JPH08207626A - Reactive power compensator - Google Patents

Reactive power compensator

Info

Publication number
JPH08207626A
JPH08207626A JP7017391A JP1739195A JPH08207626A JP H08207626 A JPH08207626 A JP H08207626A JP 7017391 A JP7017391 A JP 7017391A JP 1739195 A JP1739195 A JP 1739195A JP H08207626 A JPH08207626 A JP H08207626A
Authority
JP
Japan
Prior art keywords
transformer
inverter
series
reactive power
power compensator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7017391A
Other languages
Japanese (ja)
Inventor
Minoru Onabe
実 大辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP7017391A priority Critical patent/JPH08207626A/en
Publication of JPH08207626A publication Critical patent/JPH08207626A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE: To lower direct current magnetic deflection in a transformer so as to prevent a stop of a device due to output overcurrent from an inverter by connecting the transformer on the output side of the inverter using a self arc- extinguishing type semiconductor element and connecting a series capacitor and a series reactor in series on the output side of the transformer. CONSTITUTION: A transformer 27 is connected to the output side of an inverter 28 using a self arc-extinguishing type semiconductor element, while a series capacitor 31 is arranged on the output side of the transformer 27, and direct current distribution voltage generated in the feeder side is cut off. In this process, as an inductance between the inverter 28, which reduces higher harmonics flowing out to a feeder system from a self-excited type reactive power compensator, and the feeder system is canceled by means of the series capacitor 31, a series reactor 32 is additionally connected in series with the series capacitor 31. In this way, a stop of a device because of output overcurrent of the inverter 28 can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉄道用交流き電回路に
おいて、車両が発生する無効電力を補償するものであ
り、ゲートターンオフサイリスタ等の自己消弧型半導体
素子を用いた自励式の無効電力補償装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is for compensating reactive power generated by a vehicle in a rail AC feeding circuit, and is a self-excited type reactive device using a self-extinguishing type semiconductor device such as a gate turn-off thyristor. The present invention relates to a power compensator.

【0002】[0002]

【従来の技術】現在、交流き電回路用の無効電力補償装
置には、図2に示すように、(1)3相電力系統側に設
けられる自励式無効電力補償装置1と、(2)変電所の
き電母線あるいはき電区分所SPに設けられる他励式無
効電力補償装置2の2種類の方式が採用されている。図
2において3はスコット結線変圧器、4はき電線であ
る。
2. Description of the Related Art Presently, as shown in FIG. 2, a reactive power compensator for an AC feeding circuit has (1) a self-excited reactive power compensator 1 provided on the side of a three-phase power system, and (2). Two types of systems are adopted: a separately excited type reactive power compensator 2 provided at a feeder bus of a substation or a feeder section SP. In FIG. 2, 3 is a Scott connection transformer, and 4 is a feeder.

【0003】[0003]

【発明が解決しようとする課題】他励式無効電力補償装
置は図3に示すように、並列コンデンサ11を固定と
し、高インピーダンストランス12、サイリスタスイッ
チ13およびサイリスタスイッチ13が発生する高調波
を低減させるための高調波フィルタ(図示並列コンデン
サ11兼用)とで構成されるが、近年の素子開発、電力
変換技術の向上により自励式無効電力補償装置の方が寸
法、性能の面で有利となっている。
As shown in FIG. 3, the separately-excited reactive power compensator has a parallel capacitor 11 fixed to reduce the harmonics generated by the high impedance transformer 12, the thyristor switch 13, and the thyristor switch 13. However, a self-excited reactive power compensator is more advantageous in terms of size and performance due to recent element development and improvement of power conversion technology. .

【0004】したがって従来までは他励式無効電力補償
装置が使用されていた、変電所き電母線や、き電区分所
SPの電圧安定化用に、図4のように自励式無効電力補
償装置21を適用することが考えられている。しかしな
がら図4のように変電所き電母線22に、変電所のスコ
ット結線変圧器3のインダクタンスおよび電源側インダ
クタンス分による電圧降下を補償するための直列コンデ
ンサ23が入っている場合は、次のような問題が生じ
る。
Therefore, the self-excited reactive power compensator 21 as shown in FIG. 4 is used for stabilizing the voltage of the substation feeding bus and the feeding section SP where the separately excited reactive power compensator has been used until now. Is considered to apply. However, as shown in FIG. 4, in the case where the electric bus 22 of the substation includes a series capacitor 23 for compensating for the voltage drop due to the inductance of the Scott connection transformer 3 of the substation and the inductance on the power source side, the following is performed. Problems arise.

【0005】すなわち、電気車24がセクション25
(スコット結線変圧器3のM座とT座の間を電気的に接
続できないため、トロリー線26に絶縁区間を設けてい
る)を通過してきた時に、電気車24側で車両に搭載さ
れた変圧器に突入電流が流れる。この突入電流は上下非
対称波であるため、直列コンデンサ23には直流電圧が
加算され、き電母線電圧やき電電圧は直流分が重畳され
た電圧となる。この直流分の電圧は交流電圧の10%以
上にもなることがあり、図4のように自励式無効電力補
償装置21を使用した場合、該装置21が有する変圧器
27がこの直流分の影響により直流偏磁し、インバータ
28の出力が過大となり、装置が停止してしまう。尚図
4において29はレールである。
That is, the electric car 24 is a section 25.
(When the M seat and the T seat of the Scott connection transformer 3 cannot be electrically connected, the trolley wire 26 is provided with an insulation section), the transformer installed on the electric car 24 side when passing through Inrush current flows through the vessel. Since this inrush current is a vertically asymmetrical wave, a DC voltage is added to the series capacitor 23, and the feeding bus voltage or feeding voltage becomes a voltage on which a DC component is superimposed. The voltage of this DC component may be 10% or more of the AC voltage, and when the self-excited reactive power compensator 21 is used as shown in FIG. 4, the transformer 27 of the device 21 affects the influence of this DC component. As a result, DC bias is generated, the output of the inverter 28 becomes excessive, and the device stops. In FIG. 4, 29 is a rail.

【0006】本発明は上記の点に鑑みてなされたもので
その目的は、自励式無効電力補償装置が有する変圧器の
直流偏磁を軽減せしめ、インバータの出力過電流による
装置の停止を防止した無効電力補償装置を提供すること
にある。
The present invention has been made in view of the above points, and an object thereof is to reduce the DC bias magnetism of a transformer included in a self-excited reactive power compensator and prevent the device from being stopped due to an output overcurrent of an inverter. It is to provide a reactive power compensator.

【0007】[0007]

【課題を解決するための手段】本発明は、交流式電気鉄
道のき電回路に接続され、無効電力の補償および電圧の
安定化を行う無効電力補償装置において、自己消弧型半
導体素子を用いたインバータと、該インバータの出力側
に接続された変圧器と、該変圧器の出力側に直列に接続
された直列コンデンサおよび直列リアクトルとを備えた
ことを特徴としている。
SUMMARY OF THE INVENTION The present invention uses a self-extinguishing type semiconductor device in a reactive power compensator connected to a feeding circuit of an AC electric railway to perform reactive power compensation and voltage stabilization. The inverter, the transformer connected to the output side of the inverter, and the series capacitor and the series reactor connected in series to the output side of the transformer.

【0008】[0008]

【作用】本発明の無効電力補償装置は、例えば交流き電
回路のき電線側に設けて使用する。変電所き電母線に、
変電所のスコット結線変圧器のインダクタンスおよび電
源側インダクタンス分による電圧降下を補償するための
直列コンデンサが入っている装置において、き電線電圧
に直流成分が重畳された場合、該直流成分は無効電力補
償装置の直列コンデンサによりカットされる。このため
無効電力補償装置の変圧器が直流偏磁を起こし、インバ
ータ出力が過大となって装置が停止するような事態は避
けられる。
The reactive power compensator of the present invention is used, for example, provided on the feeder side of an AC feeder circuit. For substation and electric bus
In a device that includes a series capacitor for compensating for the voltage drop due to the inductance of the Scott connection transformer at the substation and the inductance on the power source side, if a DC component is superimposed on the feeder voltage, the DC component is compensated for reactive power. It is cut by the series capacitor of the device. Therefore, it is possible to avoid a situation in which the transformer of the reactive power compensator causes DC bias magnetism, the inverter output becomes excessive, and the device stops.

【0009】[0009]

【実施例】以下、図面を参照しながら本発明の一実施例
を説明する。本発明では図4のようにき電線に設けられ
る自励式無効電力補償装置21の変圧器27の出力側
に、図1に示すように直列コンデンサ31を設けて、き
電線側に発生した直流分電圧をカットするように構成し
た。この場合自励式無効電力補償装置からき電系へ流出
する高調波を低減するインバータ−き電系間のインダク
タンス(従来は装置の変圧器の漏れインダクタンスを利
用していた)が直列コンデンサ31によって相殺されて
しまうため、さらに直列リアクトル32を接続するもの
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In the present invention, a series capacitor 31 is provided on the output side of the transformer 27 of the self-excited reactive power compensator 21 provided on the feeder as shown in FIG. It was configured to cut off the voltage. In this case, the series capacitor 31 offsets the inductance between the inverter and the feeder system (which conventionally used the leakage inductance of the transformer of the device) that reduces the harmonics flowing out of the self-excited var compensator into the feeder system. Therefore, the series reactor 32 is further connected.

【0010】この直列コンデンサ31の設置によって、
図4のようなき電回路に直流電圧が重畳した場合は、直
列コンデンサ31を設置しないときと比べて、自励式無
効電力補償装置内の変圧器27の直流偏磁を軽減するこ
とが可能となる。
By installing this series capacitor 31,
When the DC voltage is superimposed on the feeder circuit as shown in FIG. 4, it is possible to reduce the DC bias magnetization of the transformer 27 in the self-excited reactive power compensator as compared with the case where the series capacitor 31 is not installed. .

【0011】[0011]

【発明の効果】以上のように本発明によれば、交流式電
気鉄道のき電母線およびき電線に、電圧変動を抑制する
ために設置した自励式無効電力補償装置において、装置
の出力側に直列コンデンサを設置したので、自励式無効
電力補償装置が有する変圧器の直流偏磁を軽減すること
ができ、インバータの出力過電流による停止を防止する
ことができる。
As described above, according to the present invention, in the self-excited reactive power compensator installed on the feeder bus and feeder of the AC electric railway to suppress the voltage fluctuation, the self-excited reactive power compensator is provided on the output side of the device. Since the series capacitor is installed, it is possible to reduce the DC bias magnetism of the transformer included in the self-excited reactive power compensator and prevent the inverter from being stopped due to output overcurrent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す回路図。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】交流式電気鉄道のき電回路の一例を示す回路
図。
FIG. 2 is a circuit diagram showing an example of a feeder circuit of an AC electric railway.

【図3】他励式無効電力補償装置の一例を示す回路図。FIG. 3 is a circuit diagram showing an example of a separately-excited reactive power compensator.

【図4】交流式電気鉄道のき電回路における自励式無効
電力補償装置の設置例を示す回路図。
FIG. 4 is a circuit diagram showing an installation example of a self-excited reactive power compensator in a feeder circuit of an AC electric railway.

【符号の説明】[Explanation of symbols]

1,21…自励式無効電力補償装置 2…他励式無効電力補償装置 3…スコット結線変圧器 4…き電線 22…き電母線 23,31…直列コンデンサ 24…電気車 25…セクション 26…トロリー線 27…変圧器 28…インバータ 29…レール 32…直列リアクトル 1, 21 ... Self-excited reactive power compensator 2 ... Separately excited reactive power compensator 3 ... Scott connection transformer 4 ... Feeding wire 22 ... Feeding bus 23, 31 ... Series capacitor 24 ... Electric car 25 ... Section 26 ... Trolley wire 27 ... Transformer 28 ... Inverter 29 ... Rail 32 ... Series reactor

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02M 7/515 G 9181−5H Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H02M 7/515 G 9181-5H

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 交流式電気鉄道のき電回路に接続され、
無効電力の補償および電圧の安定化を行う無効電力補償
装置において、自己消弧型半導体素子を用いたインバー
タと、該インバータの出力側に接続された変圧器と、該
変圧器の出力側に直列に接続された直列コンデンサおよ
び直列リアクトルとを備えたことを特徴とする無効電力
補償装置。
1. Connected to a feeder circuit of an AC electric railway,
In a reactive power compensator for compensating reactive power and stabilizing voltage, an inverter using a self-arc-extinguishing semiconductor element, a transformer connected to the output side of the inverter, and a series connected to the output side of the transformer. A var compensator, comprising: a series capacitor and a series reactor connected to each other.
JP7017391A 1995-02-06 1995-02-06 Reactive power compensator Pending JPH08207626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7017391A JPH08207626A (en) 1995-02-06 1995-02-06 Reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7017391A JPH08207626A (en) 1995-02-06 1995-02-06 Reactive power compensator

Publications (1)

Publication Number Publication Date
JPH08207626A true JPH08207626A (en) 1996-08-13

Family

ID=11942706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7017391A Pending JPH08207626A (en) 1995-02-06 1995-02-06 Reactive power compensator

Country Status (1)

Country Link
JP (1) JPH08207626A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100384045C (en) * 2004-03-24 2008-04-23 盈正豫顺电子股份有限公司 Virtual work compensating device
JP2008120240A (en) * 2006-11-13 2008-05-29 Meidensha Corp Feeder voltage compensating device
JP2011024367A (en) * 2009-07-17 2011-02-03 Meidensha Corp Feeding voltage compensator
JP2011207266A (en) * 2010-03-29 2011-10-20 Railway Technical Research Institute Alternating current feeder circuit and method of suppressing overvoltage
CN103094918A (en) * 2012-11-30 2013-05-08 澳门大学 Single-phase grid-connection device capable of improving electric energy quality
JP2014083900A (en) * 2012-10-22 2014-05-12 Mitsubishi Electric Corp Control device of electric power supply system for electric railroad
CN105932695A (en) * 2016-05-17 2016-09-07 湖南大学 Multi-level railway power regulator and passive non-linear control method therefor
CN111313431A (en) * 2018-12-11 2020-06-19 西安许继电力电子技术有限公司 Subway traction power supply system and reactive compensation control method and device thereof
CN112895986A (en) * 2021-03-15 2021-06-04 西南交通大学 Traction power supply system connected with new energy power generation unit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100384045C (en) * 2004-03-24 2008-04-23 盈正豫顺电子股份有限公司 Virtual work compensating device
JP2008120240A (en) * 2006-11-13 2008-05-29 Meidensha Corp Feeder voltage compensating device
JP2011024367A (en) * 2009-07-17 2011-02-03 Meidensha Corp Feeding voltage compensator
JP2011207266A (en) * 2010-03-29 2011-10-20 Railway Technical Research Institute Alternating current feeder circuit and method of suppressing overvoltage
JP2014083900A (en) * 2012-10-22 2014-05-12 Mitsubishi Electric Corp Control device of electric power supply system for electric railroad
CN103094918A (en) * 2012-11-30 2013-05-08 澳门大学 Single-phase grid-connection device capable of improving electric energy quality
CN105932695A (en) * 2016-05-17 2016-09-07 湖南大学 Multi-level railway power regulator and passive non-linear control method therefor
CN111313431A (en) * 2018-12-11 2020-06-19 西安许继电力电子技术有限公司 Subway traction power supply system and reactive compensation control method and device thereof
CN111313431B (en) * 2018-12-11 2023-10-20 西安许继电力电子技术有限公司 Subway traction power supply system and reactive compensation control method and device thereof
CN112895986A (en) * 2021-03-15 2021-06-04 西南交通大学 Traction power supply system connected with new energy power generation unit
CN112895986B (en) * 2021-03-15 2022-06-24 西南交通大学 Traction power supply system connected with new energy power generation unit

Similar Documents

Publication Publication Date Title
US5132896A (en) Inverter unit with improved bus-plate configuration
KR100384766B1 (en) Apparatus for controlling power flow
US5905367A (en) Power inverter apparatus using a transformer with its primary winding connected the source end and a secondary winding connected to the load end of an AC power line to insert series compensation
JPH08207626A (en) Reactive power compensator
JP4973139B2 (en) Feeder voltage compensation device
RU2083388C1 (en) Active filter for traction vehicle supplied from ac overhead contact system
JP4934601B2 (en) Compensation transformer
Morimoto et al. New type of feeding transformer for AC railway traction system
JP6793876B1 (en) Power conversion system
JPWO2019043993A1 (en) Power conversion device, power conversion system, and method of using power conversion system
EP3595157B1 (en) Power conversion device
JPH05207660A (en) Troubleshooting system for power supply
JPH09182451A (en) High-voltage output power converter
KR100245915B1 (en) Static reactive power compensator
GB2247576A (en) Overhead electric traction system employing AC-AC system
MXPA04009241A (en) Device for the inductive transmission of electric power.
KR102635793B1 (en) Integrated Static VAR Generator and Transformer for Railway Electric Power Quality Improvement
JPH028516Y2 (en)
WO2021149707A1 (en) Power conversion device and power supply device for substation
JP3315303B2 (en) Motor control device
JP2682241B2 (en) Power failure countermeasure device
KR102589807B1 (en) Transformer with Auxiliary Winding
Ohnishi et al. Control and experiment of a bidirectional chopper with an auxiliary converter
JPS61108020A (en) Protection device for power regenerative inverter
JP3529399B2 (en) Power converter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20070907

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080907

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090907

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10