JPH08215576A - Composite superfine particle, its production and catalyst for synthesis and refining of methanol using the same - Google Patents

Composite superfine particle, its production and catalyst for synthesis and refining of methanol using the same

Info

Publication number
JPH08215576A
JPH08215576A JP7050322A JP5032295A JPH08215576A JP H08215576 A JPH08215576 A JP H08215576A JP 7050322 A JP7050322 A JP 7050322A JP 5032295 A JP5032295 A JP 5032295A JP H08215576 A JPH08215576 A JP H08215576A
Authority
JP
Japan
Prior art keywords
ultrafine particles
oxide
catalyst
composite
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7050322A
Other languages
Japanese (ja)
Inventor
Masashi Yamaguchi
正志 山口
Masayuki Kobayashi
正幸 小林
Hideo Fukui
英夫 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp, Yoshida Kogyo KK filed Critical YKK Corp
Priority to JP7050322A priority Critical patent/JPH08215576A/en
Publication of JPH08215576A publication Critical patent/JPH08215576A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE: To provide composite superfine particles which are very minute, has high catalytic activity as a catalyst for synthesis and refining of methanol, and can maintain high catalytic activity and selectivity even at high temp. CONSTITUTION: The composite superfine particles are produced by heating and melting the source material comprising aluminum and M<1> element (M<1> is at least one element selected from Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Pt and Au) in an inert gas atmosphere containing oxygen to allow the evaporated material react with the oxygen so that first superfine particles comprising Al and/or Al oxide and second superfine particles comprising M<1> element or/and oxide are joined. The obtd. superfine particles contain a large amt. of composite superfine particles each having such a structure that minute superfine particles S of M<1> metal or M<1> oxide having catalytic activity is carried on a large-size superfine particle L comprising Al or γ-Al2 O3 . The composite superfine particle is useful as a catalyst for synthesis and refining of methanol having high activity and high selectivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物と酸化物、又は
/及び酸化物と金属が非常に微細に複合した複合超微粒
子及びその製造方法に関し、さらに詳しくは、触媒特性
を有する金属又は/及びその酸化物の超微粒子とアルミ
ニウム又は/及び酸化アルミニウムの超微粒子とがnm
レベルで複合した超微粒子及びその製造方法に関する。
本発明はまた、このような複合超微粒子のメタノール合
成・改質用触媒としての用途に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite ultrafine particle in which an oxide and an oxide, or / and an oxide and a metal are very finely combined, and a method for producing the same, more specifically, a metal or a metal having a catalytic property. / And / or its oxide ultrafine particles and aluminum or / and aluminum oxide ultrafine particles are nm
TECHNICAL FIELD The present invention relates to ultrafine particles compounded at a level and a method for producing the same.
The present invention also relates to the use of such composite ultrafine particles as a catalyst for methanol synthesis / reforming.

【0002】[0002]

【従来の技術】メタノールは、触媒及び水蒸気の存在下
で、下記反応式(1)に示すように、比較的容易に水素
含有量の高いガスに改質される。 CH3 OH + H2 O → 3H2 + CO2 … (1) 得られる改質ガスは、水素を分離して燃料電池発電用燃
料等のエネルギー源として利用される他、化学工業用の
原料としても利用される。一方、上記メタノールの水蒸
気改質反応と逆の反応、すなわち下記反応式(2)で示
されるように、二酸化炭素と水素とによりメタノールを
得るメタノール合成反応(もしくは二酸化炭素固定化反
応)は、二酸化炭素の再資源化や地球温暖化防止の有力
な手段として注目されている。 3H2 + CO2 → CH3 OH + H2 O … (2) すなわち、近年の経済活動の活発化に伴い、CO2 排出
量は年と共に増加の傾向にあり、このCO2 の蓄積によ
る地球温暖化が最近深刻化し、CO2 排出量の削減が地
球的規模で急務となっている。その解決策として種々の
CO2 削減法が検討されているが、中でも有力な方法と
してCO2 とH2 とを反応させてメタノールなどのアル
コール原料に変換し、再資源化する方法がある。この方
法により得られるメタノールは、エネルギー源として利
用することもできるが、化学品合成の際の基幹原料でも
あるため、この方法が確立できればCO2 排出量の削減
が可能となるだけでなく、石油資源の節約にも貢献でき
る。
Methanol is relatively easily reformed into a gas having a high hydrogen content in the presence of a catalyst and steam, as shown in the following reaction formula (1). CH 3 OH + H 2 O → 3H 2 + CO 2 (1) The obtained reformed gas is used as an energy source such as a fuel for fuel cell power generation by separating hydrogen, and also as a raw material for the chemical industry. Is also used. On the other hand, the reverse reaction of the steam reforming reaction of methanol, that is, the methanol synthesis reaction (or carbon dioxide immobilization reaction) of obtaining methanol from carbon dioxide and hydrogen as shown in the following reaction formula (2), It is attracting attention as a powerful means of carbon recycling and global warming prevention. 3H 2 + CO 2 → CH 3 OH + H 2 O (2) That is, CO 2 emissions tend to increase with the increase in economic activity in recent years, and global warming due to the accumulation of CO 2 In recent years, the reduction of CO 2 emissions has become an urgent task on a global scale. Various CO 2 reduction methods have been studied as a solution to this problem. Among them, the most effective method is a method of reacting CO 2 and H 2 to convert it into an alcohol raw material such as methanol and recycling it. Methanol obtained by this method can be used as an energy source, but since it is also a basic raw material when synthesizing chemicals, if this method can be established, not only CO 2 emission can be reduced, but also petroleum It can also contribute to resource saving.

【0003】前記メタノールの水蒸気改質反応やその逆
反応であるメタノール合成反応の触媒としては、酸化物
系触媒(特開平6−178938号、特開平4−122
450号、特公平5−67336号等参照)、金属系触
媒(特開平3−258738号、特開昭60−9493
1号等参照)及び合金系触媒が知られており、これらの
中では酸化物系触媒の性能が良いと考えられている。酸
化物の粉末は、一般に金属塩を出発材料とした共沈法を
利用した液相法により製造されている。しかしながら、
液相中で製造するために、不純物が粉末中に残留してし
まい、高純度な粉末が得られ難いという欠点がある。ま
た、この液相法により製造した酸化物粉末を触媒材料と
して利用する場合、得られる酸化物は触媒前駆体である
ため、使用に先立って還元処理によって触媒の活性化を
施す必要があると共に、不純物の影響により充分な触媒
活性が得られ難いという問題もある。
As catalysts for the methanol synthesis reaction which is the steam reforming reaction of methanol and its reverse reaction, oxide type catalysts (JP-A-6-178938 and JP-A-4-122) are used.
450, Japanese Examined Patent Publication No. 5-67336, etc.), metal catalysts (JP-A-3-258738, JP-A-60-9493).
No. 1, etc.) and alloy-based catalysts are known, and among them, the performance of oxide-based catalysts is considered to be good. The oxide powder is generally produced by a liquid phase method using a metal salt as a starting material and a coprecipitation method. However,
Since it is produced in the liquid phase, impurities remain in the powder, which makes it difficult to obtain a highly pure powder. Further, when the oxide powder produced by this liquid phase method is used as a catalyst material, the obtained oxide is a catalyst precursor, so it is necessary to activate the catalyst by a reduction treatment prior to use, There is also a problem that it is difficult to obtain sufficient catalytic activity due to the influence of impurities.

【0004】メタノールの水蒸気改質反応触媒として
は、一般にCuO−ZnO−Al23 系触媒が使用さ
れている。しかしながら、200℃の低温では触媒活性
が低く、十分な触媒性能が得られていない。また、40
0℃の高温においては触媒活性の低下が生じ、その上選
択率の急激な低下が見られる。このほかのメタノール水
蒸気改質用触媒としては、液相法により得られたCu−
Ni−Al−O系粉末が提案されている(特公平5−6
7336号に記載のメタノール改質用触媒)。しかしな
がら、この粉末は、低温での触媒活性が低いと共に、す
べての温度域にわたって選択率が30〜70%程度と非
常に低いため適していない。一方、メタノールの水蒸気
改質反応の逆反応であるCO2 とH2 によりメタノール
を得る反応においては、前記式(1)及び(2)から明
らかなようにメタノール水蒸気改質と同じ平衡反応のた
め、同じ触媒であるCuO−ZnO−Al23 系触媒
が有望であると考えられている。しかしながら、この触
媒を用いる反応においては、触媒活性、選択性共に低
く、システムの改良やリサイクル法といった未反応ガス
を何回も触媒中に通過させることにより全体としてのメ
タノール収率を上昇させている。但し、このリサイクル
法では大きな電力を必要とするため、CO2 を減少させ
る方法にはなりにくいという問題も指摘されている。こ
れらの理由により、メタノール水蒸気改質反応やその逆
反応である合成反応においては、より高活性でなおかつ
高選択性を持つ高性能な触媒材料が期待されている。
As a steam reforming reaction catalyst for methanol, a CuO--ZnO--Al 2 O 3 -based catalyst is generally used. However, at a low temperature of 200 ° C., the catalytic activity is low and sufficient catalytic performance is not obtained. Also, 40
At a high temperature of 0 ° C., the catalytic activity is lowered, and further the selectivity is rapidly lowered. As another catalyst for reforming methanol steam, Cu-obtained by a liquid phase method is used.
Ni-Al-O powder has been proposed (Japanese Patent Publication No. 5-6).
7336 catalyst for methanol reforming). However, this powder is not suitable because it has a low catalytic activity at low temperatures and has a very low selectivity of about 30 to 70% over the entire temperature range. On the other hand, in the reaction for obtaining methanol from CO 2 and H 2 which is the reverse reaction of the steam reforming reaction of methanol, the same equilibrium reaction as in the methanol steam reforming is obtained as is clear from the above formulas (1) and (2). The same catalyst, CuO—ZnO—Al 2 O 3 type catalyst, is considered promising. However, in the reaction using this catalyst, both the catalytic activity and the selectivity are low, and the overall methanol yield is increased by passing an unreacted gas through the catalyst many times, such as by improving the system and recycling method. . However, it has been pointed out that this recycling method requires a large amount of electric power, and thus is not a method for reducing CO 2 . For these reasons, a high-performance catalytic material having higher activity and higher selectivity is expected in the methanol steam reforming reaction and the synthetic reaction which is the reverse reaction thereof.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明の目的
は、高純度で極めて微細であり、メタノールの合成・改
質用触媒等として有利に用いることができる複合超微粒
子を比較的簡単な方法で作製することにある。さらに本
発明の目的は、主としてAl又は/及びAl酸化物から
なる超微粒子の上に、触媒特性を有する金属又は/及び
その酸化物のさらに微細な超微粒子が接合したnmオー
ダーの複合超微粒子及びその製造方法を提供することに
ある。本発明の他の目的は、従来から知られている共沈
法などの液相法で得られるものよりも、低温域及び高温
域のいずれにおいても触媒活性や選択性が高いと共に、
耐久性に優れたメタノールの合成・改質用触媒を提供す
ることにある。
Therefore, an object of the present invention is to provide a composite ultrafine particle which is highly pure and extremely fine and which can be advantageously used as a catalyst for synthesizing and reforming methanol, etc. It is to make in. A further object of the present invention is to provide nanometer-order composite ultrafine particles in which fine ultrafine particles of a metal having a catalytic property or / and its oxide are bonded onto ultrafine particles of Al or / and Al oxide. It is to provide the manufacturing method. Another object of the present invention is higher in catalytic activity and selectivity in both low temperature range and high temperature range than those obtained by a liquid phase method such as a conventionally known coprecipitation method,
It is to provide a catalyst for synthesizing and reforming methanol having excellent durability.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に、本発明の一つの側面によれば、Al又は/及びAl
の酸化物からなる第1超微粒子と、M1 元素(但し、M
1 はFe、Co、Ni、Cu、Ru、Rh、Pd、A
g、Pt及びAuからなる群から選ばれた少なくとも1
種の元素である。)よりなる金属又は/及び酸化物から
なる第2超微粒子とが接合されてなることを特徴とする
複合超微粒子が提供される。上記第1超微粒子のAl又
は/及びAlの酸化物の一部は、M2 元素(但し、M2
はTi、Zr、Hf、V、Cr、Mn、Zn、Ga、M
g、Si、Ca、Y、La及びCeからなる群から選ば
れた少なくとも1種の元素である。)の金属又は/及び
酸化物で置換されてもよい。このような複合超微粒子
は、メタノールの合成反応及び水蒸気改質反応の触媒と
して極めて有利に用いることができる。
In order to achieve the above object, according to one aspect of the present invention, Al or / and Al
Ultrafine particles of the oxide of M 1 and M 1 element (provided that M 1
1 is Fe, Co, Ni, Cu, Ru, Rh, Pd, A
at least 1 selected from the group consisting of g, Pt and Au
It is a seed element. The present invention provides composite ultrafine particles, characterized in that they are joined to the second ultrafine particles made of a metal or / and an oxide. Part of the Al or / and Al oxide of the first ultrafine particles is an element of M 2 element (provided that M 2
Is Ti, Zr, Hf, V, Cr, Mn, Zn, Ga, M
It is at least one element selected from the group consisting of g, Si, Ca, Y, La and Ce. It may be replaced with the metal or / and the oxide). Such composite ultrafine particles can be extremely advantageously used as a catalyst for a methanol synthesis reaction and a steam reforming reaction.

【0007】本発明の別の側面によれば、上記のような
複合超微粒子を提供するために、アルミニウムとM1
素(但し、M1 はFe、Co、Ni、Cu、Ru、R
h、Pd、Ag、Pt及びAuからなる群から選ばれた
少なくとも1種の元素である。)とからなる原材料を、
酸素を含む不活性ガス雰囲気中で加熱溶解し、蒸発した
材料を雰囲気中の酸素と反応させ、Al又は/及びAl
の酸化物からなる第1超微粒子と、M1 元素よりなる金
属又は/及び酸化物からなる第2超微粒子とが接合され
てなる複合超微粒子を生成させることを特徴とする複合
超微粒子の製造方法が提供される。好適な態様において
は、アルミニウムが5〜95原子%、M1 元素が5〜9
5原子%の組成の原材料を用い、Ar、He又はN2
らなる不活性ガス50〜99%、酸素ガス1〜50%の
混合ガスからなる雰囲気中でアーク溶解する。また、前
記Alの50原子%以下をM2 元素(但し、M2 はT
i、Zr、Hf、V、Cr、Mn、Zn、Ga、Mg、
Si、Ca、Y、La及びCeからなる群から選ばれた
少なくとも1種の元素である。)で置換してなる原材料
を用いることもできる。
According to another aspect of the present invention, in order to provide the composite ultrafine particles as described above, aluminum and M 1 element (wherein M 1 is Fe, Co, Ni, Cu, Ru, R).
It is at least one element selected from the group consisting of h, Pd, Ag, Pt, and Au. ) The raw material consisting of
By heating and melting in an inert gas atmosphere containing oxygen, the evaporated material is reacted with oxygen in the atmosphere, and Al or / and Al
Of composite ultrafine particles, characterized in that the composite ultrafine particles are produced by bonding the first ultrafine particles composed of the oxide of 1) and the second ultrafine particles composed of the metal or / and the oxide of the M 1 element. A method is provided. In a preferred embodiment, aluminum is 5 to 95 atom%, and M 1 element is 5 to 9 atom%.
Using a raw material having a composition of 5 atomic%, arc melting is performed in an atmosphere of a mixed gas of 50 to 99% of an inert gas of Ar, He or N 2 and 1 to 50% of an oxygen gas. In addition, 50 atomic% or less of Al is an M 2 element (provided that M 2 is T
i, Zr, Hf, V, Cr, Mn, Zn, Ga, Mg,
It is at least one element selected from the group consisting of Si, Ca, Y, La, and Ce. It is also possible to use a raw material obtained by substituting a).

【0008】[0008]

【発明の作用及び態様】本発明者らは、前記目的を達成
すべく鋭意研究の結果、アーク等により合金を溶融し超
微粒子を製造する際、反応ガスとして酸素を含む雰囲気
を用いると共に、アーク等により溶解する母合金とし
て、アルミニウムと触媒特性を有するM1金属(M1
Fe、Co、Ni、Cu、Ru、Rh、Pd、Ag、P
t又はAu)を含む合金を用いると、Al又は/及びA
l酸化物の超微粒子と触媒特性を有する金属(M1 )又
は/及びその酸化物(M1 −O)とが接合したnmレベ
ルの微細な複合超微粒子が作製され、このような形状や
大きさを有することによって、得られる複合超微粒子は
メタノールの合成反応や水蒸気改質反応の触媒として極
めて高い触媒活性を示すことを見い出した。
The present inventors have conducted extensive studies to achieve the above object, and as a result, when an alloy is melted by an arc or the like to produce ultrafine particles, an atmosphere containing oxygen is used as a reaction gas, and the arc is used. As a master alloy that dissolves due to, for example, M 1 metal (M 1 =
Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, P
When using an alloy containing t or Au), Al or / and A
1 nm nano-scale fine composite ultrafine particles in which ultrafine particles of oxide and a metal (M 1 ) having catalytic properties or / and its oxide (M 1 -O) are bonded are produced, and such shape and size are obtained. It was found that the obtained composite ultrafine particles exhibit extremely high catalytic activity as a catalyst for the synthesis reaction of methanol and the steam reforming reaction, by virtue of having a certain degree.

【0009】一般に触媒反応は触媒表面で進行するた
め、触媒粒子を高純度かつ微細にすれば、単位質量当た
りの活性点が著しく増加し、高活性が期待できる。ま
た、触媒粒子を超微粒子化し、相性の良い酸化物担体と
組み合わせて触媒粒子と酸化物担体間の相互作用をコン
トロールすれば、さらに高活性な触媒になるものと考え
られる。本発明の方法により作製される超微粒子は、図
1に示すように、Alもしくはγ−Al23 からなる
大きな粒子Lと、その上に付着した触媒活性を示すM1
金属もしくはM1 酸化物からなる小さな粒子Sとから構
成される複合超微粒子を多量に含んでいる。例えば、原
材料としてAl−Cu合金を用いた場合、生成相はA
l、γ−Al23 の少なくとも1種類と、Cu、Cu
2 O、CuOの少なくとも1種類から成るが、Al又は
γ−Al23 からなる大きな粒子Lとそれに付着した
Cu、Cu2 O、又はCuOからなる小さな粒子とから
なる複合超微粒子を多量に含んだ超微粒子が生成する。
但し、全ての超微粒子がこのような状態に複合している
わけではない。このように、本発明により得られる超微
粒子は、触媒活性を示すM1 金属又はM1 酸化物からな
るより微細な超微粒子がより大きなAl又はγ−Al2
3 超微粒子に担持された構造の複合超微粒子を多量に
含んでおり、また、従来の液相法により作製された酸化
物粒子とは異なり、粒子が極めて微細であり、かつ不純
物を含まず、純度が極めて高い。従って、本発明の方法
により得られる超微粒子は、触媒活性が高く、メタノー
ルの合成反応及び改質反応の触媒として有利に用いるこ
とができる。
Since the catalytic reaction generally proceeds on the surface of the catalyst, if the catalyst particles are made highly pure and fine, the number of active sites per unit mass is remarkably increased, and high activity can be expected. Further, it is considered that if the catalyst particles are made into ultrafine particles and are combined with an oxide carrier having a good compatibility to control the interaction between the catalyst particles and the oxide carrier, a catalyst with higher activity will be obtained. The ultrafine particles produced by the method of the present invention are, as shown in FIG. 1, large particles L made of Al or γ-Al 2 O 3 and M 1 having catalytic activity attached thereon.
It contains a large amount of composite ultrafine particles composed of small particles S made of metal or M 1 oxide. For example, when an Al-Cu alloy is used as the raw material, the generated phase is A
l, at least one type of γ-Al 2 O 3 and Cu, Cu
2 O, CuO, at least one kind, but a large amount of composite ultrafine particles composed of large particles L made of Al or γ-Al 2 O 3 and small particles made of Cu, Cu 2 O, or CuO attached to them. The ultrafine particles contained are generated.
However, not all ultrafine particles are compounded in such a state. As described above, in the ultrafine particles obtained by the present invention, finer ultrafine particles made of M 1 metal or M 1 oxide exhibiting catalytic activity are larger than Al or γ-Al 2
It contains a large amount of composite ultrafine particles of a structure supported on O 3 ultrafine particles, and unlike oxide particles produced by a conventional liquid phase method, the particles are extremely fine and contain no impurities. , The purity is extremely high. Therefore, the ultrafine particles obtained by the method of the present invention have high catalytic activity and can be advantageously used as a catalyst for methanol synthesis reaction and reforming reaction.

【0010】本発明の方法によれば、前記触媒粒子を構
成する複合超微粒子は、Al又はγ−Al23 からな
る大きな粒子Lのサイズが5〜500nmの範囲に分布
したものが得られ、特に10〜100nmの範囲内に分
布している超微粒子が多い。一方、上記大きな粒子に担
持されるM1 金属又はその酸化物からなる小さな粒子S
のサイズの分布範囲は0.5〜200nmであるが、特
に1〜50nmの範囲内のものが多い。触媒材料として
の特性を考慮した場合、触媒活性を示すM1 金属又はそ
の酸化物の粒径は、30nm以下が好ましいと考えられ
る。さらにM1 金属又はその酸化物の粒径が10nm以
下になると触媒効果が飛躍的に向上し、特に5nm以下
の粒径が好ましい。
According to the method of the present invention, the composite ultrafine particles constituting the catalyst particles are obtained in which the large particles L made of Al or γ-Al 2 O 3 are distributed in the size range of 5 to 500 nm. In particular, there are many ultrafine particles distributed in the range of 10 to 100 nm. On the other hand, small particles S made of M 1 metal or its oxide supported on the large particles S
The size distribution range is 0.5 to 200 nm, but in most cases, the range is 1 to 50 nm. Considering the characteristics as a catalyst material, it is considered that the particle size of M 1 metal or its oxide exhibiting catalytic activity is preferably 30 nm or less. Further, when the particle size of the M 1 metal or its oxide is 10 nm or less, the catalytic effect is remarkably improved, and the particle size of 5 nm or less is particularly preferable.

【0011】使用する原材料の組成としては、アルミニ
ウム5〜95原子%、M1 元素5〜95原子%の範囲内
が好ましく、この範囲内の原材料を用いることにより、
前記したような構造を有する触媒活性の高い複合超微粒
子を含む超微粒子を作製できる。原材料中のアルミニウ
ムの量が5原子%未満の場合、作製される超微粒子に含
有されるM1 金属又はその酸化物の割合が多くなり過
ぎ、超微粒子が図1に示すような触媒材料としての理想
形態の複合超微粒子になり難いため、触媒活性が低下す
る。逆に、アルミニウムの量が95原子%を超えた場
合、触媒活性を示すM1 金属又はその酸化物の割合が少
なくなるため、全体としての触媒活性が低下する。な
お、原材料中のM1 元素の割合が多くなりすぎると、M
1 金属又はその酸化物の粒成長が起こり易くなり、粒子
の大きさが前記した状態から逆転し、M1 金属又はその
酸化物の粒子のサイズがそれに接合しているAl又はγ
−Al23の粒子よりも大きくなった複合超微粒子が
生成するようになる。従って、図1に示すように、Al
又はγ−Al23 からなる大きな粒子Lにより触媒活
性を示すM1 金属又はその酸化物からなる小さな粒子S
が担持されている理想的な触媒材料の形態の複合超微粒
子を多量に作製するためには、原材料の組成範囲は40
〜95at%Al−5〜60at%M1 がより好まし
い。
The composition of the raw material used is preferably in the range of 5 to 95 atom% of aluminum and 5 to 95 atom% of M 1 element. By using the raw material in this range,
Ultrafine particles containing the composite ultrafine particles having the above-mentioned structure and high catalytic activity can be produced. When the amount of aluminum in the raw material is less than 5 atomic%, the ratio of M 1 metal or its oxide contained in the produced ultrafine particles becomes too large, and the ultrafine particles are used as a catalyst material as shown in FIG. Since it is difficult to form the composite ultrafine particles in an ideal form, the catalytic activity decreases. On the other hand, when the amount of aluminum exceeds 95 atomic%, the ratio of M 1 metal or its oxide exhibiting catalytic activity decreases, and the overall catalytic activity decreases. In addition, if the ratio of M 1 element in the raw material becomes too large, M
The grain growth of the 1 metal or its oxide is likely to occur, the particle size is reversed from the above state, and the particle size of the M 1 metal or its oxide is bonded to Al or γ.
-Al 2 O 3 composite ultrafine particles becomes larger than the particle will be generated. Therefore, as shown in FIG.
Or, small particles S made of M 1 metal or its oxide showing catalytic activity by large particles L made of γ-Al 2 O 3.
In order to produce a large amount of composite ultrafine particles in the form of an ideal catalyst material in which is supported, the composition range of the raw material is 40
˜95 at% Al-5 to 60 at% M 1 is more preferable.

【0012】本発明の方法においては、前記Alの一
部、好ましくは50原子%以下をM2元素(但し、M2
はTi、Zr、Hf、V、Cr、Mn、Zn、Ga、M
g、Si、Ca、Y、La及びCeからなる群から選ば
れた少なくとも1種の元素である。)で置換してなる原
材料を用いることもできる。これらのM2 元素は、Al
と共に複合酸化物や混合酸化物(以下、Al−M2酸化
物と総称する)を作り、これらの複合酸化物や混合酸化
物がM1 元素からなる金属や酸化物の超微粒子を担持し
て触媒粒子を構成するのに寄与する。このように、Al
の一部をM2 元素で置換することにより、Al−M2
化物とM1 金属又はその酸化物との相互作用が強くな
り、触媒活性が向上する。しかしながら、触媒活性を示
すM1 金属又はその酸化物の超微粒子がAl−M2 酸化
物超微粒子と比較して大きい場合、M1 金属又はその酸
化物が粒成長を起こし易くなり、その結果、触媒活性が
低下してしまう。そのため、Al−M2 酸化物超微粒子
の粒径はM1 金属又はその酸化物の超微粒子の粒径より
も大きい方が良く、好ましくは2倍以上の粒径を持つ超
微粒子であることが望ましい。このように、比較的大き
な粒径のAl−M2 酸化物超微粒子により、より微細な
粒径のM1 金属又はその酸化物の超微粒子が担持された
理想的な形態の触媒粒子とするためには、原材料中のA
lの50原子%以下、より好ましくは5〜50原子%を
2 元素で置換することが望ましい。
In the method of the present invention, a part of the Al, preferably 50 atomic% or less, is M 2 element (provided that M 2
Is Ti, Zr, Hf, V, Cr, Mn, Zn, Ga, M
It is at least one element selected from the group consisting of g, Si, Ca, Y, La and Ce. It is also possible to use a raw material obtained by substituting a). These M 2 elements are Al
A complex oxide or mixed oxide (hereinafter collectively referred to as an Al-M 2 oxide) is formed together with the complex oxide or mixed oxide to carry ultrafine particles of a metal or an oxide composed of the M 1 element. Contributes to the formation of catalyst particles. Thus, Al
By substituting a part of M 2 with the M 2 element, the interaction between the Al—M 2 oxide and the M 1 metal or its oxide is strengthened, and the catalytic activity is improved. However, when the ultrafine particles of M 1 metal or its oxide exhibiting catalytic activity are larger than the ultrafine particles of Al-M 2 oxide, the M 1 metal or its oxide is likely to cause grain growth, and as a result, The catalytic activity will decrease. Therefore, it is preferable that the particle size of the Al-M 2 oxide ultrafine particles is larger than the particle size of the M 1 metal or its oxide ultrafine particles, and it is preferable that the ultrafine particles have a particle size twice or more. desirable. In this way, in order to obtain a catalyst particle in an ideal form in which ultrafine particles of M 1 metal or its oxide having a finer particle diameter are supported by ultrafine particles of Al-M 2 oxide having a relatively large particle diameter. In the raw material A
It is desirable to substitute 50 atomic% or less, more preferably 5 to 50 atomic% of 1 with M 2 element.

【0013】前記雰囲気ガスの組成としては、Ar、H
e、N2 等の不活性ガス50〜99%、酸素ガス1〜5
0%の範囲が好ましい。雰囲気中の酸素ガスの割合が1
%未満の場合、酸素プラズマの効果が殆どなくなり、酸
化物が生成し難く、図1に示すような理想的な形態の触
媒粒子が作製され難くなる。一方、酸素ガスの割合が5
0%を超えると、酸素プラズマの効果が強くなり、原料
の母合金の表面が酸化膜で覆われてしまい、アークが不
安定になったり、最悪の場合発生しなくなり、超微粒子
が作製されなくなる恐れがある。原料の母合金の表面が
酸化膜で覆われ難いようにし、また図1に示すような理
想的な形態の酸化物超微粒子が作製され易いようにする
ためには、混合ガス中の酸素ガスの割合は1〜20%の
範囲がより好ましい。雰囲気ガスの圧力は30Torr
以上、好ましくは50Torr以上、1500Torr
以下の範囲が適当である。30Torr未満ではアーク
プラズマが不安定となり、超微粒子が発生し難くなる。
一方、1500Torrを超えると、発生する超微粒子
の生成量は殆ど変化しなくなる。
The composition of the atmosphere gas is Ar, H
e, N 2 or other inert gas 50 to 99%, oxygen gas 1 to 5
The range of 0% is preferable. The ratio of oxygen gas in the atmosphere is 1
If it is less than 0.1%, the effect of oxygen plasma is almost eliminated, oxides are hard to be generated, and it becomes difficult to produce catalyst particles in an ideal form as shown in FIG. On the other hand, the proportion of oxygen gas is 5
If it exceeds 0%, the effect of oxygen plasma becomes strong, the surface of the mother alloy of the raw material is covered with an oxide film, the arc becomes unstable, or in the worst case it does not occur, and ultrafine particles are not produced. There is a fear. In order to make it difficult for the surface of the raw material master alloy to be covered with an oxide film and to facilitate the production of ideal oxide ultrafine particles as shown in FIG. The ratio is more preferably in the range of 1 to 20%. Atmospheric gas pressure is 30 Torr
Or more, preferably 50 Torr or more, 1500 Torr
The following ranges are suitable. If it is less than 30 Torr, the arc plasma becomes unstable and it becomes difficult to generate ultrafine particles.
On the other hand, when it exceeds 1500 Torr, the amount of ultrafine particles generated hardly changes.

【0014】尚、母合金は酸素ガスを含む不活性ガス雰
囲気で溶解する前に、不活性ガス雰囲気中で溶製するこ
とが好ましいが、この母合金は酸素ガスを含む不活性ガ
ス雰囲気で溶解する前に同じ容器内で真空中で溶製して
もよく、あるいは別の真空容器内で溶製したものを使用
しても良い。また、本発明における加熱溶解法として
は、アーク溶解法の他、高周波加熱溶解法、プラズマジ
ェット加熱法、高周波誘導加熱法(高周波プラズマ加
熱)、電子ビーム加熱法、レーザービーム加熱法なども
用いることが可能である。なお、本発明の複合超微粒子
は、前記反応式(1)で示されるメタノールの水蒸気改
質反応や前記反応式(2)で示される二酸化炭素と水素
からメタノールを合成する反応の他にも、類似の反応、
例えば一酸化炭素と水素からメタノールを合成する反応
及びその逆反応の触媒としても有利に用いることができ
る。
The mother alloy is preferably melted in an inert gas atmosphere before being melted in an inert gas atmosphere containing oxygen gas, but this mother alloy is melted in an inert gas atmosphere containing oxygen gas. Before melting, the same may be melted in a vacuum in the same container, or may be melted in another vacuum container. Further, as the heating melting method in the present invention, in addition to the arc melting method, a high frequency heating melting method, a plasma jet heating method, a high frequency induction heating method (high frequency plasma heating), an electron beam heating method, a laser beam heating method, etc. may be used. Is possible. The composite ultrafine particles of the present invention are not limited to the steam reforming reaction of methanol represented by the reaction formula (1) and the reaction of synthesizing methanol from carbon dioxide and hydrogen represented by the reaction formula (2). A similar reaction,
For example, it can be advantageously used as a catalyst for a reaction for synthesizing methanol from carbon monoxide and hydrogen and its reverse reaction.

【0015】[0015]

【実施例】以下、実施例を示して本発明について具体的
に説明するが、本発明が下記実施例に限定されるもので
ないことはもとよりである。
EXAMPLES The present invention will be specifically described below with reference to examples, but it goes without saying that the present invention is not limited to the following examples.

【0016】図2は、本発明に従ってアーク溶解により
複合超微粒子を作製するのに好適な装置の一例を示し、
後述する実施例において使用した装置の概略構成図であ
る。この装置1は、溶解室2とグローブボックス3とか
らなる。溶解室2内には、原料(母合金)Aを配置する
ハース4がモータ12により回転自在に配設されてい
る。また、溶解室2内のハース4上部には、ハース4に
配置された母合金Aに接近自在にアーク電極5が配設さ
れている。溶解室2とグローブボックス3は収集管6に
よって連通されており、該収集管6のグローブボックス
3内に位置する収集管後端7にはフィルター8が着脱自
在に取り付けられている。符号9はガス混合器であり、
所定濃度の酸素ガスを含む不活性ガスを溶解室2中へ供
給する。符号10はターボ分子ポンプ、11はメカニカ
ルブースターポンプとロータリーポンプであり、これら
によって溶解室2とグローブボックス3との間の差圧が
制御される。
FIG. 2 shows an example of an apparatus suitable for producing composite ultrafine particles by arc melting according to the present invention,
It is a schematic block diagram of the apparatus used in the Example mentioned later. This apparatus 1 comprises a melting chamber 2 and a glove box 3. In the melting chamber 2, a hearth 4 for arranging the raw material (mother alloy) A is rotatably arranged by a motor 12. An arc electrode 5 is arranged above the hearth 4 in the melting chamber 2 so as to be accessible to the mother alloy A arranged in the hearth 4. The melting chamber 2 and the glove box 3 are communicated with each other by a collecting pipe 6, and a filter 8 is detachably attached to a rear end 7 of the collecting pipe 6 located inside the glove box 3. Reference numeral 9 is a gas mixer,
An inert gas containing a predetermined concentration of oxygen gas is supplied into the melting chamber 2. Reference numeral 10 is a turbo molecular pump, and 11 is a mechanical booster pump and a rotary pump, which control the differential pressure between the melting chamber 2 and the glove box 3.

【0017】次に、操作手順について説明する。まず、
所定濃度の酸素ガスを含む不活性ガスを所定の流量で溶
解室2内へ供給し、溶解室2内のガス圧を所定の圧力に
設定する。この際、雰囲気ガスとして大気を用いる場合
以外は、一旦、装置内を真空引きしておいた方が好まし
い。その後、通常のアーク溶解と同様、母合金Aとアー
ク電極5との間でアーク放電を起こしてアークプラズマ
Cを発生させることにより、母合金Aが高温になり、蒸
発し、超微粒子Bが発生する。この母合金Aから発生し
た超微粒子Bは、雰囲気中の酸素と反応し、溶解室2と
グローブボックス3との間の差圧によって生ずるガスの
流れに乗って収集管6に吸引され、その後端に設置され
たフィルター8により捕集される。
Next, the operation procedure will be described. First,
An inert gas containing a predetermined concentration of oxygen gas is supplied into the dissolution chamber 2 at a predetermined flow rate, and the gas pressure in the dissolution chamber 2 is set to a predetermined pressure. At this time, it is preferable to evacuate the inside of the apparatus once, except when the atmosphere is used as the atmospheric gas. After that, as in the case of normal arc melting, an arc discharge is generated between the mother alloy A and the arc electrode 5 to generate an arc plasma C, so that the mother alloy A is heated to a high temperature and evaporated to generate ultrafine particles B. To do. The ultrafine particles B generated from the mother alloy A react with oxygen in the atmosphere and are sucked by the collecting pipe 6 along with the gas flow generated by the pressure difference between the melting chamber 2 and the glove box 3, and the rear end It is collected by the filter 8 installed at.

【0018】実施例1 各々99.9mass%以上の純度を持つアルミニウム
と鉄を原料とし、Ar雰囲気中でアーク溶解を行い、A
70Fe30の組成を有する合金のボタン状インゴットを
作製した。このボタン状インゴットを用い、図2に示す
ような装置により、10%の酸素ガスを含むHeガスの
雰囲気(ガス圧50Torr)中においてアーク溶解を
行い、複合超微粒子を製造した。
Example 1 Using aluminum and iron, each having a purity of 99.9 mass% or more, as raw materials, arc melting was performed in an Ar atmosphere, and A
An alloy button ingot having a composition of l 70 Fe 30 was prepared. Using this button-shaped ingot, arc melting was carried out in an atmosphere of He gas containing 10% oxygen gas (gas pressure 50 Torr) using a device as shown in FIG. 2 to produce composite ultrafine particles.

【0019】実施例2〜10 実施例1において、原料の鉄をCo、Ni、Cu、R
u、Rh、Pd、Ag、Pt又はAuにそれぞれ代える
以外は、実施例1と同じ操作及び条件により複合超微粒
子を製造した。Al70Cu30の組成を有する母合金を用
いて作製した超微粒子のS粒子(Cu又はCu酸化物)
の粒度分布を図3に示す。
Examples 2 to 10 In Example 1, the raw material iron was replaced with Co, Ni, Cu, R.
Composite ultrafine particles were produced by the same operation and conditions as in Example 1, except that u, Rh, Pd, Ag, Pt, or Au was used instead. Ultrafine S particles (Cu or Cu oxide) produced using a mother alloy having a composition of Al 70 Cu 30
The particle size distribution of is shown in FIG.

【0020】複合超微粒子の触媒特性:上記各実施例で
作製した複合超微粒子について、メタノールの水蒸気改
質触媒としての調査を行った。また、比較として、市販
のCuO−ZnO−Al23触媒についても調査を行
った。触媒性能評価は超微粒子0.1gを充填した常圧
固定床流通式反応装置を用い、それぞれ200℃及び4
00℃におけるメタノール水蒸気改質反応による水素発
生量と二酸化炭素の選択率を測定した。その結果を表1
及び表2に示す。
Catalytic properties of composite ultrafine particles: The composite ultrafine particles produced in each of the above examples were investigated as a steam reforming catalyst for methanol. Further, as a comparison, it was also investigated for commercial CuO-ZnO-Al 2 O 3 catalyst. The catalyst performance evaluation was carried out at 200 ° C. and 4 ° C. using a normal pressure fixed bed flow reactor filled with 0.1 g of ultrafine particles.
The amount of hydrogen generated by the methanol steam reforming reaction at 00 ° C and the carbon dioxide selectivity were measured. The results are shown in Table 1.
And shown in Table 2.

【表1】 [Table 1]

【0021】[0021]

【表2】 表1及び表2から明らかなように、本発明により得られ
た複合超微粒子は、特に低温においては水素の発生量が
市販品を大きく上回る特性が得られ、また高温における
水素発生量と二酸化炭素の選択率において市販品を大き
く上回る特性が得られた。選択率とは目的とする反応
(CH3 OH+H2 O→3H2 +CO2 )の起こる割合
であり、これも触媒の重要な特性の1つである。市販触
媒は低温(200℃)では高い選択率を示すものの、高
温(400℃)において75%へと急激な低下を示し
た。これに対して、本発明の複合超微粒子触媒では、高
温においても高選択率を維持することができた。上記結
果より、本発明の複合超微粒子は、メタノール水蒸気改
質反応やその逆反応であるメタノール合成反応に用いる
従来の触媒と比較して高活性であり、なおかつ高選択性
の触媒であるため、この材料を工業的に実用化すること
により、安価な水素製造法や安価なCO2 の再資源化法
として利用できると考えられる。
[Table 2] As is clear from Tables 1 and 2, the composite ultrafine particles obtained by the present invention have characteristics that the hydrogen generation amount greatly exceeds the commercially available products at low temperatures, and the hydrogen generation amount and carbon dioxide at high temperatures are high. In terms of the selectivity of, the characteristics far exceeding the commercial products were obtained. The selectivity is the rate at which the desired reaction (CH 3 OH + H 2 O → 3H 2 + CO 2 ) occurs, which is also an important characteristic of the catalyst. The commercial catalyst showed a high selectivity at low temperature (200 ° C), but showed a sharp drop to 75% at high temperature (400 ° C). In contrast, the composite ultrafine particle catalyst of the present invention was able to maintain a high selectivity even at high temperatures. From the above results, the composite ultrafine particles of the present invention is a highly active and highly selective catalyst as compared with a conventional catalyst used for a methanol synthesis reaction which is a methanol steam reforming reaction and its reverse reaction, By industrially putting this material to practical use, it can be used as an inexpensive hydrogen production method or an inexpensive CO 2 resource recycling method.

【0022】[0022]

【発明の効果】以上のように、本発明により得られる超
微粒子は、触媒活性を示すM1 金属又はM1 酸化物から
なるより微細な超微粒子がより大きなAl又はγ−Al
23あるいはさらにAl−M2 酸化物の超微粒子に担
持された構造の複合超微粒子を多量に含んでおり、ま
た、従来の液相法により作製された酸化物粒子とは異な
り、粒子が極めて微細であり、かつ不純物を含まず、純
度が極めて高い。従って、本発明に係る複合超微粒子
は、メタノールの合成用及び水蒸気改質用触媒として高
い触媒活性を示し、特に高温域においても高活性、高選
択性、高耐久性を示す。また、本発明の方法によれば、
メタノールの合成・改質用触媒として高い触媒活性を示
す上記のような複合超微粒子を、比較的安価にしかも簡
単な方法により作製でき、特に雰囲気ガスとして窒素と
酸素の混合ガスを用いる場合、乾燥空気が使用でき、安
価に複合超微粒子を製造できる。
INDUSTRIAL APPLICABILITY As described above, the ultrafine particles obtained by the present invention are finer ultrafine particles made of M 1 metal or M 1 oxide exhibiting catalytic activity.
It contains a large amount of composite ultrafine particles having a structure of being carried on ultrafine particles of 2 O 3 or Al-M 2 oxide, and unlike the oxide particles produced by the conventional liquid phase method, the particles are It is extremely fine, contains no impurities, and has extremely high purity. Therefore, the composite ultrafine particles according to the present invention exhibit high catalytic activity as a catalyst for synthesizing methanol and steam reforming, and particularly exhibit high activity, high selectivity and high durability even in a high temperature range. Further, according to the method of the present invention,
The above-mentioned composite ultrafine particles exhibiting high catalytic activity as a catalyst for synthesizing and reforming methanol can be prepared by a relatively inexpensive and simple method. Since air can be used, composite ultrafine particles can be produced at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法により作製される複合超微粒子の
構造を概略的に示す模式図である。
FIG. 1 is a schematic view schematically showing the structure of composite ultrafine particles produced by the method of the present invention.

【図2】本発明に従ってアーク溶解により複合超微粒子
を作製する装置の一例の概略構成図である。
FIG. 2 is a schematic configuration diagram of an example of an apparatus for producing composite ultrafine particles by arc melting according to the present invention.

【図3】Al70Cu30の組成を有する母合金を用いて作
製した超微粒子のS粒子(Cu又はCu酸化物)の粒度
分布を示すグラフである。
FIG. 3 is a graph showing the particle size distribution of ultrafine S particles (Cu or Cu oxide) produced using a mother alloy having a composition of Al 70 Cu 30 .

【符号の説明】 1 超微粒子作製装置 2 溶解室 3 グローブボックス 5 アーク電極 6 収集管 8 フィルター 9 ガス混合器 10 ターボ分子ポンプ 11 メカニカルブースターポンプ、ロータリーポンプ A 母合金 B 超微粒子 C アークプラズマ[Explanation of symbols] 1 Ultrafine particle production apparatus 2 Melting chamber 3 Glove box 5 Arc electrode 6 Collection tube 8 Filter 9 Gas mixer 10 Turbo molecular pump 11 Mechanical booster pump, rotary pump A Mother alloy B Ultrafine particle C Arc plasma

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/63 B01J 23/58 M 23/58 23/60 M 23/60 23/62 M 23/62 23/66 M 23/648 23/68 M 23/652 23/72 M 23/656 23/76 M 23/66 23/78 M 23/68 23/80 M 23/72 23/86 M 23/745 B22F 9/14 Z 23/75 C01B 3/40 23/755 C01F 7/02 D 23/76 9155−4H C07C 29/154 23/78 29/156 23/80 29/157 23/835 29/158 23/847 9155−4H 31/04 23/889 C07B 61/00 300 23/86 B01J 23/56 301M B22F 9/14 23/64 102M C01B 3/40 103M C01F 7/02 104M C07C 29/154 23/74 301M 29/156 311M 29/157 321M 29/158 23/82 M 31/04 23/84 301M // C07B 61/00 300 311M Continuation of front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 23/63 B01J 23/58 M 23/58 23/60 M 23/60 23/62 M 23/62 23 / 66 M 23/648 23/68 M 23/652 23/72 M 23/656 23/76 M 23/66 23/78 M 23/68 23/80 M 23/72 23/86 M 23/745 B22F 9 / 14 Z 23/75 C01B 3/40 23/755 C01F 7/02 D 23/76 9155-4H C07C 29/154 23/78 29/156 23/80 29/157 23/835 29/158 23/847 9155- 4H 31/04 23/889 C07B 61/00 300 23/86 B01J 23/56 301M B22F 9/14 23/64 102M C01B 3/40 103M C01F 7/02 104M C07C 29/154 23/74 301M 29/156 311M 29/157 321M 29/158 23/82 M 31/04 23/84 301M // C07B 61/00 300 311M

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Al又は/及びAlの酸化物からなる第
1超微粒子と、M1元素(但し、M1 はFe、Co、N
i、Cu、Ru、Rh、Pd、Ag、Pt及びAuから
なる群から選ばれた少なくとも1種の元素である。)よ
りなる金属又は/及び酸化物からなる第2超微粒子とが
接合されてなることを特徴とする複合超微粒子。
1. First ultrafine particles made of Al or / and an oxide of Al and M 1 element (wherein M 1 is Fe, Co, N
It is at least one element selected from the group consisting of i, Cu, Ru, Rh, Pd, Ag, Pt, and Au. And a second ultrafine particle made of a metal and / or an oxide of the above).
【請求項2】 第1超微粒子のAl又は/及びAlの酸
化物の一部がM2 元素(但し、M2 はTi、Zr、H
f、V、Cr、Mn、Zn、Ga、Mg、Si、Ca、
Y、La及びCeからなる群から選ばれた少なくとも1
種の元素である。)の金属又は/及び酸化物で置換され
てなる請求項1に記載の複合超微粒子。
2. A part of Al or / and an oxide of Al of the first ultrafine particles is an element of M 2 (wherein M 2 is Ti, Zr or H).
f, V, Cr, Mn, Zn, Ga, Mg, Si, Ca,
At least one selected from the group consisting of Y, La and Ce
It is a seed element. 3. The composite ultrafine particles according to claim 1, wherein the composite ultrafine particles are substituted with the metal or / and the oxide).
【請求項3】 第1超微粒子の粒径が5〜500nmで
あり、第2超微粒子の粒径が0.5〜200nmである
請求項1又は2に記載の複合超微粒子。
3. The composite ultrafine particles according to claim 1, wherein the first ultrafine particles have a particle size of 5 to 500 nm, and the second ultrafine particles have a particle size of 0.5 to 200 nm.
【請求項4】 第1超微粒子がAl又は/及びγ−Al
23 、第2超微粒子がCu、Cu2 O又は/及びCu
Oである請求項1又は3に記載の複合超微粒子。
4. The first ultrafine particles are Al or / and γ-Al.
2 O 3 , the second ultrafine particles are Cu, Cu 2 O or / and Cu
The composite ultrafine particles according to claim 1 or 3, which is O.
【請求項5】 前記請求項1乃至4のいずれか一項に記
載の複合超微粒子からなるメタノールの合成・改質用触
媒。
5. A catalyst for synthesizing and reforming methanol, which comprises the composite ultrafine particles according to any one of claims 1 to 4.
【請求項6】 アルミニウムとM1 元素(但し、M1
Fe、Co、Ni、Cu、Ru、Rh、Pd、Ag、P
t及びAuからなる群から選ばれた少なくとも1種の元
素である。)とからなる原材料を、酸素を含む不活性ガ
ス雰囲気中で加熱溶解し、蒸発した材料を雰囲気中の酸
素と反応させ、Al又は/及びAlの酸化物からなる第
1超微粒子と、M1 元素よりなる金属又は/及び酸化物
からなる第2超微粒子とが接合されてなる複合超微粒子
を生成させることを特徴とする複合超微粒子の製造方
法。
6. Aluminum and M 1 element (provided that M 1 is Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, P)
It is at least one element selected from the group consisting of t and Au. ) Is melted by heating in an atmosphere of an inert gas containing oxygen, and the evaporated material is reacted with oxygen in the atmosphere to form first ultrafine particles of Al or / and an oxide of Al and M 1 A method for producing composite ultrafine particles, which comprises producing composite ultrafine particles obtained by bonding second ultrafine particles made of metal or / and oxide made of an element.
【請求項7】 アルミニウムが5〜95原子%、M1
素が5〜95原子%の組成の原材料を用い、アーク溶解
する請求項6に記載の方法。
7. Aluminum 5 to 95 atomic%, The method of claim 6, M 1 element is used raw materials 5-95 atomic% of the composition, for arc melting.
【請求項8】 Alの50原子%以下をM2 元素(但
し、M2 はTi、Zr、Hf、V、Cr、Mn、Zn、
Ga、Mg、Si、Ca、Y、La及びCeからなる群
から選ばれた少なくとも1種の元素である。)で置換し
てなる原材料を用いる請求項6又は7に記載の方法。
8. Al of 50 atomic% or less M 2 element (where, M 2 is Ti, Zr, Hf, V, Cr, Mn, Zn,
It is at least one element selected from the group consisting of Ga, Mg, Si, Ca, Y, La and Ce. The method according to claim 6 or 7, wherein a raw material obtained by substituting in (4) is used.
【請求項9】 不活性ガスがAr、He又はN2 であ
り、不活性ガス50〜99%、酸素ガス1〜50%の混
合ガスからなる雰囲気を用いる請求項6乃至8のいずれ
か一項に記載の方法。
9. The atmosphere according to claim 6, wherein the inert gas is Ar, He or N 2 and an atmosphere composed of a mixed gas of 50 to 99% of inert gas and 1 to 50% of oxygen gas is used. The method described in.
JP7050322A 1995-02-16 1995-02-16 Composite superfine particle, its production and catalyst for synthesis and refining of methanol using the same Pending JPH08215576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7050322A JPH08215576A (en) 1995-02-16 1995-02-16 Composite superfine particle, its production and catalyst for synthesis and refining of methanol using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7050322A JPH08215576A (en) 1995-02-16 1995-02-16 Composite superfine particle, its production and catalyst for synthesis and refining of methanol using the same

Publications (1)

Publication Number Publication Date
JPH08215576A true JPH08215576A (en) 1996-08-27

Family

ID=12855675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7050322A Pending JPH08215576A (en) 1995-02-16 1995-02-16 Composite superfine particle, its production and catalyst for synthesis and refining of methanol using the same

Country Status (1)

Country Link
JP (1) JPH08215576A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6583084B2 (en) 2000-07-18 2003-06-24 Mitsui Chemicals, Inc. Catalyst for steam reforming of methanol and method for producing hydrogen therewith
JP2010116328A (en) * 2008-11-11 2010-05-27 Nippon Oil Corp Method for producing unsaturated hydrocarbon and oxygen-containing compound, catalyst and method for producing the same
JP2011032541A (en) * 2009-08-03 2011-02-17 Furukawa Electric Co Ltd:The Nanosize particle, negative electrode material for lithium ion secondary battery containing the nanosize particle, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing the nanosize particle
WO2012105631A1 (en) 2011-02-02 2012-08-09 独立行政法人産業技術総合研究所 Noble metal-oxide joined nanoparticles and method for high-purity production of the same
JP2013513484A (en) * 2009-12-15 2013-04-22 エスディーシー マテリアルズ インコーポレイテッド Pinning and adhesion of nanoactive materials
US8932514B1 (en) 2009-12-15 2015-01-13 SDCmaterials, Inc. Fracture toughness of glass
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9023754B2 (en) 2005-04-19 2015-05-05 SDCmaterials, Inc. Nano-skeletal catalyst
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9295978B2 (en) 2012-02-15 2016-03-29 Basf Corporation Catalyst and method for the direct synthesis of dimethyl ether from synthesis gas
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6583084B2 (en) 2000-07-18 2003-06-24 Mitsui Chemicals, Inc. Catalyst for steam reforming of methanol and method for producing hydrogen therewith
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US9132404B2 (en) 2005-04-19 2015-09-15 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9023754B2 (en) 2005-04-19 2015-05-05 SDCmaterials, Inc. Nano-skeletal catalyst
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9186663B2 (en) 2007-10-15 2015-11-17 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
JP2010116328A (en) * 2008-11-11 2010-05-27 Nippon Oil Corp Method for producing unsaturated hydrocarbon and oxygen-containing compound, catalyst and method for producing the same
JP2011032541A (en) * 2009-08-03 2011-02-17 Furukawa Electric Co Ltd:The Nanosize particle, negative electrode material for lithium ion secondary battery containing the nanosize particle, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing the nanosize particle
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US8932514B1 (en) 2009-12-15 2015-01-13 SDCmaterials, Inc. Fracture toughness of glass
JP2013513484A (en) * 2009-12-15 2013-04-22 エスディーシー マテリアルズ インコーポレイテッド Pinning and adhesion of nanoactive materials
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
JP2016196005A (en) * 2009-12-15 2016-11-24 エスディーシーマテリアルズ, インコーポレイテッド Pinning and adhesion of nano-active material
CN103402920A (en) * 2011-02-02 2013-11-20 独立行政法人产业技术综合研究所 Noble metal-oxide joined nanoparticles and method for high-purity production of the same
WO2012105631A1 (en) 2011-02-02 2012-08-09 独立行政法人産業技術総合研究所 Noble metal-oxide joined nanoparticles and method for high-purity production of the same
US9675964B2 (en) 2011-02-02 2017-06-13 National Institute Of Advanced Industrial Science And Technology Noble metal-oxide combined nanoparticle, and, method of producing the same with high purity
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9295978B2 (en) 2012-02-15 2016-03-29 Basf Corporation Catalyst and method for the direct synthesis of dimethyl ether from synthesis gas
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Similar Documents

Publication Publication Date Title
JPH08215576A (en) Composite superfine particle, its production and catalyst for synthesis and refining of methanol using the same
JP6670754B2 (en) Composite, method for producing composite, ammonia synthesis catalyst, and ammonia synthesis method
JP5820817B2 (en) Ammonia synthesis catalyst and ammonia synthesis method
JP6143761B2 (en) Hydrogen production catalyst and method for producing hydrogen
JP2832336B2 (en) Gold ultrafine particle-immobilized substance and method for producing the same
JPWO2015129471A1 (en) Supported metal catalyst and ammonia synthesis method using the catalyst
JPH07116517A (en) Methanol reforming catalyst, its production and methanol reforming method
JPH09164332A (en) Amorphous perovskite type supported catalyst for removing nitrogen oxide and preparation thereof
JP3645931B2 (en) Method for producing composite ultrafine particles
JP2010099638A (en) Catalyst, catalyst for purifying exhaust gas, and method for manufacturing the catalyst
KR20060052923A (en) Improved catalyst and process to produce nanocarbon materials in high yield and at high selectivity at reduced reaction temperatures
JPWO2018159644A1 (en) PdRu solid solution nanoparticles, method for producing the same and catalyst, method for controlling crystal structure of PtRu solid solution nanoparticles, and AuRu solid solution nanoparticles and method for producing the same
JP5398082B2 (en) Method for preparing ruthenium catalyst for cycloolefin production, method for producing cycloolefin, and production apparatus
JPH08283022A (en) Titanium dioxide based composite superfine particle and its production
JPH08215571A (en) Composite superfine particle and catalyst for synthesis and refining of methanol using the same
US4590177A (en) Method for preparing dual colloid catalyst compositions
JP7023457B2 (en) Ammonia synthesis catalyst and ammonia synthesis method using the catalyst
EP1312412B1 (en) Process for producing hydrogen-containing gas
Asthana et al. Impact of La engineered stable phase mixed precursors on physico-chemical features of Cu-based catalysts for conversion of CO2 rich syngas to methanol
JP3757248B2 (en) Composite ultrafine particles useful as catalysts for methanol synthesis and reforming, and methods for producing the same
Adam et al. The origin of the positive effect of cadmium acetate on the action of supported palladium catalysts
JP4446029B2 (en) Method for producing methanol steam reforming catalyst
JP6737455B2 (en) Laves phase intermetallic compound, catalyst using intermetallic compound, and ammonia production method
JP7418849B2 (en) Oxynitrogen hydride, metal support containing oxynitrogen hydride, and catalyst for ammonia synthesis
JP6344052B2 (en) Ammonia synthesis catalyst and ammonia synthesis method