JPH08217480A - Production of porous preform and reacting vessel for producing porous preform - Google Patents

Production of porous preform and reacting vessel for producing porous preform

Info

Publication number
JPH08217480A
JPH08217480A JP2688395A JP2688395A JPH08217480A JP H08217480 A JPH08217480 A JP H08217480A JP 2688395 A JP2688395 A JP 2688395A JP 2688395 A JP2688395 A JP 2688395A JP H08217480 A JPH08217480 A JP H08217480A
Authority
JP
Japan
Prior art keywords
base material
producing
reaction vessel
porous
clean air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2688395A
Other languages
Japanese (ja)
Other versions
JP3635706B2 (en
Inventor
Yuichi Oga
裕一 大賀
Toshio Danzuka
俊雄 彈塚
Satoshi Tanaka
聡 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2688395A priority Critical patent/JP3635706B2/en
Publication of JPH08217480A publication Critical patent/JPH08217480A/en
Application granted granted Critical
Publication of JP3635706B2 publication Critical patent/JP3635706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01406Deposition reactors therefor

Abstract

PURPOSE: To enable production of high quality preform for optical fiber by preventing dew condensation when not operated, suppressing release of a metal oxide from the substrate surface of a metal oxide and preventing mixing of metal fine particles into porous preform during production. CONSTITUTION: In this method for producing porous preform by carrying out flame hydrolysis of a glass raw material and depositing the resultant glass fine particles onto a starting material, the method comprises retaining in a state in which an inert gas or clean air 2 is fed from the upper part or/and the side part into a reacting vessel 1 when is not operated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】放射光位置モニターは光様多孔質
ガラス母材を製造する反応容器に関するものである。特
に設備停止中に発生する結露防止手段に関する。
BACKGROUND OF THE INVENTION The synchrotron radiation position monitor relates to a reaction vessel for producing a light-like porous glass preform. In particular, it relates to a means for preventing dew condensation that occurs when equipment is stopped.

【0002】[0002]

【従来の技術】ガラス原料を燃焼バーナから噴出させて
火炎加水分解し生成するガラス微粒子を回転する出発材
に堆積させ多孔質母材を製造する際の反応容器として例
えば図4に示すようなものが一般的である。図4におい
て1は反応容器、4は燃焼バーナ(ガラス微粒子合成用
バーナ)、5は排気フード、6は排気管である。また、
多孔質ガラス母材製造中に反応容器内に不活性ガス、清
浄空気を導入し、堆積面に付着しないガラス微粒子を効
率的に排気するとともに、空気中の不純物が製造中の多
孔質ガラス母材に混入して光ファイバの伝送損失を高く
したりファイバの強度を低下させることを防止する目的
で、不活性ガスまたは清浄空気を導入する手段を設けた
反応容器の構成が特開昭60−21540号公報、実開
平1−108504号公報に示されている。一方、実開
昭61−103433号公報には、反応容器を二重壁構
造とし、この二重壁の間に冷却用流体を流すことにより
冷却機能を持たせ、ガラス母材製造中の熱により反応容
器が変形、劣化することを防止する構造が提案されてい
る。
2. Description of the Related Art As a reaction vessel for producing a porous base material by ejecting a glass raw material from a combustion burner and depositing glass fine particles produced by flame hydrolysis to form a rotating starting material, for example, as shown in FIG. Is common. In FIG. 4, 1 is a reaction vessel, 4 is a combustion burner (burner for synthesizing glass fine particles), 5 is an exhaust hood, and 6 is an exhaust pipe. Also,
Porous glass base material Introducing an inert gas and clean air into the reaction vessel during the manufacture of the porous glass material to efficiently exhaust fine glass particles that do not adhere to the deposition surface, and the impurities in the air are the porous glass base material being manufactured. For the purpose of preventing the transmission loss of the optical fiber from being increased and the strength of the optical fiber being lowered by being mixed with the gas, there is provided a reaction container having means for introducing an inert gas or clean air. Japanese Unexamined Patent Application Publication No. 1-108504. On the other hand, in Japanese Utility Model Laid-Open No. 61-103433, a reaction vessel has a double-wall structure, and a cooling fluid is caused to flow between the double-walls so as to have a cooling function. A structure for preventing the reaction container from being deformed or deteriorated has been proposed.

【0003】[0003]

【発明が解決しようとする課題】従来、この種の多孔質
母材製造装置は、ガラス原料の加水分解反応によって、
例えばSiCl4 +2H2 O→SiO2 +4HClのよ
うな反応により生成するHClに対し消耗の少ない耐酸
性金属材料が用いられてきた。母材製造中の反応容器は
数百℃に達するため、問題とはならないが、母材製造を
中止し、3時間以上放置すると基材表面が結露し、金属
水和物を生成する。生成した金属水和物は母材製造時に
再び加熱されるため、金属酸化物となり、基材から例え
ば母材中に混入し、ひいては製造される光フアイバの伝
送特性に影響するという問題があった。本発明はこのよ
うな問題を解決し、高い伝送特性を有する光フアイバ用
多孔質母材を製造できる方法及び多孔質母材製造用反応
容器を提供するものである。
Conventionally, this type of porous base material manufacturing apparatus is characterized by a hydrolysis reaction of a glass raw material.
For example, an acid-resistant metal material that is less consumed with respect to HCl generated by a reaction such as SiCl 4 + 2H 2 O → SiO 2 + 4HCl has been used. Since the reaction vessel during the production of the base material reaches several hundreds of degrees Celsius, it is not a problem, but if the production of the base material is stopped and the base material surface is left for 3 hours or more, the surface of the base material is condensed to form a metal hydrate. Since the produced metal hydrate is heated again during the production of the base material, it becomes a metal oxide and is mixed from the base material into the base material, for example, and there is a problem that it affects the transmission characteristics of the produced optical fiber. . The present invention solves such problems and provides a method for producing a porous preform for optical fibers having high transmission characteristics and a reaction container for producing the porous preform.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
の手段として本発明は、反応容器内においてガラス原料
を燃焼バーナから噴出させて火炎加水分解し生成するガ
ラス微粒子を回転する出発材に堆積させ多孔質母材を製
造する方法において、該反応容器非稼動時においては不
活性ガスまたは清浄空気を該反応容器の上部または/及
び側面部から該反応容器内に供給した状態に保持するこ
とを特徴とする多孔質母材の製造方法を提供する。本発
明における特に好ましい実施態様として、前記不活性ガ
スまたは清浄空気が40℃以上に加熱された状態で供給
されることが挙げられる。また、本発明は前記非稼動時
に該反応容器内の圧力を大気圧以上に保つことを特徴と
する上記多孔質母材の製造方法を提供する。また、本発
明は前記非稼動時に反応容器を40℃以上に保温するこ
とを特徴とする上記多孔質ガラス母材の製造方法を提供
する。さらに本発明は、ガラス原料を燃焼バーナから噴
出させて火炎加水分解し生成するガラス微粒子を回転す
る出発材に堆積させ多孔質母材を製造するための反応容
器であって、該容器内の上部または/及び側面部に不活
性ガスまたは清浄空気の供給手段あるいは排気手段を有
してなる上記反応容器を提供する。本発明の反応容器に
おける特に好ましい実施態様として非稼動時に前記容器
内を40℃以上に保温する手段を有してなることが挙げ
られ、また特に好ましい他の実施態様として該容器が二
重壁構造を有することが挙げられる。本発明の反応容器
の構成材料はNiもしくはNi基合金よりなる耐酸性金
属材料からなるものが特に好ましい。
Means for Solving the Problems As a means for solving the above problems, the present invention is to eject glass raw materials from a combustion burner in a reaction vessel and flame-hydrolyze them to deposit fine glass particles on a rotating starting material. In the method for producing a porous base material, the inert gas or clean air is maintained in a state of being supplied into the reaction container from the upper portion and / or the side surface portion of the reaction container when the reaction container is not operating. Provided is a method for producing a characteristic porous base material. A particularly preferred embodiment of the present invention is that the inert gas or clean air is supplied while being heated to 40 ° C. or higher. The present invention also provides the above-mentioned method for producing a porous base material, characterized in that the pressure inside the reaction vessel is maintained at atmospheric pressure or higher when the apparatus is not operating. The present invention also provides the method for producing the above-mentioned porous glass preform, characterized in that the reaction vessel is kept at a temperature of 40 ° C or higher when it is not in operation. Furthermore, the present invention is a reaction vessel for producing a porous base material by ejecting a glass raw material from a combustion burner to deposit glass fine particles produced by flame hydrolysis to form a rotating starting material, and an upper part of the vessel. Alternatively, and / or the above-mentioned reaction vessel is provided with a means for supplying or exhausting an inert gas or clean air on its side surface. A particularly preferred embodiment of the reaction container of the present invention is that it has a means for keeping the inside of the container at 40 ° C. or higher when it is not in operation. As another particularly preferred embodiment, the container has a double wall structure. To have. The constituent material of the reaction container of the present invention is particularly preferably made of an acid resistant metal material made of Ni or a Ni-based alloy.

【0005】[0005]

【作用】非稼動時の反応容器内を大気中で放置すると、
空気中の水分が室温に放置された金属表面に吸着し、結
露する。水分を含有しない不活性ガス例えば窒素ガス、
Arガス等、または清浄空気を供給することは、金属表
面への吸着を防止する上で有効に働く。特に40℃以上
に加熱した不活性ガスまたは清浄空気を供給すると更に
効果的となる。また、通常反応容器内は、稼動時におい
て堆積しないガラス微粒子を排出するため、−1〜−5
mmH2 O程度の負圧に保たれているが、停止時(非稼
動時)においては反応容器と排気管とを切り離し、反応
容器内を大気圧以上に保つことも有効である。さらに、
もう一つの結露防止策として、反応容器を40℃以上に
保温することは吸着防止に有効であり、耐酸性金属材料
の劣化抑制、金属酸化物の析出防止に効果的である。後
記する本発明の実施例において、反応容器の二重壁構造
を示しているが、基材表面温度が40℃以上に保温でき
る手段、例えばヒーターによる加熱、温風による加熱等
を具備しているものであれば、いずれの方法であっても
結露防止の目的を達成することかできる。また、温度に
ついては、40℃以上に基材表面を保ことが好ましく、
それ以下では結露防止の効果が十分でないので好ましく
ない。
[Operation] If the inside of the reactor during non-operation is left in the atmosphere,
Moisture in the air is adsorbed on the metal surface left at room temperature to cause dew condensation. Inert gas that does not contain water, such as nitrogen gas,
Supplying Ar gas or the like, or clean air works effectively in preventing adsorption to the metal surface. In particular, supplying an inert gas or clean air heated to 40 ° C. or higher is more effective. In addition, in the reaction vessel, glass particles that do not accumulate during operation are usually discharged.
Although a negative pressure of about mmH 2 O is maintained, it is also effective to separate the reaction vessel and the exhaust pipe at the time of stop (non-operating) to keep the inside of the reaction vessel at atmospheric pressure or higher. further,
As another dew condensation prevention measure, keeping the temperature of the reaction vessel at 40 ° C. or higher is effective in preventing adsorption, and is effective in suppressing deterioration of the acid resistant metal material and preventing precipitation of metal oxides. In the examples of the present invention described below, a double wall structure of the reaction vessel is shown, but it is provided with means capable of keeping the substrate surface temperature at 40 ° C. or higher, for example, heating with a heater, heating with hot air, etc. Any method can achieve the purpose of preventing dew condensation. Regarding the temperature, it is preferable to keep the substrate surface at 40 ° C. or higher,
If it is less than that, the effect of preventing dew condensation is not sufficient, which is not preferable.

【0006】[0006]

【実施例】以下、本発明を実施例により具体的に説明す
るが本発明はこれに限定されるところはない。また、図
1ないし図4において共通する符号は同じを意味する。 〔実施例1〕直径φ300mm、高さ1.2mの円筒部
を有するNi基合金からなる反応容器内にて、気体状ガ
ラス原料をガラス燃焼バーナ(微粒子合成用バーナ)か
ら噴出させて火炎加水分解し、これにより生成するガラ
ス微粒子を回転する出発材に堆積させ、多孔質ガラス母
材を製造した。該多孔質母材製造時には図1に示すよう
に、清浄空気発生装置2、配管3、金網7を経由した清
浄空気を反応容器1の上部及び側面から供給するととも
に、母材製造後も連続して供給し続けた。図1において
4はガラス微粒子合成用バーナ、5は排気フード、6は
排気管を表す。製造した多孔質母材が反応容器外に取り
出された後、容器の基材表面に付着したスス(SiO2
微粒子)をブラシなどでできるだけ除去した。停止時に
も反応容器1内に清浄空気を供給したことにより、一日
以上停止しても基材表面の結露をある程度抑制すること
ができた。このときの反応容器内圧力は−2.0〜−
5.0mmH2 Oの負圧であった。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited thereto. Further, common reference numerals in FIGS. 1 to 4 mean the same. [Example 1] In a reaction vessel made of a Ni-based alloy having a cylindrical portion with a diameter of 300 mm and a height of 1.2 m, a gaseous glass raw material was ejected from a glass combustion burner (burner for synthesizing fine particles) to perform flame hydrolysis. Then, the glass fine particles generated thereby were deposited on the rotating starting material to manufacture a porous glass base material. At the time of manufacturing the porous base material, as shown in FIG. 1, clean air is supplied from the upper and side surfaces of the reaction vessel 1 via the clean air generating device 2, the pipe 3, and the wire net 7, and continuously after the base material is manufactured. Continued to supply. In FIG. 1, 4 is a burner for synthesizing glass particles, 5 is an exhaust hood, and 6 is an exhaust pipe. After the manufactured porous base material was taken out of the reaction vessel, the soot (SiO 2
Fine particles) were removed as much as possible with a brush. By supplying clean air into the reaction vessel 1 even when the reactor was stopped, dew condensation on the surface of the substrate could be suppressed to some extent even when the reactor was stopped for more than one day. At this time, the pressure in the reaction vessel is -2.0 to-.
The negative pressure was 5.0 mmH 2 O.

【0007】〔実施例2〕実施例1と同様の方法にて、
多孔質母材の製造及び反応容器上部ならびに側面からの
清浄空気を供給を行った。本実施例では更に反応容器内
の排気フード5を停止時には取り外し、反応容器と排気
管を切り離すことにより、停止時の反応容器内の圧力を
大気圧以上(+0.2〜2.0mmH2 O)に設定し
た。大気圧以上に設定することにより、一日以上停止し
たときの基材表面の結露はほぼ抑えられ、金属酸化物が
基材表面から剥離することもなく、実施例1以上の効果
を得ることができた。
[Embodiment 2] In the same manner as in Embodiment 1,
The porous base material was manufactured, and clean air was supplied from the upper and side surfaces of the reaction vessel. In this embodiment, the exhaust hood 5 in the reaction container is further removed when stopped, and the reaction container and the exhaust pipe are separated, so that the pressure in the reaction container at the time of stop is equal to or higher than atmospheric pressure (+0.2 to 2.0 mmH 2 O). Set to. By setting the atmospheric pressure or higher, dew condensation on the surface of the base material when stopped for a day or more is almost suppressed, and the metal oxide is not separated from the surface of the base material, and the effect of Example 1 or higher can be obtained. did it.

【0008】〔比較例1〕反応容器内への清浄空気の供
給は多孔質母材製造中のみとし、停止中は清浄空気の供
給を停止した。非稼動時の清浄空気の供給を停止したこ
とにより約8時間停止した段階で基材表面に結露が発生
した。この状態で多孔質母材の製造を再スタートしたと
ころ、基材表面から金属酸化物が剥離して反応容器下部
に堆積するとともに、多孔質母材表面にも一部付着が認
められた。
[Comparative Example 1] The supply of clean air into the reaction vessel was performed only during the production of the porous base material, and the supply of clean air was stopped during the stop. Condensation was generated on the surface of the base material at the stage when the supply of clean air during non-operation was stopped for about 8 hours. When the production of the porous base material was restarted in this state, the metal oxide was peeled off from the surface of the base material and deposited on the lower part of the reaction vessel, and some adhesion was also observed on the surface of the porous base material.

【0009】〔実施例3〕図2に示すように、停止時の
反応容器1に清浄空気ではなく加温器8、ヒータ9によ
り80℃に保たれたN2 を供給し、実施例2と同様にし
て多孔質母材の製造を行ったところ、一日以上停止して
も容器の基材表面の結露を防止することができ、金属酸
化物の剥離もなく、高品質な多孔質母材を得ることがで
きた。
Example 3 As shown in FIG. 2, the reactor 2 at the time of stop was supplied with N 2 maintained at 80 ° C. by the warmer 8 and the heater 9 instead of the clean air. When the porous base material was manufactured in the same manner, it was possible to prevent dew condensation on the surface of the base material of the container even if it was stopped for more than one day, and there was no peeling of metal oxides. I was able to get

【0010】〔比較例2〕反応容器の構成材料をNi基
合金からSUSに代えて、実施例1と同様の方法を実施
した。結露はある程度抑制できたが、一部に錆が発生
し、十分な効果を得ることができなかった。この状態で
再び多孔質母材を製造し、得られたフアイバの特性を評
価したところ、Ni基合金性反応容器で製造した多孔質
母材に比べて、波長1.3μmでの伝送損失が0.4d
B/kmと0.05dB/km高くなっていた。
Comparative Example 2 The same method as in Example 1 was carried out by changing the constituent material of the reaction vessel from Ni-based alloy to SUS. Condensation could be suppressed to some extent, but rust was partially generated, and a sufficient effect could not be obtained. When the porous base material was manufactured again in this state and the characteristics of the obtained fiber were evaluated, the transmission loss at the wavelength of 1.3 μm was 0 compared with the porous base material manufactured by the Ni-based alloy reaction vessel. .4d
B / km and 0.05 dB / km were higher.

【0011】〔実施例4〕図3に示すように、Ni基合
金からなる反応容器を二重壁構造反応容器10とし、こ
の二重壁構造の間に60℃に保たれた温水11を流すこ
とにより、容器基材表面を保温して一日以上停止しても
結露を防止することができた。
[Embodiment 4] As shown in FIG. 3, a reaction vessel made of a Ni-based alloy is used as a reaction vessel having a double-wall structure, and hot water 11 kept at 60 ° C. is flown between the double-wall structure. As a result, even if the surface of the container substrate was kept warm and stopped for more than one day, dew condensation could be prevented.

【0012】[0012]

【発明の効果】以上説明したように、本発明の方法によ
れば、多孔質母材製造用反応容器の非稼動時の結露を防
止できるので、金属酸化物の基材表面からの剥離を抑制
でき、製造中の多孔質母材への金属微粒子の混入を防止
して、高品質な光フアイバ用母材を製造が可能となる。
As described above, according to the method of the present invention, it is possible to prevent dew condensation when the reaction vessel for producing a porous base material is not in operation, so that the peeling of the metal oxide from the substrate surface is suppressed. Therefore, it is possible to prevent the fine metal particles from being mixed into the porous base material during manufacturing, and to manufacture a high-quality optical fiber base material.

【図面の簡単な説明】[Brief description of drawings]

【図1】は本発明の第1の実施態様を示す概略説明図で
ある。
FIG. 1 is a schematic explanatory view showing a first embodiment of the present invention.

【図2】は本発明の第2の実施態様を示す概略説明図で
ある。
FIG. 2 is a schematic explanatory view showing a second embodiment of the present invention.

【図3】本発明の第2の実施態様を示す概略説明図であ
る。
FIG. 3 is a schematic explanatory view showing a second embodiment of the present invention.

【図4】は従来の反応容器を示す概略説明図である。FIG. 4 is a schematic explanatory view showing a conventional reaction container.

【符号の説明】[Explanation of symbols]

1 反応容器、 2 清浄空気発生装
置、 3 配管、4 ガラス微粒子合成用バーナ、 5
排気フード、 6 排気管、7 金網、
8 加温器、 9 ヒー
タ、10 二重壁構造反応容器、 11 温水。
1 reaction vessel, 2 clean air generator, 3 piping, 4 glass fine particle synthesizing burner, 5
Exhaust hood, 6 exhaust pipe, 7 wire mesh,
8 warmer, 9 heater, 10 double wall structure reaction vessel, 11 hot water.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 反応容器内においてガラス原料を燃焼バ
ーナから噴出させて火炎加水分解し生成するガラス微粒
子を回転する出発材に堆積させ多孔質母材を製造する方
法において、該反応容器非稼動時においては不活性ガス
または清浄空気を該反応容器の上部または/及び側面部
から該反応容器内に供給した状態に保持することを特徴
とする多孔質母材の製造方法。
1. A method for producing a porous base material by ejecting a glass raw material from a combustion burner in a reaction vessel to deposit glass fine particles produced by flame hydrolysis to produce a porous starting material, wherein the reaction vessel is not in operation. In the above method, the method for producing a porous base material is characterized in that an inert gas or clean air is maintained in a state of being supplied into the reaction container from the upper portion and / or the side surface portion of the reaction container.
【請求項2】 前記不活性ガスまたは清浄空気が40℃
以上に加熱された状態で供給されることを特徴とする請
求項1記載の多孔質母材の製造方法。
2. The inert gas or clean air is 40 ° C.
The method for producing a porous base material according to claim 1, wherein the porous base material is supplied while being heated as described above.
【請求項3】 前記非稼動時に該反応容器内の圧力を大
気圧以上に保つことを特徴とする請求項1または請求項
2に記載の多孔質母材の製造方法。
3. The method for producing a porous base material according to claim 1, wherein the pressure inside the reaction vessel is maintained at atmospheric pressure or higher when the apparatus is not in operation.
【請求項4】 前記非稼動時に反応容器を40℃以上に
保温することを特徴とする請求項1ないし請求項3のい
ずれかに記載の多孔質ガラス母材の製造方法。
4. The method for producing a porous glass preform according to claim 1, wherein the reaction container is kept at a temperature of 40 ° C. or higher during the non-operation.
【請求項5】 ガラス原料を燃焼バーナから噴出させて
火炎加水分解し生成するガラス微粒子を回転する出発材
に堆積させ多孔質母材を製造するための反応容器であっ
て、該容器内の上部または/及び側面部に不活性ガスま
たは清浄空気の供給手段あるいは排気手段を有してなる
上記反応容器。
5. A reaction vessel for producing a porous preform by ejecting a glass raw material from a combustion burner and depositing glass fine particles produced by flame hydrolysis to produce a porous starting material, the upper part of the vessel. Alternatively, and / or the above-mentioned reaction vessel having a means for supplying an inert gas or clean air or a means for exhausting the side surface.
【請求項6】 非稼動時に前記容器内を40℃以上に保
温する手段を有してなる請求項5記載の反応容器。
6. The reaction container according to claim 5, further comprising means for keeping the inside of the container at 40 ° C. or higher when it is not in operation.
【請求項7】 前記容器が二重壁構造を有することを特
徴とする請求項5または請求項6記載の反応容器。
7. The reaction container according to claim 5, wherein the container has a double wall structure.
【請求項8】 構成材料がNiもしくはNi基合金より
なる耐酸性金属材料からなることを特徴とする請求項5
ないし請求項7のいずれかに記載の反応容器。
8. The acid-resistant metal material made of Ni or a Ni-based alloy as a constituent material.
The reaction container according to claim 7.
JP2688395A 1995-02-15 1995-02-15 Method for producing porous base material and reaction container for producing porous base material Expired - Fee Related JP3635706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2688395A JP3635706B2 (en) 1995-02-15 1995-02-15 Method for producing porous base material and reaction container for producing porous base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2688395A JP3635706B2 (en) 1995-02-15 1995-02-15 Method for producing porous base material and reaction container for producing porous base material

Publications (2)

Publication Number Publication Date
JPH08217480A true JPH08217480A (en) 1996-08-27
JP3635706B2 JP3635706B2 (en) 2005-04-06

Family

ID=12205685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2688395A Expired - Fee Related JP3635706B2 (en) 1995-02-15 1995-02-15 Method for producing porous base material and reaction container for producing porous base material

Country Status (1)

Country Link
JP (1) JP3635706B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102724A1 (en) * 2001-06-15 2002-12-27 Sumitomo Electric Industries, Ltd. Method for producing glass particle deposited body
CN102674681A (en) * 2011-03-15 2012-09-19 住友电气工业株式会社 Method for manufacturing glass particle stacked body
KR101311611B1 (en) * 2006-11-22 2013-09-26 신에쓰 가가꾸 고교 가부시끼가이샤 Manufacturing apparatus of porous glass preform
US10308541B2 (en) 2014-11-13 2019-06-04 Gerresheimer Glas Gmbh Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102724A1 (en) * 2001-06-15 2002-12-27 Sumitomo Electric Industries, Ltd. Method for producing glass particle deposited body
KR101311611B1 (en) * 2006-11-22 2013-09-26 신에쓰 가가꾸 고교 가부시끼가이샤 Manufacturing apparatus of porous glass preform
CN102674681A (en) * 2011-03-15 2012-09-19 住友电气工业株式会社 Method for manufacturing glass particle stacked body
US10308541B2 (en) 2014-11-13 2019-06-04 Gerresheimer Glas Gmbh Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter

Also Published As

Publication number Publication date
JP3635706B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
EP1473606A1 (en) Safety network system, safety slave, and communication method
TW200307652A (en) Quartz glass thermal sprayed parts and method for producing the same
US4370288A (en) Process for forming self-supporting semiconductor film
US20040055339A1 (en) Method for producing glass-particle deposited body
JPH08217480A (en) Production of porous preform and reacting vessel for producing porous preform
KR100538668B1 (en) Method of manufacturing a porous preform of glass for an optical fiber
JPH0520367B2 (en)
JPH06235829A (en) Method and device for producing glass preform for optical fiber
JP4389849B2 (en) Method for producing glass particulate deposit
JP2991830B2 (en) Chemical vapor deposition apparatus and chemical vapor deposition method using the same
KR101231479B1 (en) Process and apparatus for producing porous quartz glass base
JP2004035376A (en) Method and apparatus for manufacturing preform for optical fiber
JPH1072231A (en) Apparatus for producing optical fiber preform and production thereof
JPH11349345A (en) Production of porous preform
JPS62162646A (en) Production of glass fine particle deposit
JP3295444B2 (en) Method for producing porous silica preform
JP2003286033A (en) Method and apparatus for manufacturing glass particulate deposit
JP3785120B2 (en) Method for producing silica porous matrix
JP2007106647A (en) Method for manufacturing deposited body of glass fine particle
WO2003064345A1 (en) Method for producing glass plate with thin film and glass plate
JPH11171669A (en) Production of boron carbide film
JPH08120276A (en) Method for repairing coke oven
JP2002087846A (en) Method of manufacturing glass plate with thin film, and glass plate
JPH02153835A (en) Production of preform for optical fiber
JPS623035A (en) Production of porous quartz glass preform

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees