JPH08235361A - Individual authenticating device - Google Patents

Individual authenticating device

Info

Publication number
JPH08235361A
JPH08235361A JP7334996A JP33499695A JPH08235361A JP H08235361 A JPH08235361 A JP H08235361A JP 7334996 A JP7334996 A JP 7334996A JP 33499695 A JP33499695 A JP 33499695A JP H08235361 A JPH08235361 A JP H08235361A
Authority
JP
Japan
Prior art keywords
porous film
finger
authentication device
personal authentication
linear electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7334996A
Other languages
Japanese (ja)
Other versions
JP3550237B2 (en
Inventor
Kazuhiro Henmi
和弘 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP33499695A priority Critical patent/JP3550237B2/en
Publication of JPH08235361A publication Critical patent/JPH08235361A/en
Application granted granted Critical
Publication of JP3550237B2 publication Critical patent/JP3550237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide an individual authenticating device having an input part high in the reliability of water resistance or the like, and capable of simplifying its constitution and reducing its production cost. CONSTITUTION: Plural linear electrodes 3 extended in the direction rectangular to the length direction of a finger 1 to be measured are arrayed on a substrate in the finger length direction and a porous film 2 is applied to the surface of the elecrodes 3. The porous film 2 sheds moisture such as water drops and transmits steam. When a finger is depressed to the film 2, moisture (sweat) 6 diffused from sweat glands 5 on the projected part of a finger print is penetrated through the pores of the porous film 2, diffused and arrives at the electrodee string arrayed just under the projection parts of the finger print. Electric resistance between electrodes to which moisture arrives is reduced due to ions existing in the moisture. Resistance values between adjacent electrodes are successively read out in the finger length direction and synthesized to obtain finger print information.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、表面形状センサ
を用いた個人認証装置に関し、特に、電極アレイに指を
押し付け、隣接電極間の抵抗変化を順次読み取ることに
より特徴抽出を行う電極アレイ方式の個人認証装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a personal identification device using a surface shape sensor, and more particularly to an electrode array system for performing feature extraction by pressing a finger against an electrode array and sequentially reading resistance changes between adjacent electrodes. Personal authentication device

【0002】[0002]

【従来の技術】近年、重要な施設の入退室管理等を目的
とした個人認証装置への関心が高まってきている。その
中でも指紋は個人認証として多く利用されている。従
来、指紋入力装置としては様々な方法が提案されてお
り、その中でも光学的に指紋を二次元画像信号として検
出する方法が最も多く適用されている。更に、指紋の凹
凸に応じた押圧力を二次元画像信号として検出する方法
もいくつか提案されている。
2. Description of the Related Art In recent years, there has been an increasing interest in personal authentication devices for the purpose of room entry / exit management of important facilities. Among them, fingerprints are often used as personal authentication. Conventionally, various methods have been proposed as a fingerprint input device, and among them, the method of optically detecting a fingerprint as a two-dimensional image signal is most often applied. Further, some methods have been proposed in which the pressing force corresponding to the unevenness of the fingerprint is detected as a two-dimensional image signal.

【0003】また、指全体の画像信号から指の長手方向
への射影信号を構成し、この一次元の信号を指の特徴量
として個人認証用信号に用いる方法が提案されている(P
roceeding 10th International Conference on Pattern
Recognition pp.761-766 vol.1; M.takeda et al.; 19
90 を参照) 。これによれば、信号が一次元で構成され
ているため、従来の二次元信号である指紋画像に比べ
て、データ量を削減することができ、且つ処理アルゴリ
ズムを簡素化することができる。このため、信号処理速
度が向上し、認証照合に必要な時間を短縮することがで
きる。
Further, there has been proposed a method of forming a projection signal in the longitudinal direction of the finger from an image signal of the entire finger and using this one-dimensional signal as a personal characteristic signal for a personal authentication signal (P
roceeding 10th International Conference on Pattern
Recognition pp.761-766 vol.1; M.takeda et al .; 19
90). According to this, since the signal is configured in one dimension, the data amount can be reduced and the processing algorithm can be simplified as compared with the fingerprint image which is a conventional two-dimensional signal. For this reason, the signal processing speed is improved, and the time required for authentication verification can be shortened.

【0004】本願発明者等により、画像信号を用いる代
わりに、指の長さ方向に対して直交方向に長い複数の線
状電極を指の長さ方向に配列し、指を押し付けたときの
隣合う電極間の抵抗値を指の長さ方向に順次読み取り合
成した信号を用いる方法が提案されている。(特願平5
−2059号,特願平5−256401号)。この方法
によれば、光学系が不要となり装置の小型・低価格化が
可能となる。
Instead of using an image signal, the inventors of the present application arranged a plurality of linear electrodes, which are long in the direction orthogonal to the length direction of the finger, in the length direction of the finger, and when the fingers are pressed, they are adjacent to each other. A method has been proposed in which the resistance value between the matching electrodes is sequentially read in the length direction of the finger and a signal obtained by synthesis is used. (Patent application 5
-2059, Japanese Patent Application No. 5-256401). According to this method, an optical system is not required, and the size and cost of the device can be reduced.

【0005】[0005]

【発明が解決しようとする課題】しかし、前述した提案
においては、例えば検出電極を露出した構成にすると、
(1)静電気を帯電した物体が接触した場合に、周辺回
路が破損する可能性があり、(2)長期使用で電極が磨
耗したり、傷つけたりして断線する可能性があり、さら
に(3)極端に汚れが付着した場合測定不能となった
り、(4)水に濡れると測定不能になる等の可能性があ
り、信頼性に欠けてしまう。このため、電極表面を被覆
することが望まれていた。例えば一定の抵抗値を有する
シートを電極上に配置して指を押し付け、皮膚表面の凹
凸をシートの凹凸として検出する方法も考えられている
が、この方法においても、シートの厚みを局限まで薄く
しても分解能の低下が生じてしまう為、何等かの改善を
要求されている。
However, in the above-mentioned proposal, for example, when the detection electrode is exposed,
(1) When an electrostatically charged object comes into contact, the peripheral circuit may be damaged, (2) The electrode may wear or be damaged due to long-term use, and the wire may be broken. ) There is a possibility that measurement becomes impossible when extremely dirty, or (4) measurement becomes impossible when it gets wet with water, resulting in lack of reliability. Therefore, it has been desired to coat the electrode surface. For example, a method of arranging a sheet having a certain resistance value on the electrode and pressing a finger to detect the unevenness of the skin surface as the unevenness of the sheet is also considered, but even in this method, the thickness of the sheet is thinned to the limit. Even if the resolution is lowered, some improvement is required.

【0006】この発明は前述した実情に鑑みてなされた
ものであり、指の長さ方向に対して直交方向に長い複数
の線状電極を指の長さ方向に配列し指を押し付けたとき
の隣合う電極間の抵抗値を指の長さ方向に順次読み取り
合成した信号を用いる個人認証装置において、耐水性等
の信頼性も高く且つ構成の簡略化及び製造コストの低減
をはかり得る入力装置を有する個人認証装置を提供する
ことを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and when a plurality of linear electrodes that are long in the direction orthogonal to the length direction of the finger are arranged in the length direction of the finger and the finger is pressed against the linear electrodes. In a personal authentication device that uses a signal obtained by sequentially reading the resistance value between adjacent electrodes in the finger length direction and using a synthesized signal, an input device that has high reliability such as water resistance and can be simplified in structure and reduced in manufacturing cost can be provided. It is an object to provide a personal authentication device that the user has.

【0007】[0007]

【課題を解決するための手段】本発明者等は、信号検出
機構を調査した結果から、検出信号は指表面の汗口から
の放散水分に依存することを見い出した。そこで、水分
をはじき水蒸気のみを通過する多孔質膜を表面に配置す
ることにより、被覆無しの状態に比べて得られる信号は
同等でありながら、信頼性は飛躍的に向上させる個人認
証装置が提供される。
DISCLOSURE OF THE INVENTION The inventors of the present invention have found that the detection signal depends on the moisture released from the perspiration of the finger surface from the result of the investigation of the signal detection mechanism. Therefore, by providing a porous membrane that repels water and allows only water vapor to pass through, a personal authentication device that dramatically improves reliability while providing the same signal as compared to the uncoated state is provided. To be done.

【0008】この発明に係る個人認証装置は、基板上に
配列された複数の線状電極と、前記複数の線状電極の上
に設けられた多孔質膜と、前記多孔質膜上に、前記線状
電極の長さ方向に方向に直交するように指が載置された
際、前記線状電極間の抵抗変化を検出し、指紋情報を生
成する検出手段とを具備することを特徴とする。
In the personal authentication device according to the present invention, a plurality of linear electrodes arranged on a substrate, a porous film provided on the plurality of linear electrodes, and a porous film on the porous film When a finger is placed so as to be orthogonal to the direction of the length of the linear electrodes, a change in resistance between the linear electrodes is detected, and detection means for generating fingerprint information is provided. .

【0009】この多孔質膜は、水滴等の水分をはじく一
方、水蒸気を透過する材料で構成され、例えば、フッソ
系樹脂、ポリカーボネート、または酢酸セルロースから
なる有機材料を適用することができる。
The porous film is made of a material that repels water such as water droplets while allowing water vapor to pass through. For example, an organic material such as a fluorine resin, polycarbonate, or cellulose acetate can be applied.

【0010】画像信号を用いる代わりに指の長さ方向に
対して直交方向に長い複数の線状電極を指の長さ方向に
配列し指を押し付けたときの隣合う電極間の抵抗値を指
の長さ方向に順位読み取り合成した信号を用いる個人認
証装置において、電極露出状態で同様な測定を行った場
合には水滴が付着したり指表面が汚れていたりあるいは
環境の状態の変化にともなって指紋情報が変動して再現
性があまり良くない。これに対し、前述した多孔質膜を
使用する個人認証装置は、そのような状態変化に影響さ
れることなく安定した信号を得ることができ信頼性が向
上する。さらに、小型で薄型にも実装可能であるという
利点はそのまま生かされるので、ICカードへの応用も
可能となる。
Instead of using an image signal, a plurality of linear electrodes, which are long in the direction orthogonal to the length direction of the finger, are arranged in the length direction of the finger, and the resistance value between the adjacent electrodes when the finger is pressed is specified. In a personal identification device that uses a signal that is read in order in the length direction and synthesized, if the same measurement is performed with the electrode exposed, water droplets may adhere, the finger surface may become dirty, or the environment may change. The fingerprint information fluctuates and the reproducibility is not very good. On the other hand, the personal identification device using the porous film described above can obtain a stable signal without being affected by such a state change, and reliability is improved. Furthermore, since the advantage that it can be mounted in a small size and a thin shape is utilized as it is, it can be applied to an IC card.

【0011】[0011]

【発明の実施の形態】以下、この発明に係る実施の形態
を図面を参照して説明する。図1は、この発明の一実施
の形態に係る個人認証装置の構成を示すブロック図であ
る。この個人認証装置は、センサ部100、照合計算部
200、及びホストコンピュータ300とにより構成さ
れる。センサ部100は、指紋を入力するための入力部
101、及びこの入力部101の出力に基づいて指紋情
報を生成する(特徴抽出を行う)抽出回路102とによ
りなる。照合計算部200は、抽出回路102の出力に
基づいてフィルタリング処理や照合計算などを行う。ホ
ストコンピュータ300は、照合計算部200の出力に
基づいてシステム制御や特徴登録などを行う。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of a personal authentication device according to an embodiment of the present invention. This personal authentication device includes a sensor unit 100, a matching calculation unit 200, and a host computer 300. The sensor unit 100 includes an input unit 101 for inputting a fingerprint, and an extraction circuit 102 that generates fingerprint information (performs feature extraction) based on the output of the input unit 101. The matching calculation unit 200 performs filtering processing and matching calculation based on the output of the extraction circuit 102. The host computer 300 performs system control, feature registration, etc. based on the output of the matching calculation unit 200.

【0012】図2は、前記図1に示される個人認証装置
の入力部101を示す図であり、図3はこの入力部にお
いて、指紋凸部の汗口からの発汗により線状電極間に伝
導経路が形成されることを説明する図を示す。
FIG. 2 is a diagram showing the input unit 101 of the personal identification device shown in FIG. 1, and FIG. 3 shows the input unit conducting between the linear electrodes due to sweating from the sweat opening of the fingerprint protrusion. The figure explaining that a path | route is formed is shown.

【0013】基板4の表面上には、複数の線状電極3が
形成されている。電極材料としてはCu薄膜,Au薄
膜,Niメッキ薄膜,Pt薄膜,Pd薄膜を適用するこ
とができる。この電極材料としては、測定対象が比較的
高抵抗であるために絶縁体以外であればどのような材料
でもよく、例えばITO(酸化インジウム・スズ)等の
酸化物膜でもよい。電極の形成方法に関しても特に制限
はなく、メッキ・蒸着等通常の方法はいずれも適用でき
る。膜質及びエッジの状態についても特に制限はない
が、平滑で均等な脱厚を有するのが望ましい。基板4の
材料としてはガラエポ等のプリント基板材料や、セラミ
ック板、あるいは絶縁被覆した金属薄板等を用いる。電
極間隔は数十μm程度で、指紋ピッチ(約0.5mm)
より細かいピッチとする。電極の数即ち電極アレイの長
手方向の長さは、通常、指の先端から第二関節を完全に
含む長さとする。
A plurality of linear electrodes 3 are formed on the surface of the substrate 4. As the electrode material, Cu thin film, Au thin film, Ni plating thin film, Pt thin film, Pd thin film can be applied. As the electrode material, any material other than an insulator may be used because the measurement target has a relatively high resistance, and for example, an oxide film such as ITO (indium tin oxide) may be used. The method for forming the electrodes is not particularly limited, and any ordinary method such as plating or vapor deposition can be applied. The film quality and the state of the edge are not particularly limited, but it is desirable that the film has a smooth and uniform thickness. As a material for the substrate 4, a printed circuit board material such as glass epoxy, a ceramic plate, or a thin metal plate coated with insulation is used. The electrode pitch is about several tens of μm, and the fingerprint pitch (about 0.5 mm)
Use a finer pitch. The number of electrodes, that is, the length in the longitudinal direction of the electrode array is usually a length that completely includes the second joint from the tip of the finger.

【0014】この電極3表面に多孔質膜2を配置する。
多孔質膜の厚みは100μm以下で、押圧で多孔質膜2
が破損、変形しない強度を維持するものがよい。多孔質
膜の材料としてはPTFE(ポリ四フッ化エチレン)等
のフッソ樹脂、ポリカーボネート、酢酸セルロース等の
有機材料があるが、無機材料でも良い。ただし、親水性
の材料は不適である。孔を形成する方法は、被溶出物質
を混入させて成膜後に溶出させる方法、ポリマー粗子を
焼結する方法、放射線によりポリマーを損傷させてエッ
チングする方法等があり、いずれの方法で形成してもよ
い。すなわち、材料や孔の形状が異なっていても水蒸気
のみを遅滞なく透過する特性を有していればこの実施の
形態として適用することができる。又、半導体プロセス
の光リソグラフィ手法により、電極3上に樹脂薄膜を塗
布し、細孔をパターニングすることにより多孔質膜2を
形成することもできる。
The porous film 2 is arranged on the surface of the electrode 3.
The thickness of the porous membrane is 100 μm or less, and the porous membrane 2 is pressed.
It is preferable to maintain strength that does not damage or deform. As the material of the porous film, there are fluorine resin such as PTFE (polytetrafluoroethylene), organic materials such as polycarbonate and cellulose acetate, but inorganic materials may be used. However, hydrophilic materials are not suitable. The method of forming the holes includes a method of mixing a substance to be eluted to elute after forming a film, a method of sintering a polymer coarse particle, a method of damaging a polymer by radiation, and an etching method. May be. That is, even if the materials and the shapes of the pores are different, as long as it has a property of permeating only water vapor without delay, it can be applied as this embodiment. Alternatively, the porous film 2 can be formed by applying a resin thin film on the electrode 3 and patterning the pores by an optical lithography method in a semiconductor process.

【0015】ここで、図6(a)〜(d)に多孔質膜の
構造の例を示す。図6(a),(b)は、溶出や焼結に
より得られる構造で、図6(c)は放射線照射によりエ
ッチングして得られる構造である。また多孔質膜でなく
ても図6(d)に示に示されるような繊維状膜でも適用
することができる。また、膜と電極及び基板表面との密
着度も特に要求はされないので、極端な場合電極表面に
乗っているだけでも測定は可能である。逆に孔を塞がな
いように接着剤で強固に接着しても同様に測定は可能で
ある。
6 (a) to 6 (d) show examples of the structure of the porous film. 6A and 6B are structures obtained by elution and sintering, and FIG. 6C is a structure obtained by etching by irradiation with radiation. Further, a fibrous film as shown in FIG. 6D can be applied instead of the porous film. Moreover, since the degree of adhesion between the film and the surface of the electrode and the substrate is not particularly required, in an extreme case, the measurement can be performed only by riding on the surface of the electrode. On the contrary, the same measurement can be performed by firmly adhering with an adhesive so as not to block the holes.

【0016】次に、図3〜図5を参照してこの実施の形
態の指紋情報の検出処理について説明する。尚、指紋情
報の検出処理等、個人認証装置に関する詳細は、前記し
た特願平5−2059号,特願平5−256401号に
記載されている。
Next, the fingerprint information detection processing of this embodiment will be described with reference to FIGS. Details of the personal identification device such as fingerprint information detection processing are described in Japanese Patent Application No. 5-2059 and Japanese Patent Application No. 5-256401.

【0017】前記図3に示されるように多孔質膜に指紋
検出すべき指1を電極配列方向に対して直行方向に押し
付ける。指の表面は、汗口の配列に従って皮膚が隆起し
て指紋を形成しており、汗口からは、常時汗が自然放散
している。すなわち、指紋凸部からは常にNaやClを
微量に含む水分の放散がある。従って、多孔質膜2に指
を押し付けると、指紋凸部の汗口から放散された水分
(発汗)は多孔質膜の孔を通り拡散し、指紋凸部直下の
電極列に到達する。このとき水分が到達した電極間で
は、水分に存在するイオンにより電気抵抗が低下する。
ゆえに、指紋の凸部に対応した部分のみがそれ以外の部
分に比べて低抵抗の状態となる。例えば、図3に示され
るように、指紋凸部の汗口5から放散された発汗6は、
多孔質膜の孔を通り、線状電極3a,3bに到達する。
これにより、線状電極3a,3b間には、発汗により生
じる伝導経路7が形成される。この際、水滴8等の指紋
凸部の汗口から放散されない水分は、たとえ多孔質膜2
に付着しても、多孔質膜2の孔を通過することができ
ず、水滴8直下の線状電極3c,d,eには参照符号9
に示されるように伝導経路が形成されることはない。
As shown in FIG. 3, the finger 1 for fingerprint detection is pressed against the porous film in a direction perpendicular to the electrode arrangement direction. On the surface of the finger, the skin is raised to form a fingerprint in accordance with the arrangement of the sweat openings, and the sweat is always naturally dissipated from the sweat openings. That is, water containing a small amount of Na or Cl is always diffused from the fingerprint protrusion. Therefore, when a finger is pressed against the porous film 2, the moisture (perspiration) diffused from the sweat opening of the fingerprint convex portion diffuses through the pores of the porous film and reaches the electrode array immediately below the fingerprint convex portion. At this time, the electric resistance between the electrodes to which the moisture reaches decreases due to the ions existing in the moisture.
Therefore, only the portion corresponding to the convex portion of the fingerprint has a lower resistance than the other portions. For example, as shown in FIG. 3, the sweat 6 dissipated from the sweat opening 5 of the fingerprint protrusion is
It passes through the holes of the porous film and reaches the linear electrodes 3a, 3b.
As a result, a conduction path 7 generated by sweating is formed between the linear electrodes 3a and 3b. At this time, the water that is not released from the perspiration openings of the fingerprint protrusions such as the water droplets 8 is even if the porous film 2 is used.
Even if it adheres to the wire electrodes, it cannot pass through the pores of the porous film 2, and the linear electrodes 3c, d, and e directly below the water droplet 8 are denoted by reference numeral 9
No conduction path is formed as shown in FIG.

【0018】前述したような状態の時、隣接する電極間
の抵抗値が指の長さ方向に順次読み取られる。この読み
取り方法を図4を参照して説明する。i+1個の電極3
に対して指を押し付けたとき、指紋の凸部の量に対応し
て放散水分が電極に到達する。これにより、指紋凸部直
下の隣接する電極間では水分の比抵抗に凸部面積を乗じ
た抵抗値になる。このときの抵抗値をRn とする。隣接
する2つの電極間に図示の如く基準抵抗Rref と一定電
圧源V0 をアナログスイッチを介して接続する。このと
き基準抵抗の両端の電位差Vi は次式で与えられる。
In the above-mentioned state, the resistance value between the adjacent electrodes is sequentially read in the length direction of the finger. This reading method will be described with reference to FIG. i + 1 electrodes 3
When a finger is pressed against, the amount of moisture diffused reaches the electrode in correspondence with the amount of the convex portion of the fingerprint. As a result, between adjacent electrodes immediately below the fingerprint protrusion, the resistance value is obtained by multiplying the specific resistance of water by the protrusion area. The resistance value at this time is Rn. A reference resistor Rref and a constant voltage source V0 are connected between two adjacent electrodes via an analog switch as shown. At this time, the potential difference Vi across the reference resistor is given by the following equation.

【0019】 Vi = Rref ・V0 /(Rref +Ri ) アナログスイッチを切り替えて、この電位差を指の長さ
方向に順次読み取り、時系列にプロットすると図5に示
されるようになり、指の長手方向への多値射影信号と等
価なパターンを得ることができる。多チャンネルとなる
ので、アナログスイッチとしてアナログマルチプレクサ
ICを用いることにより回路を小型にすることができ
る。尚、図5に示されるポイントtn は、電極Pn とP
n+1 との間の電気抵抗Rn を検出する時点である。
Vi = Rref.V0 / (Rref + Ri) By switching the analog switch, the potential difference is sequentially read in the length direction of the finger and plotted in time series as shown in FIG. It is possible to obtain a pattern equivalent to the multi-valued projection signal of. Since the number of channels is increased, the circuit can be downsized by using the analog multiplexer IC as the analog switch. The point tn shown in FIG.
It is the time when the electrical resistance Rn between n + 1 and n + 1 is detected.

【0020】ここで、同一の指に対し、この実施の形態
により測定された検出信号(指紋情報)の例を図7に、
従来の電極に直接指を接触させる方法(裸電極)により
測定された検出信号の例を図8に示す。測定において、
適用された多孔質膜は、材質はポリカーボネート、平均
孔径は0.5μm、孔密度は1×106 個/cm2 、厚
さ10μmである。両図面から明らかなように、この実
施の形態により、従来の方法で測定される検出信号とほ
ぼ同等の検出信号が得られることが分かる。このような
実験結果から、多孔質膜に形成する孔の形状は、孔径と
しては、指紋ピッチ(約0.5mm)以下の直径であ
り、例えば1mm以下の数十μmであることが望まし
く、孔密度としては、感度上より高いことが望ましい
が、開孔率(面積)で5%〜50%で、且つ、溌水性及
び膜強度が保てることが望ましく、又、膜厚は、100
μm以下で、押圧で膜が破損、変形しない強度を維持で
きる厚さが望ましい。
Here, FIG. 7 shows an example of detection signals (fingerprint information) measured by this embodiment for the same finger.
FIG. 8 shows an example of a detection signal measured by a conventional method of directly touching an electrode with a finger (bare electrode). In the measurement,
The applied porous membrane is made of polycarbonate, has an average pore diameter of 0.5 μm, a pore density of 1 × 10 6 holes / cm 2 , and a thickness of 10 μm. As is clear from both drawings, it can be seen that this embodiment can obtain a detection signal almost equivalent to the detection signal measured by the conventional method. From the above experimental results, the shape of the holes formed in the porous film is such that the diameter of the holes is equal to or smaller than the fingerprint pitch (about 0.5 mm), for example, 1 mm or less and several tens of μm. It is desirable that the density is higher than the sensitivity, but it is desirable that the porosity (area) is 5% to 50%, and the water repellent property and the film strength can be maintained, and the film thickness is 100%.
It is desirable that the thickness is not more than μm and the thickness can maintain the strength that the film is not damaged or deformed by pressing.

【0021】次に、前記入力部101の第1変形例を図
9に示す。多孔質膜2に指を置く位置を示すマークを付
けたものである。センシング部である電極アレイの位置
を明示するとともに、指を置く位置を限定することで再
現性を高める効果がある。マークは単に指の方向を示す
矢印等でも良い。
Next, a first modification of the input section 101 is shown in FIG. A mark indicating the position where the finger is placed is attached to the porous film 2. By clearly indicating the position of the electrode array, which is the sensing unit, and limiting the position on which the finger is placed, there is an effect of improving reproducibility. The mark may simply be an arrow or the like indicating the direction of the finger.

【0022】次に、前記入力部101の第2変形例を図
10に示す。同図に示されるように、線状電極3の大部
分は多孔質膜2で被覆されているが残りの電極部分は水
蒸気を透過しない膜11で被覆した構造である。形成し
やすいパターンで電極アレイを作製し、必要な部分以外
を水蒸気を透過しない膜で被覆する作製プロセスの方
が、電極アレイを必要な部分だけ形成する場合に比べて
設計及び作製の自由度が大きく、コストの面や適用する
機器への実装の点で有利になる。
Next, a second modification of the input section 101 is shown in FIG. As shown in the figure, most of the linear electrode 3 is covered with the porous film 2, but the remaining electrode part is covered with the film 11 that is impermeable to water vapor. The manufacturing process in which the electrode array is manufactured in a pattern that is easy to form and the part other than the necessary part is covered with a film that does not permeate water vapor has more freedom in designing and manufacturing than the case where only the necessary part of the electrode array is formed. It is large and advantageous in terms of cost and mounting on applicable equipment.

【0023】また、この第2変形例の入力部101を適
用した個人認証装置では、図11に示されるように、水
蒸気を透過しない膜11の下に位置する電極間の抵抗値
を基準としてこの値を測定信号から減ずることにより、
よりノイズ等の影響を少なくすることができる。即ち、
膜11の下に位置する電極間の抵抗をR11、水蒸気によ
り形成された電極間の抵抗をR2 と仮定する。この時、
図11に示される差動増幅器の、マイナス入力端子に接
続された抵抗R′には、V2 =R2 ・V0 /(Rref +
R2 )の電圧が、プラス入力端子に接続された抵抗R′
には、V11=R11・V0 /(Rref +R11)の電圧が印
加される。従って、差動増幅器の出力端子から、常に膜
11の下に位置する電極間の抵抗値が基準となる値 Voutp = −R”(V2 −V11)/R′ が得られる。
Further, in the personal identification device to which the input section 101 of the second modification is applied, as shown in FIG. 11, the resistance value between the electrodes located under the membrane 11 that does not permeate water vapor is used as a reference. By subtracting the value from the measured signal,
The influence of noise and the like can be further reduced. That is,
It is assumed that the resistance between the electrodes located under the membrane 11 is R11 and the resistance between the electrodes formed by the water vapor is R2. This time,
In the resistance R'connected to the negative input terminal of the differential amplifier shown in FIG. 11, V2 = R2.V0 / (Rref +
The voltage of R2) is the resistance R'connected to the positive input terminal.
A voltage of V11 = R11.V0 / (Rref + R11) is applied to the. Therefore, from the output terminal of the differential amplifier, a value Voutp = -R "(V2-V11) / R 'is always obtained which is based on the resistance value between the electrodes located under the film 11.

【0024】この例では差動増幅器を用いた回路を示し
ているが、この回路に限定されることなく、水蒸気を透
過しない膜の下の電極間信号を基準として、多孔質膜下
の電極から得られる測定信号を出力する回路であれば良
い。
In this example, a circuit using a differential amplifier is shown, but the circuit is not limited to this circuit, and the electrode under the porous film is used as a reference based on the signal between the electrodes under the film that does not permeate water vapor. Any circuit that outputs the obtained measurement signal may be used.

【0025】以上詳述したようにこの発明によれば、画
像信号を用いる代わりに指の長さ方向に対して直交方向
に長い複数の線状電極を指の長さ方向に配列し指を押し
付けたときの隣合う電極間の抵抗値を指の長さ方向に順
次読み取り合成した信号を用いる個人認証装置におい
て、電極露出状態で同様な測定を行った場合には水滴が
付着したり指表面が汚れていた例あるいは環境の状態の
変化にともなって指紋情報が変動して再現性があまり良
くないのに対して、本発明の多孔質膜を使用する構造に
おいては、そのような状態変化に影響されることなく安
定した信号を得ることができ信頼性が向上する。さら
に、小型で薄型にも実装可能であるという利点はそのま
ま生かされるので、ICカードへの応用も可能となる。
As described in detail above, according to the present invention, a plurality of linear electrodes, which are long in the direction orthogonal to the length direction of the finger, are arranged in the length direction of the finger instead of using the image signal, and the finger is pressed. In a personal authentication device that uses a signal obtained by sequentially reading the resistance value between adjacent electrodes in the finger length direction and combining the signals, if the same measurement is performed with the electrodes exposed, water droplets or finger surface The fingerprint information fluctuates due to a dirty example or a change in the environmental condition, and the reproducibility is not so good, whereas the structure using the porous membrane of the present invention affects such a change in the condition. A stable signal can be obtained without being damaged and reliability is improved. Furthermore, since the advantage that it can be mounted in a small size and a thin shape is utilized as it is, it can be applied to an IC card.

【0026】尚、多孔質膜の細孔に、蒸着等により金属
等の導体を充填することにより、長期使用による多孔質
膜の磨耗を低減できる。充填する金属には、Al,A
u,Pt等を使用することができる。
By filling the pores of the porous film with a conductor such as metal by vapor deposition or the like, abrasion of the porous film due to long-term use can be reduced. The metal to be filled is Al, A
u, Pt, etc. can be used.

【0027】又、多孔質膜の材料樹脂に抗菌材を混入す
ることにより、ユーザに対して安全性及びサービス性の
良い個人認証装置を提供することができる。混入する抗
菌材としては、無機系では、ゼオライト,シリカ,アル
ミナ等の担体にAg,Cu,Zn等を担持させたもの
で、例えば抗菌性ゼオライトを適用することができる。
有機系では、TBZ:2−(4−チアゾリル)−ベンズ
イミダゾール、OBPA:10,10′−オキシビスフ
ェノキサアルシン、A3:N−(フルオロジクロロメチ
ルチオ)−フタルイミド、M8:2−n−オクチル−4
−イソチアゾル−3−オン、ZPT:ビス(2−ピリジ
ルチオ−1−オキシド)亜鉛、S−100:2,3,
5,6−テトラクロロ−4−(メチルスルフォニル)−
ピリジン等を適用することができる。
By mixing an antibacterial material in the resin material of the porous film, it is possible to provide the user with a personal authentication device having good safety and serviceability. As the antibacterial material to be mixed, in the case of an inorganic material, Ag, Cu, Zn or the like is carried on a carrier such as zeolite, silica or alumina, and for example, antibacterial zeolite can be applied.
In the organic system, TBZ: 2- (4-thiazolyl) -benzimidazole, OBPA: 10,10'-oxybisphenoxaarsine, A3: N- (fluorodichloromethylthio) -phthalimide, M8: 2-n-octyl- Four
-Isothiazol-3-one, ZPT: bis (2-pyridylthio-1-oxide) zinc, S-100: 2,3,
5,6-Tetrachloro-4- (methylsulfonyl)-
Pyridine or the like can be applied.

【0028】[0028]

【発明の効果】以上詳述したようにこの発明によれば、
画像信号を用いる代わりに指の長さ方向に対して直交方
向に長い複数の線状電極を指の長さ方向に配列し指を押
し付けたときの隣合う電極間の抵抗値を指の長さ方向に
順次読み取り合成した信号を用いる個人認証装置におい
て、多孔質膜を使用することにより、状態変化に影響さ
れることなく安定した信号を得ることができ信頼性が向
上する。更に、小型で薄型にも実装可能であるという利
点はそのまま生かされるので、ICカードへの応用も可
能となる。
As described above in detail, according to the present invention,
Instead of using image signals, the resistance value between adjacent electrodes when a plurality of linear electrodes that are long in the direction orthogonal to the length direction of the finger is arranged in the length direction of the finger and the finger is pressed is the length of the finger. By using the porous film in the personal identification device that sequentially reads and synthesizes the signals in the directions, stable signals can be obtained without being affected by the state change, and the reliability is improved. Furthermore, since the advantage that it can be mounted in a small size and a thin shape is utilized as it is, it can be applied to an IC card.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の形態に係る個人認証装置の全
体構成を示すブロック図。
FIG. 1 is a block diagram showing an overall configuration of a personal authentication device according to an embodiment of the present invention.

【図2】この発明の実施の形態の個人認証装置における
入力部を示す側断面図。
FIG. 2 is a side sectional view showing an input unit in the personal identification device according to the embodiment of the present invention.

【図3】この発明の実施の形態の個人認証装置における
入力部において、指紋凸部の汗口からの発汗により伝導
経路が生じることを説明する図。
FIG. 3 is a diagram illustrating that a conduction path is generated by sweating from a sweat opening of a fingerprint convex portion in the input unit in the personal identification device according to the embodiment of the present invention.

【図4】この発明の実施の形態の個人認証装置の測定原
理を示す図。
FIG. 4 is a diagram showing a measurement principle of the personal identification device according to the embodiment of the present invention.

【図5】この発明の実施の形態の個人認証装置の測定原
理に従った、指紋情報の測定を説明する図。
FIG. 5 is a diagram illustrating measurement of fingerprint information according to the measurement principle of the personal identification device according to the embodiment of the present invention.

【図6】この発明の実施の形態に適用される多孔質膜の
形状例を示す図。
FIG. 6 is a diagram showing an example of the shape of a porous membrane applied to the embodiment of the present invention.

【図7】この発明の実施の形態において得られる指紋情
報を示すグラフ。
FIG. 7 is a graph showing fingerprint information obtained in the embodiment of the present invention.

【図8】この発明の実施の形態において得られる指紋情
報と比較するため、従来の個人認証装置により得られる
指紋情報を示す図。
FIG. 8 is a diagram showing fingerprint information obtained by a conventional personal authentication device for comparison with fingerprint information obtained in the embodiment of the present invention.

【図9】この発明の実施の形態の個人認証装置における
入力部の第1変形例を示す図。
FIG. 9 is a diagram showing a first modified example of the input unit in the personal identification device according to the embodiment of the present invention.

【図10】この発明の実施の形態の個人認証装置におけ
る入力部の第2変形例を示す図。
FIG. 10 is a diagram showing a second modification of the input unit in the personal identification device according to the embodiment of the present invention.

【図11】入力部の第2変形例を適用した個人認証装置
における指紋情報の測定を説明する図。
FIG. 11 is a diagram illustrating measurement of fingerprint information in a personal identification device to which a second modification of the input unit is applied.

【符号の説明】[Explanation of symbols]

1…指、2…多孔質膜、3…線状電極、4…基板、5…
汗孔、6…発汗、7…伝導経路、8…水滴、100…セ
ンサ部、101…入力部、102…抽出回路、200…
照合計算部、300…ホストコンピュータ。
1 ... Finger, 2 ... Porous film, 3 ... Linear electrode, 4 ... Substrate, 5 ...
Sweat hole, 6 ... sweating, 7 ... conduction path, 8 ... water drop, 100 ... sensor section, 101 ... input section, 102 ... extraction circuit, 200 ...
Collation calculation unit, 300 ... Host computer.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 基板上に配列された複数の線状電極と、 前記複数の線状電極の上に設けられた多孔質膜と、 前記多孔質膜上に、前記線状電極の長さ方向に方向に直
交するように指が載置された際、前記線状電極間の抵抗
変化を検出し、指紋情報を生成する検出手段とを具備す
ることを特徴とする個人認証装置。
1. A plurality of linear electrodes arranged on a substrate, a porous film provided on the plurality of linear electrodes, and a lengthwise direction of the linear electrodes on the porous film. An individual authentication device comprising: a detection unit that detects a resistance change between the linear electrodes and generates fingerprint information when a finger is placed so as to be orthogonal to the direction.
【請求項2】 前記検出手段は、隣合う前記複数の線状
電極間の抵抗値を指の長さ方向に順次検出し、合成する
ことを特徴とする請求項1記載の個人認証装置。
2. The personal authentication device according to claim 1, wherein the detection unit sequentially detects resistance values between the plurality of adjacent linear electrodes in the finger length direction and combines the resistance values.
【請求項3】 前記多孔質膜は、指を載置する位置を示
すマークを有することを特徴とする請求項1記載の個人
認証装置。
3. The personal authentication device according to claim 1, wherein the porous film has a mark indicating a position where a finger is placed.
【請求項4】 前記多孔質膜は、水分をはじき、水蒸気
を透過する材料からなることを特徴とする請求項1記載
の個人認証装置。
4. The personal identification device according to claim 1, wherein the porous film is made of a material that repels water and transmits water vapor.
【請求項5】 前記多孔質膜は、フッソ系樹脂、ポリカ
ーボネート、及び酢酸セルロースのいずれか1の有機材
料からなることを特徴とする請求項1記載の個人認証装
置。
5. The personal authentication device according to claim 1, wherein the porous film is made of an organic material selected from the group consisting of fluorine resin, polycarbonate, and cellulose acetate.
【請求項6】 前記多孔質膜は前記複数の線状電極の所
定部分を被覆し、前記多孔質膜は、前記所定部分を除く
前記複数の線状電極を被覆する、水蒸気を透過しない部
分を有することを特徴とする請求項1記載の個人認証装
置。
6. The porous membrane covers a predetermined portion of the plurality of linear electrodes, and the porous membrane covers a portion of the plurality of linear electrodes excluding the predetermined portion that is impermeable to water vapor. The personal authentication device according to claim 1, further comprising:
【請求項7】 前記検出手段は、前記多孔質膜の、前記
水蒸気を透過しない部分に被覆された前記複数の線状電
極間の抵抗値を基準値として前記抵抗変化を検出するこ
とを特徴とする請求項6記載の個人認証装置。
7. The detection means detects the resistance change by using a resistance value between the plurality of linear electrodes coated on the water vapor impermeable portion of the porous film as a reference value. The personal authentication device according to claim 6.
【請求項8】 前記多孔質膜は、抗菌材からなることを
特徴とする請求項1記載の個人認証装置。
8. The personal authentication device according to claim 1, wherein the porous film is made of an antibacterial material.
【請求項9】 前記多孔質膜は複数の孔を有し、これら
の孔は、前記多孔質膜表面と前記複数の線状電極の少な
くとも1つとの間に設けられ、隣接する前記複数の線状
電極間でつながっていこるとを特徴とする請求項1記載
の個人認証装置。
9. The porous membrane has a plurality of pores, and these pores are provided between the surface of the porous membrane and at least one of the plurality of linear electrodes, and the plurality of adjacent wires are provided. The personal authentication device according to claim 1, wherein the electrodes are connected to each other.
【請求項10】 前記多孔質膜の開孔率は、5%以上5
0%以下であることを特徴とする請求項1記載の個人認
証装置。
10. The porosity of the porous film is 5% or more and 5 or more.
The personal authentication device according to claim 1, wherein the personal authentication device is 0% or less.
【請求項11】 前記多孔質膜の膜厚は、100μm以
下であることを特徴とする請求項1記載の個人認証装
置。
11. The personal authentication device according to claim 1, wherein the thickness of the porous film is 100 μm or less.
【請求項12】 前記多孔質膜は複数の孔を有し、これ
ら複数の孔の孔径は、1mm以下であることを特徴とす
る請求項1記載の個人認証装置。
12. The personal authentication device according to claim 1, wherein the porous film has a plurality of holes, and the diameter of the plurality of holes is 1 mm or less.
JP33499695A 1994-12-26 1995-12-22 Personal authentication device Expired - Fee Related JP3550237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33499695A JP3550237B2 (en) 1994-12-26 1995-12-22 Personal authentication device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-322066 1994-12-26
JP32206694 1994-12-26
JP33499695A JP3550237B2 (en) 1994-12-26 1995-12-22 Personal authentication device

Publications (2)

Publication Number Publication Date
JPH08235361A true JPH08235361A (en) 1996-09-13
JP3550237B2 JP3550237B2 (en) 2004-08-04

Family

ID=26570680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33499695A Expired - Fee Related JP3550237B2 (en) 1994-12-26 1995-12-22 Personal authentication device

Country Status (1)

Country Link
JP (1) JP3550237B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036905A1 (en) * 1999-11-18 2001-05-25 Asahi Glass Company, Limited Fingerprint reader
JP2002520627A (en) * 1998-07-14 2002-07-09 インフィネオン テクノロジース アクチエンゲゼルシャフト Biometric sensor and method of manufacturing the sensor
JP2003536085A (en) * 2000-06-09 2003-12-02 アイデックス・エーエスエー Sensor chips especially for fingerprint sensors
US7366331B2 (en) 2001-06-18 2008-04-29 Nec Corporation Fingerprint input device
US9501685B2 (en) 2013-02-22 2016-11-22 Idex Asa Integrated finger print sensor
JP2017084164A (en) * 2015-10-29 2017-05-18 王子ホールディングス株式会社 Insulation film for fingerprint authentication device, laminate, and fingerprint authentication device
US10095906B2 (en) 2014-02-21 2018-10-09 Idex Asa Sensor employing overlapping grid lines and conductive probes for extending a sensing surface from the grid lines

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520627A (en) * 1998-07-14 2002-07-09 インフィネオン テクノロジース アクチエンゲゼルシャフト Biometric sensor and method of manufacturing the sensor
WO2001036905A1 (en) * 1999-11-18 2001-05-25 Asahi Glass Company, Limited Fingerprint reader
JP2003536085A (en) * 2000-06-09 2003-12-02 アイデックス・エーエスエー Sensor chips especially for fingerprint sensors
US7848550B2 (en) 2000-06-09 2010-12-07 Idex Asa Sensor unit, especially for fingerprint sensors
JP4708671B2 (en) * 2000-06-09 2011-06-22 アイデックス・エーエスエー Sensor chip especially for fingerprint sensor
US7366331B2 (en) 2001-06-18 2008-04-29 Nec Corporation Fingerprint input device
US9501685B2 (en) 2013-02-22 2016-11-22 Idex Asa Integrated finger print sensor
US9881196B2 (en) 2013-02-22 2018-01-30 Idex Asa Integrated finger print sensor
US10095906B2 (en) 2014-02-21 2018-10-09 Idex Asa Sensor employing overlapping grid lines and conductive probes for extending a sensing surface from the grid lines
JP2017084164A (en) * 2015-10-29 2017-05-18 王子ホールディングス株式会社 Insulation film for fingerprint authentication device, laminate, and fingerprint authentication device

Also Published As

Publication number Publication date
JP3550237B2 (en) 2004-08-04

Similar Documents

Publication Publication Date Title
US5757278A (en) Personal verification system
US3911215A (en) Discriminating contact sensor
US6175641B1 (en) Detector for recognizing the living character of a finger in a fingerprint recognizing apparatus
DE69826274T2 (en) METHOD AND DEVICE FOR MEASURING THE STRUCTURES OF A FINGERPRINT
US6787013B2 (en) Biosensor
US4461304A (en) Microelectrode and assembly for parallel recording of neurol groups
US7496216B2 (en) Fingerprint capture
EP0256799A2 (en) Tactile sensor device
GB2243235A (en) Fingerprint sensor
EP1058513A1 (en) Fingerprint sensor
US20010028253A1 (en) Sensor array for a capacitance measuring fingerprint sensor, and method for producing such a sensor array
JP3590184B2 (en) Fingerprint detection device
CN108020584B (en) Glucose measuring device and equipment
JP3550237B2 (en) Personal authentication device
JP2021524044A (en) Nanopore array with electrode connectors protected from electrostatic discharge
US4503286A (en) Input device
EP0291903A2 (en) Membrane anchor for ion-selective electrodes
KR102303276B1 (en) Flexible pH Sensor Based on Nanocomposite of Single-Wall Carbon Nanotube and Nafion Fabricated by Screen-Printing Process
JPH0760455B2 (en) Pressure fingerprint input device
JPH11318864A (en) Sensor for recognizing surface shape and its manufacture
JPH1199141A (en) Individual authentication device and its manufacture
JP3371095B2 (en) Surface shape recognition sensor
US4934470A (en) Data input board
JPH0981727A (en) Individual authenticating device
JPH06266829A (en) Finger print input device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040423

LAPS Cancellation because of no payment of annual fees