1010ビットのデータを用いてBERを
測定した結果は7.96×10-7となった。また、曲線
47からC/Nが20dBのBERを求めると、2.1
7×10-7となり、一方、従来法で測定した結果は1.
75×10-7となった。これらの結果からこの例では2
の±1乗以下の精度でBERが予測できることが理解さ
れる。なお、この結果における各誤差をC/Nに換算す
ると、それぞれ0.17dB,0.25dBにすぎな
い。
From these curves 46, C / N of 18 dB B
ER is 7.76 × 10 -7 , while C /
The BER was measured using 10 10- bit data with N of 18 dB, and the result was 7.96 × 10 −7 . Further, when the BER with the C / N of 20 dB is obtained from the curve 47, it is 2.1
7 × 10 −7 , while the result measured by the conventional method is 1.
It became 75 × 10 -7 . From these results, 2 in this example
It is understood that the BER can be predicted with an accuracy of ± 1 power or less. When each error in this result is converted into C / N, they are only 0.17 dB and 0.25 dB, respectively.

【0021】以上述べたように、前記実施例ではBER
の測定は10-4程度より悪い状態での測定をすればよい
から、従来よりも測定時間は大幅に短縮され、たとえば
1秒程度の測定で済む。なお、得られた推定BER特性
曲線はたとえば図1Aに示すように、表示器25に表示
される。また、その表示曲線上の位置を指定してそのB
ERとCNを数値表示させることができるようにされて
いる。
As described above, in the above embodiment, the BER is
The measurement may be performed in a state of worse than about 10 −4, so that the measurement time is significantly shortened as compared with the conventional method, and the measurement may be performed for about 1 second, for example. The obtained estimated BER characteristic curve is displayed on the display 25 as shown in FIG. 1A, for example. Also, by specifying the position on the display curve, B
ER and CN can be displayed numerically.

【0022】上述では、この発明をDQPSK信号の遅
延検波復調器に適用したが、他の検波方式、他のデジタ
ル変調方式の復調器についても、この発明を適用するこ
とができる。更に、フィルタや等化器などのデジタル変
調搬送波信号を処理して、デジタル変調搬送波信号で出
力するデジタル機器についても、この発明を適用するこ
とができる。この場合は、図3Bに図1Aと対応する部
分に同一符号を付けて示すように、被試験デジタル機器
22の出力をBER特性が既知のデジタル復調器48で
復調して、メモリ23に供給する。
In the above description, the present invention is applied to the differential detection demodulator of the DQPSK signal, but the present invention can be applied to demodulators of other detection methods and other digital modulation methods. Further, the present invention can be applied to a digital device such as a filter or an equalizer that processes a digitally modulated carrier signal and outputs the digitally modulated carrier signal. In this case, the output of the digital device under test 22 is demodulated by the digital demodulator 48 having a known BER characteristic and supplied to the memory 23, as shown in FIG. .

【0023】また、この発明はデジタル変調器のBER
特性の測定にも適用することができる。すなわち、図3
Cに示すように、PNパターン発生器26を試験信号発
生器21に設け、その発生PNパターンの周期や振幅な
どを変化させて等価的にC/Nを変化させるようにす
る。このC/Nを変化させることをC/N設定手段49
で行う。この試験信号発生器21からのPNパターンを
デジタル試験信号として被試験デジタル変調器51へ供
給する。この際に、そのデジタル変調供給51が理想の
状態における出力変調搬送波信号のC/Nと試験信号発
生器21内のC/N設定手段49の設定とを予め求めて
おく。このようにして、所望のC/Nとなる試験信号を
デジタル変調器51へ供給し、その変調出力をBER特
性が既知のデジタル復調器48で復調して、メモリ23
へ供給する。
The present invention also relates to the BER of the digital modulator.
It can also be applied to the measurement of characteristics. That is, FIG.
As shown in C, the PN pattern generator 26 is provided in the test signal generator 21, and the cycle or amplitude of the generated PN pattern is changed to change C / N equivalently. C / N setting means 49 is to change this C / N.
Done in. The PN pattern from the test signal generator 21 is supplied to the digital modulator under test 51 as a digital test signal. At this time, the C / N of the output modulated carrier signal and the setting of the C / N setting means 49 in the test signal generator 21 when the digital modulation supply 51 is ideal are obtained in advance. In this way, a test signal having a desired C / N is supplied to the digital modulator 51, the modulated output is demodulated by the digital demodulator 48 having a known BER characteristic, and the memory 23
Supply to

【0024】上記何れの場合においても、試験データを
メモリ23に一括して取込むことなく、直接デジタル信
号処理器24へ供給して一回ずつBERを測定してもよ
い。
In any of the above cases, the test data may be directly supplied to the digital signal processor 24 without being taken in the memory 23 all at once, and the BER may be measured once.

【0025】[0025]

【発明の効果】以上述べたように、この発明によればB
ERが大きな部分のみを実測してBER特性曲線を推定
してBER特性を求めているため、従来よりも、いちじ
るしく短い測定時間で、BER特性を得ることができ、
しかも、かなり高い精度で推定することができるため、
デジタル機器の評価としてBER特性を用いることがで
き、デジタル機器を正しく評価することが可能となる。
As described above, according to the present invention, B
Since only the part where the ER is large is measured and the BER characteristic curve is estimated and the BER characteristic is obtained, the BER characteristic can be obtained in a significantly shorter measurement time than before.
Moreover, because it can be estimated with a fairly high accuracy,
The BER characteristic can be used as the evaluation of the digital device, and the digital device can be correctly evaluated.

【図面の簡単な説明】[Brief description of drawings]

【図1】Aはこの発明の実施例を示すブロック図、Bは
その試験信号発生器の一例を示すブロック図である。
FIG. 1A is a block diagram showing an embodiment of the present invention, and B is a block diagram showing an example of a test signal generator thereof.

【図2】Aは、図1中のデジタル信号処理器24の処理
内容を機能的に示すブロック図、Bは理想BER特性曲
線とこの発明の実施例で測定したBERとこの発明で推
定したBER特性曲線を示す図である。
2A is a block diagram functionally showing processing contents of a digital signal processor 24 in FIG. 1, and FIG. 2B is an ideal BER characteristic curve, BER measured in the embodiment of the present invention, and BER estimated in the present invention. It is a figure which shows a characteristic curve.

【図3】AはDQPSK信号の遅延検波器を示すブロッ
ク図、Bはこの発明の他の実施例の要部を示すブロック
図、Cはこの発明の更に他の実施例の要部を示すブロッ
ク図である。
3A is a block diagram showing a delay detector for a DQPSK signal, FIG. 3B is a block diagram showing a main part of another embodiment of the present invention, and C is a block showing a main part of still another embodiment of the present invention. It is a figure.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 デジタル信号により変調された搬送波
(以下変調搬送波と記す)を処理するデジタル機器を試
験する装置であって、 各種の搬送波レベル/雑音レベルをもち、デジタル信号
により変調された搬送波信号の試験信号を発生して上記
デジタル機器へ供給する試験信号発生器と、 上記デジタル機器の出力のビット誤り率を演算する誤り
率演算手段と、 上記各種の搬送波レベル/雑音レベルの試験信号につい
て上記演算されたビット誤り率から、上記デジタル機器
の理想ビット誤り率特性曲線に基づいて、上記デジタル
機器のビット誤り率特性曲線を推定する推定手段と、 を具備することを特徴とするデジタル機器の試験装置。
1. A device for testing a digital device that processes a carrier wave modulated by a digital signal (hereinafter referred to as a modulated carrier wave), the carrier signal having various carrier wave levels / noise levels and modulated by the digital signal. The test signal generator for generating the test signal of (1) and supplying it to the digital device, the error rate calculation means for calculating the bit error rate of the output of the digital device, and the test signals of the various carrier level / noise level described above. A test of a digital device, comprising: an estimation means for estimating a bit error rate characteristic curve of the digital device from the calculated bit error rate based on an ideal bit error rate characteristic curve of the digital device. apparatus.
【請求項2】 上記デジタル機器は復調器であって、上
記誤り率演算手段は上記復調器の出力を期待値と比較
し、その誤り率を演算する手段であることを特徴する請
求項1記載のデジタル機器の試験装置。
2. The digital device is a demodulator, and the error rate calculation means is means for comparing the output of the demodulator with an expected value and calculating the error rate. Digital equipment testing equipment.
【請求項3】 上記デジタル機器は変調搬送波を入力し
て変調搬送波を出力する機器であって、上記デジタル機
器の出力をデジタル信号として復調し上記誤り率演算手
段へ供給する復調手段を含むことを特徴とする請求項1
記載のデジタル機器の試験装置。
3. The digital device is a device for inputting a modulated carrier wave and outputting a modulated carrier wave, and including demodulation means for demodulating an output of the digital equipment as a digital signal and supplying the demodulated signal to the error rate calculating means. Claim 1 characterized by
Test equipment for the described digital equipment.
【請求項4】 デジタル信号で搬送波を変調して出力す
るデジタル機器を試験する装置であって、 デジタル信号を、そのパラメータを変化させて試験信号
として発生させて上記デジタル機器へ供給し、理想状態
での各種の搬送波レベル/雑音レベルの変調搬送波を出
力させることを可能とする試験信号発生器と、 上記デジタル機器の出力変調搬送波を復調する、ビット
誤り率が既知のデジタル復調器と、 上記デジタル復調器の出力のビット誤り率を演算する誤
り率演算手段と、 上記各種の搬送波レベル/雑音レベルと対応する上記演
算されたビット誤り率から、上記デジタル変調器の理想
ビット誤り率特性曲線に基づいて、上記デジタル機器の
ビット誤り率特性曲線を推定する推定手段と、 を具備することを特徴とするデジタル機器の試験装置。
4. A device for testing a digital device that modulates a carrier wave with a digital signal and outputs the modulated signal, the parameter of the digital signal being generated as a test signal and supplied to the digital device in an ideal state. A test signal generator capable of outputting modulated carrier waves of various carrier level / noise level in the above, a digital demodulator with a known bit error rate for demodulating the output modulated carrier wave of the above digital equipment, and the above digital Based on the ideal bit error rate characteristic curve of the digital modulator, from the error rate calculation means for calculating the bit error rate of the output of the demodulator and the calculated bit error rate corresponding to the various carrier level / noise level. And a means for estimating the bit error rate characteristic curve of the digital device, and a digital device test comprising: Location.
【請求項5】 上記推定手段は上記理想ビット誤り率特
性曲線に対し未知定数が付加された曲線について、上記
演算誤り率とその搬送波レベル/雑音レベルとを代入し
てその演算誤り率が最小になる上記未知定数を決定する
手段であることを特徴とする請求項1乃至4の何れかに
記載のデジタル機器の試験装置。
5. The estimation means minimizes the arithmetic error rate by substituting the arithmetic error rate and its carrier level / noise level for a curve in which an unknown constant is added to the ideal bit error rate characteristic curve. 5. The apparatus for testing digital equipment according to claim 1, which is a means for determining the unknown constant.
【請求項6】 上記試験信号発生器は、上記各種搬送波
レベル/雑音レベルの試験信号が予め記憶され、これを
読出して出力する波形記憶手段を含むことを特徴とする
請求項1乃至5の何れかに記載のデジタル機器の試験装
置。
6. The test signal generator according to claim 1, further comprising a waveform storage means for storing the test signals of various carrier wave levels / noise levels in advance and reading and outputting the test signals. The test equipment for the digital device according to Crab.
【請求項7】 デジタル信号により変調された搬送波を
処理するデジタル機器又はデジタル信号で搬送波信号を
変調して出力するデジタル機器の試験方法において、 上記デジタル機器の理想ビット誤り率特性曲線における
曲がりが比較的大きい部分を含みこれよりも搬送波レベ
ル/雑音レベルが小さい各種の搬送波レベル/雑音レベ
ルの試験信号又はそのように搬送波レベル/雑音レベル
となる試験信号を上記デジタル機器へ供給し、 そのデジタル機器の出力のビット誤り率を演算し、 その各種搬送波レベル/雑音レベルの演算したビット誤
り率をもちいて、上記理想ビット誤り率特性曲線にもと
づいて、上記デジタル機器のビット誤り率特性曲線を推
定することを特徴とするデジタル機器の試験方法。
7. A method for testing a digital device that processes a carrier wave modulated by a digital signal or a digital device that modulates a carrier wave signal with a digital signal and outputs the modulated carrier wave signal. A test signal of various carrier level / noise level including a relatively large part and having a smaller carrier level / noise level or a test signal having such a carrier level / noise level is supplied to the digital device, Estimate the bit error rate characteristic curve of the digital device based on the ideal bit error rate characteristic curve by calculating the output bit error rate and using the calculated bit error rate of each carrier level / noise level. A method for testing digital equipment characterized by.
JP7041940A 1995-03-01 1995-03-01 Testing device of digital equipment and method therefor Withdrawn JPH08242259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7041940A JPH08242259A (en) 1995-03-01 1995-03-01 Testing device of digital equipment and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7041940A JPH08242259A (en) 1995-03-01 1995-03-01 Testing device of digital equipment and method therefor

Publications (1)

Publication Number Publication Date
JPH08242259A true JPH08242259A (en) 1996-09-17

Family

ID=12622221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7041940A Withdrawn JPH08242259A (en) 1995-03-01 1995-03-01 Testing device of digital equipment and method therefor

Country Status (1)

Country Link
JP (1) JPH08242259A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966186A (en) * 1996-07-12 1999-10-12 Kabushiki Kaisha Toshiba Digital broadcast receiving device capable of indicating a receiving signal strength or quality
WO2000028709A1 (en) * 1998-11-11 2000-05-18 Kabushiki Kaisha Kenwood Dummy error addition circuit
WO2001033713A1 (en) * 1999-10-29 2001-05-10 Anritsu Corporation Noise code string generator and cn controller comprising it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966186A (en) * 1996-07-12 1999-10-12 Kabushiki Kaisha Toshiba Digital broadcast receiving device capable of indicating a receiving signal strength or quality
WO2000028709A1 (en) * 1998-11-11 2000-05-18 Kabushiki Kaisha Kenwood Dummy error addition circuit
US6772378B1 (en) 1998-11-11 2004-08-03 Kabushiki Kaisha Kenwood Dummy error addition circuit
WO2001033713A1 (en) * 1999-10-29 2001-05-10 Anritsu Corporation Noise code string generator and cn controller comprising it
EP1143615A1 (en) * 1999-10-29 2001-10-10 Anritsu Corporation Noise code string generator and cn controller comprising it
US6590462B1 (en) 1999-10-29 2003-07-08 Anritsu Corporation Noise code string generator and CN controller comprising it

Similar Documents

Publication Publication Date Title
US7639756B2 (en) Apparatus and method for adjusting quadrature modulator, communication apparatus and program
CN110133642B (en) DC offset compensation method for radar sensor
US7816904B2 (en) Modulation signature trigger
KR20050027226A (en) Method and apparatus to compensate imbalance of demodulator
US6263028B1 (en) Apparatus and method for measuring modulation accuracy
JPH08242259A (en) Testing device of digital equipment and method therefor
JP3537346B2 (en) Carrier frequency measuring device for linear digital modulation signal
CN110018500B (en) Beidou satellite signal capturing method based on circumferential shift
CN100521675C (en) Orthogonal modulation device and method
CN109521269B (en) Amplitude modulation signal digital frequency measurement method
JPH10247951A (en) Test equipment for digital demodulator and its test method
US5706307A (en) Method and arrangement for the determination of the ratio for common-channel or adjacent-channel interferers in digital mobile communication networks
US7092456B2 (en) Process for synchronization
JP3917469B2 (en) Code demodulator and positioning signal receiver
JP2008252162A (en) Spread signal receiver
KR20160111499A (en) Improvements to satellite positioning methods
JPH07245634A (en) Method and system for description of characteristic of phase-modulated signal
US11336550B2 (en) Signal analysis method and measurement system
JPH09307525A (en) Modulation parameter measurement device for digital quadrature modulation signal
JPH09189731A (en) Measurement of mudulation accuracy
JP3382360B2 (en) FSK signal generator
CN113311499B (en) UUV detection wave generation method and device, UUV and waveform generator
RU1798738C (en) Method for determining signal-to-noise ratio and device for method implementation
RU2658649C1 (en) Method and device for distribution of discrete information for quick moving objects
JP4007744B2 (en) Peak detector

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507