JPH0824085B2 - Multi-pole magnetizing method for rare earth magnets - Google Patents

Multi-pole magnetizing method for rare earth magnets

Info

Publication number
JPH0824085B2
JPH0824085B2 JP61095281A JP9528186A JPH0824085B2 JP H0824085 B2 JPH0824085 B2 JP H0824085B2 JP 61095281 A JP61095281 A JP 61095281A JP 9528186 A JP9528186 A JP 9528186A JP H0824085 B2 JPH0824085 B2 JP H0824085B2
Authority
JP
Japan
Prior art keywords
rare earth
magnet
magnetizing
magnetic field
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61095281A
Other languages
Japanese (ja)
Other versions
JPS62252111A (en
Inventor
利之 石橋
達也 下田
清治 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61095281A priority Critical patent/JPH0824085B2/en
Publication of JPS62252111A publication Critical patent/JPS62252111A/en
Publication of JPH0824085B2 publication Critical patent/JPH0824085B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基本組成が希土類金属、鉄およびボロンか
らなる希土類磁石の多極着磁方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a method for magnetizing a rare earth magnet having a basic composition of a rare earth metal, iron and boron.

〔従来の技術〕[Conventional technology]

従来、永久磁石の多極着磁方法としては、第2図に示
すような多極着磁ヨークを用いる方法か、第3図に示す
ようなヘッド着磁方法が用いられていた。
Conventionally, as a method for magnetizing a multi-pole of a permanent magnet, a method using a multi-pole magnetizing yoke as shown in FIG. 2 or a head magnetizing method as shown in FIG. 3 has been used.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、多極着磁ヨークを用いる方法では、飽和着磁
(完全着磁)が比較的容易であるが、着磁ピツチを細か
くすることが困難であり、ヘツド着磁方法では、着磁ピ
ツチが細かくできるのだが、着磁工程に時間が要し、飽
和着磁が困難で信号程度の磁束密度しか得られないとい
つた問題点を有している。
However, saturation magnetization (complete magnetization) is relatively easy with the method using a multi-pole magnetizing yoke, but it is difficult to make the magnetizing pitch fine. With the head magnetizing method, the magnetizing pitch is Although it can be finely divided, it has a problem that the magnetization process requires time, saturation magnetization is difficult, and only a magnetic flux density of a signal level can be obtained.

さらに、特願昭60-123391号に示されているように、
基本組成が希土類金属、鉄およびボロンからなる希土類
磁石は、通常の生産レベルの着磁磁場では飽和着磁させ
ることができないので十分な磁気性能が得られず、高い
着磁磁場を用い飽和着磁させようとすると、着磁工程に
時間を要し、着磁装置が大型化・複雑化し、コストが高
くなり、かつ品質の安定性が得られないといつた問題点
を有している。
Furthermore, as shown in Japanese Patent Application No. 60-123391,
Rare earth magnets whose basic composition is rare earth metal, iron and boron cannot be saturated with a magnetizing magnetic field at a normal production level, so sufficient magnetic performance cannot be obtained. However, the magnetizing process takes time, the magnetizing device becomes large and complicated, the cost becomes high, and the quality stability cannot be obtained.

本発明は以上の問題点を解決するもので、その目的と
するところは、低い磁場でもヘッド着磁方法によつて得
られる着磁ピツチで飽和着磁もしくはそれに近い磁束密
度を得ることを可能とし、かつ着磁工程も簡便な希土類
磁石の多極磁着方法を提供することにある。
The present invention solves the above problems, and an object thereof is to make it possible to obtain saturation magnetization or a magnetic flux density close to it with a magnetizing pitch obtained by a head magnetizing method even in a low magnetic field. Another object of the present invention is to provide a method for magnetizing a multi-pole magnet of a rare earth magnet, which can be easily magnetized.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の希土類磁石の多極着磁方法は、 基本組成として希土類金属と鉄とボロンとを含む希土
類磁石の多極着磁方法において、 磁性粉末を円筒状に成形し、円筒状ラジアル磁石を作
成する工程と、 該円筒状ラジアル磁石の内側から外側へ向く第1の磁
界方向の磁場中で、レーザを照射し局部加熱しながら着
磁する工程と、 前記円筒状ラジアル磁石を所定ピッチ周方向に移動
し、前記円筒状ラジアル磁石の外側から内側へ向く第2
の磁界方向の磁場中で、前記レーザを照射し局部加熱し
ながら着磁する工程と、 からなることを特徴とする。
The multi-pole magnetizing method for rare earth magnets of the present invention is a multi-pole magnetizing method for rare earth magnets containing a rare earth metal, iron and boron as a basic composition. And a step of magnetizing the cylindrical radial magnet in a circumferential direction of a predetermined pitch in a magnetic field in a first magnetic field direction from the inside to the outside of the cylindrical radial magnet while locally irradiating with a laser. A second moving member that faces from the outside to the inside of the cylindrical radial magnet.
In a magnetic field in the magnetic field direction, the step of irradiating the laser and magnetizing while locally heating the laser is performed.

基本組成が希土類金属、鉄およびボロンからなる希土
類磁石は、iHcの温度係数が大きく、この性質は普通マ
イナスと考えられるが、着磁に関しては逆に利用するこ
とができる。即ち、高温にすることにより、iHcを低い
状態にして着磁を行なえば、低い着磁磁場で飽和着磁が
できるのである。
A rare earth magnet having a basic composition of rare earth metal, iron and boron has a large temperature coefficient of iHc, and this property is usually considered to be negative, but it can be used in reverse for magnetization. That is, when iHc is set to a low state by performing high temperature magnetization, the saturation magnetization can be performed with a low magnetization magnetic field.

また、50℃未満では常温と比べて高温の効果が得られ
ず、逆に200℃を越えると室温に戻した後の磁気性能が
大幅に低くなつてしまうため、上述の範囲が望ましい。
Further, if the temperature is lower than 50 ° C, the effect of high temperature cannot be obtained as compared with the normal temperature, and conversely, if it exceeds 200 ° C, the magnetic performance after returning to room temperature is significantly deteriorated. Therefore, the above range is preferable.

なお、第1図に本発明の原理説明図を示すが、本発明
はこの図に示すような円筒状磁石に限るものではなく、
円盤状,板状等でも良い。
Although FIG. 1 shows a principle explanatory diagram of the present invention, the present invention is not limited to the cylindrical magnet as shown in FIG.
It may be disk-shaped or plate-shaped.

なお、基本組成が希土類金属、鉄およびボロンからな
る希土類永久磁石としてはNd−Fe−B磁石が知られてい
るが、希土類金属としては、Y,La,Ce,Pr,Nd,Pm,Sm,Em,G
d,Tb,Dy,Ho,Er,Tm,YbおよびLuの希土類元素のうちの1
種または2種以上であれば良く、ジジム(Pr−Nd)やセ
リウム・ジジム(Ce−Pr−Nd)でも十分な磁気性能が得
られ、供給面・価格面から有利である。さらに、DyやTb
の重希土類元素の少量添加により、保磁力iHcを増大さ
せることができ、温度特性の実質的な改善が達成され
る。
Nd-Fe-B magnets are known as rare earth permanent magnets having a basic composition of rare earth metals, iron and boron, but rare earth metals include Y, La, Ce, Pr, Nd, Pm, Sm, Em, G
One of the rare earth elements of d, Tb, Dy, Ho, Er, Tm, Yb and Lu
It is only necessary to use one kind or two or more kinds. Didymium (Pr-Nd) and cerium-didymium (Ce-Pr-Nd) can obtain sufficient magnetic performance, and are advantageous in terms of supply and price. Furthermore, Dy and Tb
The coercive force iHc can be increased and a substantial improvement in temperature characteristics can be achieved by adding a small amount of the heavy rare earth element.

また、鉄の一部をコバルトで置換することによりキユ
ーリー温度の向上が計られ、残留磁化Brの温度係数も改
善され、他の遷移金属群で置換しても磁気性能や耐食性
等が改善される。
Also, by substituting a part of iron with cobalt, the Curie temperature is improved, the temperature coefficient of remanent magnetization Br is also improved, and even if it is replaced with another transition metal group, magnetic performance and corrosion resistance are improved. .

〔実施例〕〔Example〕

以下、本発明について実施例に基づいて詳細に説明す
る。
Hereinafter, the present invention will be described in detail based on examples.

(実施例−1) Nd15Fe77B8の組成になるように高周波溶解炉を用いア
ルゴンガス雰囲気下で溶解、鋳造した合金をスタンプミ
ル、ボールミルを用い磁性粉末とした。この磁性粉末を
円筒状の型に充填させ、半径方向に磁場配向させ、15Kg
/mm2の成形圧で圧縮成形した。これをアルゴンガス雰囲
気中で1000〜1200℃の最適温度で焼結、400〜1000℃の
最適温度で時効を施した。
(Example -1) dissolved in an argon gas atmosphere using a high frequency melting furnace to obtain a composition of Nd 15 Fe 77 B 8, cast alloy stamp mill to obtain a magnetic powder with a ball mill. This magnetic powder is filled in a cylindrical mold, and magnetic field oriented in the radial direction.
Compression molding was performed at a molding pressure of / mm 2 . This was sintered in an argon gas atmosphere at an optimum temperature of 1000 to 1200 ° C and aged at an optimum temperature of 400 to 1000 ° C.

この円筒状ラジアル磁石に、内側がS、外側がNの2
極着磁を施し、その後その一部を内側がN、外側がSの
磁場をかけながら半田ごてを用い約100℃にした。
This cylindrical radial magnet has 2 inside, S inside and N outside.
It was pole-polarized, and then a part of it was heated to about 100 ° C using a soldering iron while applying a magnetic field of N on the inside and S on the outside.

この円筒状ラジアル磁石の外側面にガウスメータをあ
てて、その表面磁束密度を測定した。その結果を第4図
に示す。
A Gauss meter was placed on the outer surface of this cylindrical radial magnet to measure the surface magnetic flux density. The results are shown in FIG.

第4図から明らかなように、高温にした周辺部の表面
磁束密度が低下していて着磁模様の多極化の可能性を示
している。
As is clear from FIG. 4, the surface magnetic flux density of the peripheral portion heated to a high temperature is lowered, which indicates the possibility of multipolarization of the magnetized pattern.

(実施例−2) Nd13.5Dy1.5Fe67Co10B8となるように、実施例−1と
同様な方法を用い、円筒状ラジアル磁石を作成した。
(Example-2) A cylindrical radial magnet was produced in the same manner as in Example-1 so that Nd 13.5 Dy 1.5 Fe 67 Co 10 B 8 was obtained.

この円筒状ラジアル磁石に、内側がS、外側がNの2
極着磁を施し、その後内側がN、外側がSの磁場をかけ
ながらレーザを用い0.3mmのピツチ幅で着磁を施した。
This cylindrical radial magnet has 2 inside, S inside and N outside.
It was pole-polarized and then magnetized with a pitch width of 0.3 mm using a laser while applying a magnetic field of N on the inside and S on the outside.

また、比較例として、第3図に示すようなヘツド着磁
法を用いて、同じピツチで着磁を施した。さらに、第2
図に示すような多極着磁ヨークでも同じピツチでの着磁
を試みたが、ヨークの構造上の問題で不可能であつた。
As a comparative example, a head magnetizing method as shown in FIG. 3 was used to magnetize with the same pitch. Furthermore, the second
Magnetization with the same pitch was attempted even with a multi-pole magnetized yoke as shown in the figure, but it was impossible due to structural problems of the yoke.

本発明および比較例の表面磁束密度を測定し、その結
果を示したのが第5図である。
The surface magnetic flux densities of the present invention and the comparative example were measured, and the results are shown in FIG.

第5図から明らかなように、比較例と比べて、本発明
は大変高い表面磁束密度と大きな振幅の着磁模様が得ら
れることが分かる。
As is clear from FIG. 5, the present invention can obtain a magnetized pattern having a very high surface magnetic flux density and a large amplitude as compared with the comparative example.

(実施例−3) (Ce0.2Pr0.2Nd0.5Dy0.1)15Fe67Co10B8となるように、
実施例−1と同様な方法を用い、円筒状ラジアル磁石を
作成した。
(Example-3) (Ce 0.2 Pr 0.2 Nd 0.5 Dy 0.1 ) 15 Fe 67 Co 10 B 8
Using the same method as in Example-1, a cylindrical radial magnet was created.

この円筒状ラジアル磁石に、レーザーを用い局部的に
高温とし磁場をN,S交互にかけながら0.3mmのピツチ幅で
着磁を施した。
This cylindrical radial magnet was magnetized with a pitch width of 0.3 mm while locally applying a high temperature using a laser and applying a magnetic field N and S alternately.

この磁石の表面磁束密度を実施例−2の比較例と合わ
せて示したのが、第6図である。
FIG. 6 shows the surface magnetic flux density of this magnet together with the comparative example of Example-2.

第6図からも明らかなように、比較例と比べて、本発
明は大変高い表面磁束密度と大きな振幅の着磁模様が得
られ、ステツピングモータなど応用面にも有効であるこ
とが分かる。
As is clear from FIG. 6, the present invention provides a very high surface magnetic flux density and a magnetized pattern with a large amplitude, as compared with the comparative example, and is effective for applications such as stepping motors.

〔発明の効果〕 以上述べたように、本発明によれば、基本組成が希土
類金属、鉄およびボロンからなる希土類磁石を局部的に
50〜200℃と高温にして多極着磁することにより、従来
のものとは比較にならない程細かい着磁ピツチで高い表
面磁束密度と大きな振幅の着磁模様が得られ、加えて着
磁工程も簡理化され、さらにこの高性能の磁石を用い、
ステツピングモータの高出力化、小型化が実現できるな
ど応用面にまでも多大の効果を有するものである。
[Advantages of the Invention] As described above, according to the present invention, a rare earth magnet having a basic composition of rare earth metal, iron and boron is locally applied.
By performing multi-pole magnetization at a high temperature of 50 to 200 ° C, it is possible to obtain a high surface magnetic flux density and a large amplitude magnetization pattern with a magnetizing pitch that is finer than conventional ones. Is also simplified, and using this high-performance magnet,
The stepping motor has a great effect on the application side such as high output and downsizing.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の原理説明概略図。 第2図は比較例の多極着磁ヨーク方法の原理説明概略
図。 第3図は比較例のヘツド着磁方法の原理説明概略図。 第4図は表面磁束密度の変化を示す図。 第5図は多極着磁模様の表面磁束密度の波形を示す図。 第6図は多極着磁模様の表面磁束密度の波形を示す図で
ある。 1……磁石 2……高温部 3……加熱装置 4……外部磁界 5……コイル線 6……ヨーク 7……継鉄 8……着磁ヘツド。
FIG. 1 is a schematic diagram for explaining the principle of the present invention. FIG. 2 is a schematic diagram illustrating the principle of a multipolar magnetizing yoke method of a comparative example. FIG. 3 is a schematic diagram illustrating the principle of a head magnetizing method of a comparative example. FIG. 4 is a diagram showing changes in surface magnetic flux density. FIG. 5 is a diagram showing a waveform of the surface magnetic flux density of a multi-pole magnetized pattern. FIG. 6 is a diagram showing a waveform of the surface magnetic flux density of a multi-pole magnetized pattern. 1 ... Magnet 2 ... High temperature part 3 ... Heating device 4 ... External magnetic field 5 ... Coil wire 6 ... Yoke 7 ... Yoke 8 ... Magnetization head

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基本組成として希土類金属と鉄とボロンと
を含む希土類磁石の多極着磁方法において、 磁性粉末を円筒状に成形し、円筒状ラジアル磁石を作成
する工程と、 該円筒状ラジアル磁石の内側から外側へ向く第1の磁界
方向の磁場中で、レーザを照射し局部加熱しながら着磁
する工程と、 前記円筒状ラジアル磁石を所定ピッチ周方向に移動し、
前記円筒状ラジアル磁石の外側から内側へ向く第2の磁
界方向の磁場中で、前記レーザを照射し局部加熱しなが
ら着磁する工程と、 からなることを特徴とする希土類磁石の多極着磁方法。
1. A multi-pole magnetizing method of a rare earth magnet containing a rare earth metal, iron and boron as a basic composition, a step of forming magnetic powder into a cylindrical shape to form a cylindrical radial magnet, and the cylindrical radial magnet. In a magnetic field in a first magnetic field direction from the inner side to the outer side of the magnet, a step of magnetizing while irradiating a laser and locally heating, and moving the cylindrical radial magnet in a predetermined pitch circumferential direction,
A multi-pole magnetization of a rare earth magnet, comprising the steps of irradiating the laser and magnetizing while locally heating in a magnetic field in a second magnetic field direction from the outer side to the inner side of the cylindrical radial magnet. Method.
JP61095281A 1986-04-24 1986-04-24 Multi-pole magnetizing method for rare earth magnets Expired - Lifetime JPH0824085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61095281A JPH0824085B2 (en) 1986-04-24 1986-04-24 Multi-pole magnetizing method for rare earth magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61095281A JPH0824085B2 (en) 1986-04-24 1986-04-24 Multi-pole magnetizing method for rare earth magnets

Publications (2)

Publication Number Publication Date
JPS62252111A JPS62252111A (en) 1987-11-02
JPH0824085B2 true JPH0824085B2 (en) 1996-03-06

Family

ID=14133388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61095281A Expired - Lifetime JPH0824085B2 (en) 1986-04-24 1986-04-24 Multi-pole magnetizing method for rare earth magnets

Country Status (1)

Country Link
JP (1) JPH0824085B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6733196A (en) * 1995-08-30 1997-03-19 Danfoss A/S Method of producing magnetic poles on a base member, and rotor of an electrical machine
CN105097183A (en) * 2015-09-23 2015-11-25 沈阳工业大学 Annular bonding neodymium iron boron magnet multi-pole segmented magnetizing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076110A (en) * 1983-10-03 1985-04-30 Sumitomo Special Metals Co Ltd Assembling and magnetizing method for magnetic circuit
JPS60218815A (en) * 1984-04-13 1985-11-01 Yaskawa Electric Mfg Co Ltd Manufacture of hard magnetic film

Also Published As

Publication number Publication date
JPS62252111A (en) 1987-11-02

Similar Documents

Publication Publication Date Title
US4836868A (en) Permanent magnet and method of producing same
JPH0824085B2 (en) Multi-pole magnetizing method for rare earth magnets
US4954186A (en) Rear earth-iron-boron permanent magnets containing aluminum
KR102691645B1 (en) Rare earth sintered magnet, manufacturing method of rare earth sintered magnet, rotor and rotating machine
JP3777225B2 (en) Isotropic permanent magnet powder having high magnetic flux density and method for producing the same
Yoshizawa et al. Injection molded Sm/sub 2/Fe/sub 17/N/sub 3/anisotropic magnet using reduction and diffusion method
KR102691643B1 (en) Rare earth sintered magnet, manufacturing method of rare earth sintered magnet, rotor and rotating machine
JPS61281505A (en) Magnetizing method of rare earth magnet
JPH0696926A (en) Resin-bonded rare-earth-cobalt magnet
JP2587617B2 (en) Manufacturing method of rare earth permanent magnet
JPH07240307A (en) Nitrogen-bearing rare-earth permanent magnet and its manufacture
JPH0559572B2 (en)
JPS62257706A (en) Demagnetization of rare-earth magnet
KR100249968B1 (en) Magnetization yoke of permanent magnet in rare-earth system
JP3182979B2 (en) Anisotropic magnet, manufacturing method and manufacturing apparatus
JPH0471205A (en) Manufacture of bond magnet
JPS61245505A (en) Manufacture of rare-earth iron magnet
JPH01112703A (en) Manufacture of r-tm-b permanent magnet
JPS62224915A (en) Manufacture of rare-earth magnet
JPH053124B2 (en)
Liu et al. Coercive Sm/sub 2/Co/sub 17/powder for the bonded magnet application
JPH0256904A (en) Manufacture of resin-bound rare-earth magnet
JPH07161513A (en) Iron based bond magnet and its production
JP2006128436A (en) Permanent magnet motor
JPH01206608A (en) Magnetization of rare-earth magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term