JPH08201742A - Mach-zehnder type light intensity modulator bias voltage control circuit - Google Patents

Mach-zehnder type light intensity modulator bias voltage control circuit

Info

Publication number
JPH08201742A
JPH08201742A JP866395A JP866395A JPH08201742A JP H08201742 A JPH08201742 A JP H08201742A JP 866395 A JP866395 A JP 866395A JP 866395 A JP866395 A JP 866395A JP H08201742 A JPH08201742 A JP H08201742A
Authority
JP
Japan
Prior art keywords
light
intensity modulator
bias voltage
output
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP866395A
Other languages
Japanese (ja)
Inventor
Hideyuki Serizawa
秀幸 芹澤
Atsushi Murata
淳 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP866395A priority Critical patent/JPH08201742A/en
Publication of JPH08201742A publication Critical patent/JPH08201742A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops

Abstract

PURPOSE: To always limit the bias voltage to light emission logic corresponding to an α parameter positive/negative code conversion signal and to stably control a light intensity modulator output light by using a limit circuit suppressing a bias voltage control circuit output value to a specified range for a Mach- Zehnder half-cycle voltage. CONSTITUTION: The limit circuit 1 setting an output range of a bias voltage value Vb applied to a light intensity modulator 5 to ±1/2 or below of the half- cycle voltage Vπ around a light emission logic decision voltage selection circuit output value is provided between a logic selection circuit 2 and a bias voltage application circuit 3. Thus, a mean light output detection circuit output voltage Vb is controlled to one setting solution Vb respectively always like Vb=0 (v) before light emission logic inversion, Vb=-Vπ(v) after the light emission inversion so as to be stabilized to a target value C, and it is controlled by the light emission logic matching with the α parameter positive/negative code conversion signal even when the change, etc., in the quenching characteristics of the light intensity modulator 5 occurs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマッハツェンダ型光強度
変調器(以下、単に光強度変調器)を外部変調器として
用いた光出力強度変調光送信器に使用でき、特に送信器
のαパラメータの正負符号変換に伴う伝送信号の論理反
転時でも、制御目標である光出力に対して複数存在する
制御解の中から、常にαパラメータ正負符号変換入力に
対応した発光論理となるよう一つの制御解に限定し、光
強度変調器出力光を安定に制御するのに好適な光強度変
調器のバイアス電圧制御回路に関する。
BACKGROUND OF THE INVENTION The present invention can be used in an optical output intensity modulation optical transmitter using a Mach-Zehnder type optical intensity modulator (hereinafter, simply optical intensity modulator) as an external modulator. Even when the transmission signal is logically inverted due to the positive / negative sign conversion, one control solution is always selected from the plural control solutions for the optical output that is the control target so that the emission logic always corresponds to the α parameter positive / negative sign conversion input. The present invention relates to a bias voltage control circuit of an optical intensity modulator, which is suitable for stably controlling the output light of the optical intensity modulator.

【0002】[0002]

【従来の技術】光強度変調器を外部変調器として用いた
光出力強度変調光送信器では、光強度変調器の経時変化
や温度変化により、その消光特性が変動し、光強度変調
出力値の変化が発生する。
2. Description of the Related Art In a light output intensity modulation optical transmitter using a light intensity modulator as an external modulator, its extinction characteristic fluctuates due to changes in the light intensity modulator over time and temperature, and Changes occur.

【0003】本現象に対する従来の解決方法の制御回路
構成例を図2に挙げる。同図において、光強度変調器5
から出力される強度変調光の平均出力値を受光器10に
より平均電圧値として検出し、その値と目標値の偏差を
バイアス電圧制御回路6で増幅し、負帰還がかかるよう
バイアス制御電圧を出力する。この出力電圧をαパラメ
ータ正負符号変換信号入力で決定される発光論理に合わ
せて、論理選択回路2によりバイアス制御電圧出力の正
負制御方向を自動的に反転させ、光強度変調器5にバイ
アス電圧Vbをバイアス電圧印加回路3を介して印加す
ることにより安定な光出力値を得ている。同様の制御形
式を採用している例としては、特開平4−140712
号公報に記載の制御回路がある。
An example of a control circuit configuration of a conventional solution to this phenomenon is shown in FIG. In the figure, the light intensity modulator 5
The average output value of the intensity-modulated light output from the detector is detected as the average voltage value by the photodetector 10, the deviation between the value and the target value is amplified by the bias voltage control circuit 6, and the bias control voltage is output so that negative feedback is applied. To do. This output voltage is automatically inverted in the positive / negative control direction of the bias control voltage output by the logic selection circuit 2 in accordance with the light emission logic determined by the α parameter positive / negative sign conversion signal input, and the bias voltage Vb is applied to the light intensity modulator 5. Is applied via the bias voltage application circuit 3 to obtain a stable optical output value. An example of adopting a similar control format is Japanese Patent Laid-Open No. 4-140712.
There is a control circuit described in the publication.

【0004】しかし、上記従来の技術では、αパラメー
タの正負符号変換に伴う伝送信号の発光論理反転や光強
度変調器の消光特性の変化等により光強度変調器の光強
度変調出力値に大きな変化が生じた場合、光強度変調器
の光出力を制御するバイアス電圧Vbの出力範囲に制御
解が複数個存在することになる。これは目標の制御解と
は異なる制御解に制御されることによる論理反転と光出
力の安定制御が行えなくなる可能性を生じることとな
る。
However, in the above-mentioned conventional technique, the light intensity modulation output value of the light intensity modulator changes significantly due to the inversion of the emission signal of the transmission signal and the change of the extinction characteristic of the light intensity modulator accompanying the sign conversion of the α parameter. Occurs, there are a plurality of control solutions in the output range of the bias voltage Vb that controls the light output of the light intensity modulator. This causes a possibility that the logic inversion and the stable control of the light output cannot be performed because the control solution is controlled to be different from the target control solution.

【0005】[0005]

【発明が解決しようとする課題】一般に、変調信号とバ
イアス電圧を異なる導波路に印加する光強度変調器では
数1で近似されるP0のDC消光特性を有する。ここで
Vm´は変調信号入力側に印加されるDC電圧、Vbは
変調信号が印加されるのとは異なる導波路に印加される
バイアス電圧、AはVm´とVbを印加した場合の光強
度変調器の最大と最小出力光レベルの差をそれぞれ表
す。
Generally, a light intensity modulator for applying a modulation signal and a bias voltage to different waveguides has a DC extinction characteristic of P0 approximated by the equation (1). Here, Vm 'is a DC voltage applied to the modulation signal input side, Vb is a bias voltage applied to a waveguide different from that to which the modulation signal is applied, and A is a light intensity when Vm' and Vb are applied. It represents the difference between the maximum and minimum output light levels of the modulator.

【0006】[0006]

【数1】 [Equation 1]

【0007】Po ;光強度変調器出力光 Vb ;バイアス電圧 A ;光強度変調器光出力振幅 Vm´;信号入力側DC電圧 更に、光強度変調器に印加される変調信号振幅Vmを、
Vm=Vπ(vpp)とした時の、光強度変調器出力光
の分岐光を受光器で電圧変換し、その電圧値を平均光出
力検出回路にて平均化した出力電圧V0は数2で近似さ
れる。
Po: Light intensity modulator output light Vb; Bias voltage A: Light intensity modulator light output amplitude Vm '; Signal input side DC voltage Further, the modulation signal amplitude Vm applied to the light intensity modulator is:
When Vm = Vπ (vpp), the branched voltage of the output light of the light intensity modulator is converted into a voltage by the light receiver, and the output voltage V0 obtained by averaging the voltage value by the average light output detection circuit is approximated by Equation 2. To be done.

【0008】[0008]

【数2】 [Equation 2]

【0009】V0;平均光出力検出回路出力電圧値 B ;平均光出力検出回路の出力電圧振幅 Vm;入力信号振幅 C ;Vb=0,Vm=Vπ時の平均光出力検出回路の
出力電圧値 図3に数1で近似される光強度変調器のDC消光特性、
図4に、図3のDC消光特性を持つ光強度変調器を変調
信号振幅Vmで変調した時の光出力波形を示す。今、光
強度変調器5に変調信号振幅Vmの入力信号とバイアス
電圧Vbが光強度変調器に印加されたとする。この時
(a)Vb=0(v)、(b)Vb=−Vπ/2
(v)、(c)Vb=−Vπ(v)のようにバイアス電
圧を変化させた時、光強度変調器のDC消光特性P0は
図3(a)〜(c)の様に変化し、光強度変調器5の光
出力波形は、各々図4(a)〜(c)の様に変化する。
更にVbを大きくすると光強度変調器5の光出力波形は
図4(d)(e)の様に変化する。光送信器のαパラメ
ータの正負符号の変換は図3におけるVb=0,−Vπ
(v)に対応し、その時の光送信波形は図4の(a)
(c)に示すように発光論理が反転する。すなわち、光
送信器のαパラメータ正負符号と発光論理はαパラメー
タ正負符号変換信号により発光論理決定電圧選択回路4
とバイアス電圧印加回路3を介して光強度変調器に印加
されるバイアス電圧値により決まる。
V0: average light output detection circuit output voltage value B: average light output detection circuit output voltage amplitude Vm; input signal amplitude C; output voltage value of average light output detection circuit when Vb = 0, Vm = Vπ The DC extinction characteristic of the light intensity modulator, which is approximated by Equation 1 to 3,
FIG. 4 shows an optical output waveform when the optical intensity modulator having the DC extinction characteristic of FIG. 3 is modulated with the modulation signal amplitude Vm. Now, it is assumed that the input signal having the modulation signal amplitude Vm and the bias voltage Vb are applied to the light intensity modulator 5. At this time, (a) Vb = 0 (v), (b) Vb = −Vπ / 2
When the bias voltage is changed as shown in (v) and (c) Vb = −Vπ (v), the DC extinction characteristic P0 of the light intensity modulator changes as shown in FIGS. 3 (a) to 3 (c). The light output waveform of the light intensity modulator 5 changes as shown in FIGS. 4 (a) to 4 (c).
When Vb is further increased, the light output waveform of the light intensity modulator 5 changes as shown in FIGS. The conversion of the sign of the α parameter of the optical transmitter is Vb = 0, −Vπ in FIG.
4A corresponds to (v), and the optical transmission waveform at that time is (a) in FIG.
The light emission logic is inverted as shown in (c). That is, the α parameter positive / negative sign and the light emission logic of the optical transmitter are determined based on the α parameter positive / negative code conversion signal.
And the bias voltage value applied to the light intensity modulator via the bias voltage applying circuit 3.

【0010】図5に数2で近似されるバイアス電圧Vb
と光強度変調器の出力光の平均値、すなわち、平均光出
力検出回路出力電圧V0の関係を示す。
Bias voltage Vb approximated by equation 2 in FIG.
And the average value of the output light of the light intensity modulator, that is, the average light output detection circuit output voltage V0.

【0011】今、V0の目標値をCとした時、消光比の
特性変化等により目標値Cと平均光出力検出回路出力値
に偏差が生じたとする。バイアス電圧制御回路6では、
この偏差を補正するよう偏差を増幅し負帰還がかかるよ
うバイアス制御電圧を出力する。そのため、バイアス制
御電圧値が半周器電圧Vπの±1/2よりも大きいと、
バイアス電圧Vbに対する光強度変調器5の平均光出力
値の増減の傾きが反転してしまう領域となり、平均光出
力は目標値に制御できなくなる。またバイアス制御電圧
出力可能範囲が大きくなるほど、V0=C(V)となる
VbはVb=0,±Vπ、±2Vπ、…(V)と複数
存在するためバイアス制御を行う制御解が複数個存在し
てしまい、安定した光強度変調器の出力制御ができなく
なってしまう。
Now, assuming that the target value of V0 is C, it is assumed that a deviation occurs between the target value C and the output value of the average light output detection circuit due to the characteristic change of the extinction ratio or the like. In the bias voltage control circuit 6,
A bias control voltage is output so that the deviation is amplified so as to correct this deviation and negative feedback is applied. Therefore, when the bias control voltage value is larger than ± 1/2 of the half frequency Vπ,
The slope of the increase or decrease of the average light output value of the light intensity modulator 5 with respect to the bias voltage Vb becomes a region in which the average light output cannot be controlled to the target value. Further, the larger the range in which the bias control voltage can be output becomes, V0 = C (V). Since there are a plurality of Vb, Vb = 0, ± Vπ, ± 2Vπ, ... (V), there are a plurality of control solutions for performing bias control. As a result, stable output control of the light intensity modulator cannot be performed.

【0012】さらに、光強度変調器で光強度変調された
信号光の発光論理は、光強度変調器に印加されるバイア
ス電圧Vbにより決まり、発光論理決定電圧選択回路出
力値0,−Vπ(v)を中心に±Vπ/2(v)の範囲
ごとに反転する。よって、Vbの値が発光論理決定電圧
選択回路出力値を中心に±Vπ/2(v)よりも大きく
なると、すなわち、論理選択回路出力値が±Vπ/2
(v)より大きくなると、光強度変調器から出力される
光強度変調光の発光論理がαパラメータ正負符号変換信
号入力により決定される発光論理に対し反転してしまう
可能性が生じる。
Further, the light emission logic of the signal light whose light intensity is modulated by the light intensity modulator is determined by the bias voltage Vb applied to the light intensity modulator, and the light emission logic determination voltage selection circuit output values 0 and -Vπ (v ) Is centered around each range of ± Vπ / 2 (v). Therefore, when the value of Vb becomes larger than ± Vπ / 2 (v) around the light emission logic determination voltage selection circuit output value, that is, the logic selection circuit output value is ± Vπ / 2.
When it becomes larger than (v), the light emission logic of the light intensity modulated light output from the light intensity modulator may be inverted with respect to the light emission logic determined by the α parameter positive / negative sign conversion signal input.

【0013】[0013]

【課題を解決するための手段】図1は本発明の構成例を
示すブロック図である。
FIG. 1 is a block diagram showing a configuration example of the present invention.

【0014】前記課題を解決するために、本発明は、光
強度変調素子11とその光出力を分岐して出力光を検出
する受光器10を備えた光強度変調器5と光強度変調器
5に入力する直流光を発光する直流光源モジュール8
と、光強度変調器5と、光強度変調器5を駆動し光強度
変調を与えるマッハツェンダ駆動回路7と、受光器10
により、光強度変調器出力光の平均値を検出する平均光
出力検出回路9と、平均光出力検出回路9の出力値と目
標値とを比較してその偏差を補正するよう光強度変調器
5に印加するバイアス電圧値を決定するバイアス電圧制
御回路6と、バイアス電圧を光強度変調器5に印加する
バイアス電圧印加回路3と、伝送信号の発光論理を反転
させ、光送信器のαパラメータの正負符号を変換する発
光論理決定電圧をバイアス電圧印加回路3を介して光強
度変調器5に印加する発光論理決定電圧選択回路4と、
伝送信号の発光論理が反転するとともに、バイアス電圧
制御出力値の正負制御方向を自動的に反転させる論理選
択回路2とからなる光出力強度変調光送信器において、
光強度変調器5に印加するバイアス電圧値Vbの出力範
囲を、発光論理決定電圧選択回路出力値を中心に、半周
期電圧Vπの±1/2以下に設定したリミット回路1
を、論理選択回路2とバイアス電圧印加回路3間に設け
たことを特徴とする光強度変調器バイアス電圧制御回路
を提供する。
In order to solve the above-mentioned problems, the present invention provides a light intensity modulator 5 and a light intensity modulator 5 each including a light intensity modulator 11 and a light receiver 10 for branching the optical output and detecting the output light. DC light source module 8 for emitting DC light to be input to
A light intensity modulator 5, a Mach-Zehnder drive circuit 7 for driving the light intensity modulator 5 to perform light intensity modulation, and a light receiver 10.
Thus, the average light output detection circuit 9 for detecting the average value of the output light of the light intensity modulator, and the light intensity modulator 5 so as to correct the deviation by comparing the output value of the average light output detection circuit 9 with the target value. Bias voltage control circuit 6 that determines the bias voltage value applied to the optical signal, bias voltage application circuit 3 that applies the bias voltage to the optical intensity modulator 5, and the light emission logic of the transmission signal is inverted to set the α parameter of the optical transmitter. A light emission logic determination voltage selecting circuit 4 for applying a light emission logic determination voltage for converting a positive / negative sign to the light intensity modulator 5 via a bias voltage applying circuit 3,
An optical output intensity modulation optical transmitter comprising a logic selection circuit 2 for automatically inverting the positive / negative control direction of a bias voltage control output value while inverting the emission logic of a transmission signal,
A limit circuit 1 in which the output range of the bias voltage value Vb applied to the light intensity modulator 5 is set to ± 1/2 or less of the half cycle voltage Vπ centering on the output value of the light emission logic determination voltage selection circuit.
Is provided between the logic selection circuit 2 and the bias voltage application circuit 3 to provide a light intensity modulator bias voltage control circuit.

【0015】[0015]

【作用】以下、図1、図5を用いて本発明の動作原理を
説明する。
The operation principle of the present invention will be described below with reference to FIGS.

【0016】直流光源モジュール8により発光された直
流光は、光強度変調器5に入射され、マッハツェンダ駆
動回路7から印加される変調信号により光強度変調を与
えられている。
The DC light emitted from the DC light source module 8 is incident on the light intensity modulator 5 and is subjected to light intensity modulation by the modulation signal applied from the Mach-Zehnder drive circuit 7.

【0017】光強度変調器5の光強度変調光の分岐光は
受光器10により電圧変換され、平均光出力検出回路9
により平均光出力検出回路出力電圧としてバイアス電圧
制御回路6に入力される。バイアス電圧制御回路6では
入力された平均光出力検出電圧と目標値を比較し、その
差を補正するバイアス電圧を出力する。
The branched light of the light intensity modulated light of the light intensity modulator 5 is voltage-converted by the light receiver 10, and the average light output detection circuit 9
Is input to the bias voltage control circuit 6 as the average light output detection circuit output voltage. The bias voltage control circuit 6 compares the input average optical output detection voltage with the target value and outputs a bias voltage for correcting the difference.

【0018】本送信器のαパラメータの正負符号変換を
するために、αパラメータの正負符号変換端子から符号
変換命令信号を入力したとき、発光論理決定電圧選択回
路4によりバイアス電圧印加回路3を介してバイアス電
圧Vbを0(v)から−Vπ(v)に変化させる。これ
に伴い光強度変調器5のバイアス電圧Vbに対する光出
力の変化の傾きが反転するため、平均光出力検出回路出
力電圧を一定に保つバイアス電圧Vbの正負制御方向を
論理選択回路2により発光論理に合わせて反転させる。
そして、論理選択回路2からバイアス電圧印加回路3へ
入力されるバイアス制御電圧範囲を±Vπ/2以下に設
定したリミット回路1をバイアス電圧印加回路3と論理
選択回路2の間に設けることにより、平均光出力検出回
路出力電圧Vbは目標値Cに安定するように、発光論理
反転前はVb=0(v)、発光論理反転後はVb=−V
π(v)と各々常に一つの制御解のVbに制御され、光
強度変調器5の消光特性の変化等が生じても、入力され
たαパラメータの正負符号変換信号に合致した発光論理
に制御される。
In order to perform the sign conversion of the α parameter of the transmitter, when a sign conversion command signal is input from the sign conversion terminal of the α parameter, the light emission logic determination voltage selection circuit 4 causes the bias voltage application circuit 3 to operate. The bias voltage Vb is changed from 0 (v) to -Vπ (v). Along with this, the slope of the change in the optical output with respect to the bias voltage Vb of the light intensity modulator 5 is inverted, so the positive / negative control direction of the bias voltage Vb for keeping the average optical output detection circuit output voltage constant is determined by the logic selection circuit 2 to emit light. Invert according to.
By providing the limit circuit 1 in which the bias control voltage range input from the logic selection circuit 2 to the bias voltage application circuit 3 is ± Vπ / 2 or less between the bias voltage application circuit 3 and the logic selection circuit 2, The average light output detection circuit output voltage Vb is Vb = 0 (v) before the light emission logic inversion and Vb = −V after the light emission logic inversion so that the average light output detection circuit output voltage Vb stabilizes at the target value C.
π (v) and Vb of one control solution are always controlled, and even if the extinction characteristic of the light intensity modulator 5 changes or the like, the light emission logic is controlled to match the positive / negative sign conversion signal of the input α parameter. To be done.

【0019】[0019]

【実施例】本発明の実施例として、マッハツェンダ半周
期電圧Vπ=4(v)、この時の光強度変調器5に印加
される変調信号振幅電圧VmをVπと同一の4(vp
p)、平均光出力検出回路出力電圧V0の目標値CをV
b=0(v)、Vb=−Vπ(v)の時C=0.5
(v)、数2に対する図5の平均光出力検出回路出力電
圧V0の出力電圧振幅BをB=0.6(v)とする。V
b=0(v)の時のαパラメータが正の実数、Vb=−
Vπ(v)の時のαパラメータが負の実数である光強度
変調器5を用いた図1の構成における光強度変調器バイ
アス電圧制御回路において、αパラメータの正負符号変
換を実施した10Gb/s、NRZ信号疑似ランダムパ
ターンによる光出力波形の振舞について説明する。
EXAMPLE As an example of the present invention, a Mach-Zehnder half-period voltage Vπ = 4 (v), and the modulation signal amplitude voltage Vm applied to the light intensity modulator 5 at this time is 4 (vp) which is the same as Vπ.
p), the target value C of the average optical output detection circuit output voltage V0 is V
When b = 0 (v) and Vb = −Vπ (v), C = 0.5
(V), the output voltage amplitude B of the average optical output detection circuit output voltage V0 of FIG. V
When b = 0 (v), the α parameter is a positive real number, Vb = −
In the light intensity modulator bias voltage control circuit in the configuration of FIG. 1 using the light intensity modulator 5 in which the α parameter at Vπ (v) is a negative real number, the sign of the α parameter is changed to 10 Gb / s. , NRZ signal pseudo random pattern behavior of the optical output waveform will be described.

【0020】αパラメータを正符号、すなわち、Vb=
0(v)として発光論理反転を実施せぬ時は、図6
(a)に示す、変調入力信号がHighの時発光、Lo
wの時非発光の良好な光出力波形が得られる。
The α parameter is a positive sign, that is, Vb =
When the light emission logic inversion is not performed with 0 (v),
Light is emitted when the modulation input signal is High, as shown in FIG.
When w, a good light output waveform with no light emission is obtained.

【0021】また、αパラメータを負符号、すなわちV
b=−Vπ(v)として発光論理反転を実施したとき
は、図6(b)に示す、変調入力信号がローの時発光、
ハイの時非発光の良好な光出力波形が得られる。
Further, the α parameter has a negative sign, that is, V
When the light emission logic inversion is performed with b = −Vπ (v), light emission occurs when the modulation input signal is low, as shown in FIG.
When it is high, a good light output waveform with no light emission is obtained.

【0022】今、マッハツェンダ半周期電圧Vπが4v
から4.5vに変化したとすると、発光論理符号反転前
では平均光出力V0=0.5vから0.55vと大きく
なる。この変動により数2に従い平均光出力検出回路出
力値V0が目標値Cとなるようにバイアス電圧VbはV
b=0(v)からVb=+0.25(v)にと正の方向
に大きくなるように制御される。発光論理符号反転後で
は平均光出力検出回路出力値V0は大きくなるが、論理
選択回路2によりバイアス電圧制御方向を逆にしている
ため、VbはVb=−4(v)からVb=−4.25
(v)にと発光論理反転前と同様に、V0が目標値Cと
なるようバイアス電圧Vbが負の方向に大きくなるよう
に制御される。
Now, the Mach-Zehnder half-period voltage Vπ is 4v.
If it changes from 4.5 v to 4.5 v, the average optical output V0 increases from 0.5 v to 0.55 v before the light emission logic sign is inverted. Due to this variation, the bias voltage Vb is set to V so that the average light output detection circuit output value V0 becomes the target value C according to Equation
It is controlled to increase in the positive direction from b = 0 (v) to Vb = + 0.25 (v). Although the average light output detection circuit output value V0 becomes large after the light emission logic sign inversion, since the bias voltage control direction is reversed by the logic selection circuit 2, Vb changes from Vb = -4 (v) to Vb = -4. 25
As in (v), the bias voltage Vb is controlled so as to increase in the negative direction so that V0 becomes the target value C as before the light emission logic inversion.

【0023】これはリミット回路1により、バイアス電
圧印加回路に入力されるバイアス制御電圧出力範囲が±
Vπ/2(v)に制限されているため、光強度変調器に
印加されるバイアス電圧Vbは目標値Cに安定するよう
に、発光論理反転前はVb=+0.25(v)、発光論
理反転後はVb=−4.25(v)と各々一つの制御解
のVbにのみ制御されるためである。よって、光強度変
調器5の消光特性の変化等が生じても、制御目標である
光出力に対して複数存在する制御解の中から、常にαパ
ラメータ正負符号変換入力に対応した発光論理となる一
つの制御解にのみ収束するよう制御するため、安定した
光強度変調器出力光を得ることができる。
This is because the output range of the bias control voltage input to the bias voltage applying circuit is ±± by the limit circuit 1.
Since it is limited to Vπ / 2 (v), the bias voltage Vb applied to the light intensity modulator is stabilized at the target value C so that Vb = + 0.25 (v) before the light emission logic inversion, and the light emission logic. This is because after the inversion, the control is performed only to Vb = −4.25 (v) and one control solution Vb. Therefore, even if the extinction characteristic of the light intensity modulator 5 changes or the like, the light emission logic corresponding to the α parameter positive / negative sign conversion input is always selected from the plurality of control solutions for the light output which is the control target. Since the control is performed so as to converge to only one control solution, a stable light intensity modulator output light can be obtained.

【0024】図7は、本発明光強度変調器バイアス電圧
制御回路の具体的な構成例を示す図である。本構成例で
は、論理反転の有無に係わらずマッハツェンダ消光特性
の変化に対して、常にαパラメータ正負符号変換信号に
対応した発光論理に限定し、安定した光強度変調器出力
光を得るため、可変抵抗と抵抗を用いて抵抗分割を行う
ことにより、バイアス電圧制御回路出力値を±Vπ/2
(v)以下に抑えるリミット回路を作成した。これは、
可変抵抗を使用しているため、任意のマッハツェンダ半
周期電圧Vπに対して自由に調整可能である。
FIG. 7 is a diagram showing a concrete configuration example of the light intensity modulator bias voltage control circuit of the present invention. In this configuration example, regardless of the presence or absence of the logic inversion, the change in the Mach-Zehnder extinction characteristic is always limited to the emission logic corresponding to the α parameter positive / negative sign conversion signal, and a stable light intensity modulator output light is obtained. By performing resistance division using resistors, the output value of the bias voltage control circuit is ± Vπ / 2.
(V) A limit circuit that suppresses the following is created. this is,
Since the variable resistor is used, it can be freely adjusted for any Mach-Zehnder half-period voltage Vπ.

【0025】また、図7では構成例の一つを示したが、
他にツェナーダイオード等を用いてもリミット回路を作
成可能である。
Although FIG. 7 shows one example of the configuration,
Alternatively, a limit circuit can be created by using a Zener diode or the like.

【0026】[0026]

【発明の効果】本発明によれば、従来のバイアス電圧制
御回路に比べ、バイアス電圧制御回路出力値をマッハツ
ェンダ半周期電圧Vπの±1/2以下に抑えるリミット
回路1を用いることにより、常にαパラメータ正負符号
変換信号に対応した発光論理に限定し、かつ光強度変調
器出力光を安定に制御することが可能となる。
According to the present invention, as compared with the conventional bias voltage control circuit, by using the limit circuit 1 that suppresses the output value of the bias voltage control circuit to ± 1/2 or less of the Mach-Zehnder half-cycle voltage Vπ, the α It becomes possible to limit the light emission logic corresponding to the parameter positive / negative sign conversion signal and to stably control the output light of the light intensity modulator.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明マッハツェンダ型光強度変調器バイアス
電圧制御回路の構成例を示すブロック図。
FIG. 1 is a block diagram showing a configuration example of a Mach-Zehnder type optical intensity modulator bias voltage control circuit of the present invention.

【図2】従来のマッハツェンダ型光強度変調器バイアス
電圧制御回路の構成を示すブロック図。
FIG. 2 is a block diagram showing a configuration of a conventional Mach-Zehnder type optical intensity modulator bias voltage control circuit.

【図3】マッハツェンダ型光強度変調器の消光特性と信
号入力の条件を示す説明図。
FIG. 3 is an explanatory diagram showing extinction characteristics of a Mach-Zehnder optical intensity modulator and conditions for signal input.

【図4】図3に示された消光特性を持つマッハツェンダ
型光強度変調器の出力光を示す説明図。
FIG. 4 is an explanatory diagram showing output light of a Mach-Zehnder type optical intensity modulator having the extinction characteristic shown in FIG.

【図5】図3に示された消光特性を持つマッハツェンダ
型光強度変調器の出力光を平均光出力検出回路で受けた
ときの出力とバイアス電圧の関係を示す説明図。
5 is an explanatory diagram showing the relationship between the output and the bias voltage when the output light of the Mach-Zehnder type optical intensity modulator having the extinction characteristic shown in FIG. 3 is received by the average optical output detection circuit.

【図6】本発明を用いたマッハツェンダ型光強度変調器
光出力波形図。
FIG. 6 is a light output waveform diagram of a Mach-Zehnder type optical intensity modulator using the present invention.

【図7】本発明マッハツェンダ型光強度変調器バイアス
電圧制御回路の具体的な構成例を示す説明図。
FIG. 7 is an explanatory diagram showing a specific configuration example of a Mach-Zehnder type optical intensity modulator bias voltage control circuit of the present invention.

【符号の説明】[Explanation of symbols]

1…リミット回路、 2…論理選択回路、 3…バイアス電圧印加回路、 4…発光論理決定電圧選択回路、 5…マッハツェンダ型光強度変調器、 6…バイアス電圧制御回路、 7…マッハツェンダ駆動回路、 8…直流光源モジュール、 9…平均光出力検出回路、 10…受光器、 11…マッハツェンダ型光強度変調素子。 DESCRIPTION OF SYMBOLS 1 ... Limit circuit, 2 ... Logic selection circuit, 3 ... Bias voltage application circuit, 4 ... Emission logic determination voltage selection circuit, 5 ... Mach-Zehnder type light intensity modulator, 6 ... Bias voltage control circuit, 7 ... Mach-Zehnder drive circuit, 8 ... DC light source module, 9 ... Average light output detection circuit, 10 ... Photoreceiver, 11 ... Mach-Zehnder type light intensity modulator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光強度変調素子とその光出力の分岐光を検
出する受光器が内蔵された光強度変調器と、前記光強度
変調器に入力する直流光を発光する直流光源モジュール
と、前記光強度変調器を駆動し光強度変調を与えるマッ
ハツェンダ駆動回路と、 前記受光器により、前記光強度変調器の出力光の平均値
を検出する平均光出力検出回路と、前記平均光出力検出
回路の出力値と目標値とを比較してその偏差を補正する
よう前記光強度変調器に印加するバイアス電圧値を決定
するバイアス電圧制御回路と、バイアス電圧をマッハツ
ェンダ型光強度変調器に印加するバイアス電圧印加回路
と、 伝送信号の発光論理を反転させ、光送信器のαパラメー
タの正負符号を変換するバイアス電圧をバイアス電圧印
加回路を介して前記光強度変調器に印加する発光論理決
定電圧選択回路と、伝送信号の発光論理が反転するとと
もに、バイアス電圧制御出力値の正負制御方向を自動的
に反転させる論理選択回路とからなる光出力強度変調光
送信器において、 前記光強度変調器に印加するバイアス電圧値の出力範囲
を、発光論理決定電圧選択回路出力値を中心に、マッハ
ツェンダ半周期電圧Vπの±1/2以下に設定したリミ
ット回路を、論理選択回路とバイアス電圧印加回路間に
設けたことを特徴とするマッハツェンダ型光強度変調器
バイアス電圧制御回路。
1. A light intensity modulator having a light intensity modulator and a light receiver for detecting branched light of its light output, a DC light source module for emitting DC light input to the light intensity modulator, and A Mach-Zehnder drive circuit that drives a light intensity modulator to provide light intensity modulation; an average light output detection circuit that detects an average value of the output light of the light intensity modulator by the light receiver; and an average light output detection circuit A bias voltage control circuit that determines the bias voltage value applied to the light intensity modulator so as to correct the deviation by comparing the output value and the target value, and the bias voltage that applies the bias voltage to the Mach-Zehnder type light intensity modulator. A bias voltage for inverting the light emission logic of the transmission signal and converting the sign of the α parameter of the optical transmitter is applied to the optical intensity modulator via the bias voltage application circuit. In an optical output intensity modulation optical transmitter comprising a light emission logic determination voltage selection circuit and a logic selection circuit for inverting the light emission logic of a transmission signal and automatically inverting the positive / negative control direction of a bias voltage control output value, The output range of the bias voltage value applied to the intensity modulator is set to ± 1/2 or less of the Mach-Zehnder half-cycle voltage Vπ centering on the output value of the light emission logic determination voltage selection circuit. A Mach-Zehnder type optical intensity modulator bias voltage control circuit provided between application circuits.
JP866395A 1995-01-24 1995-01-24 Mach-zehnder type light intensity modulator bias voltage control circuit Pending JPH08201742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP866395A JPH08201742A (en) 1995-01-24 1995-01-24 Mach-zehnder type light intensity modulator bias voltage control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP866395A JPH08201742A (en) 1995-01-24 1995-01-24 Mach-zehnder type light intensity modulator bias voltage control circuit

Publications (1)

Publication Number Publication Date
JPH08201742A true JPH08201742A (en) 1996-08-09

Family

ID=11699180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP866395A Pending JPH08201742A (en) 1995-01-24 1995-01-24 Mach-zehnder type light intensity modulator bias voltage control circuit

Country Status (1)

Country Link
JP (1) JPH08201742A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7852082B2 (en) 2005-03-29 2010-12-14 General Electric Company Remote monitoring system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7852082B2 (en) 2005-03-29 2010-12-14 General Electric Company Remote monitoring system and method

Similar Documents

Publication Publication Date Title
JP2642499B2 (en) Optical transmitter, optical modulator control circuit, and optical modulation method
US5208817A (en) Modulator-based lightwave transmitter
EP0444688B1 (en) Optical transmitter
US6078601A (en) Method for controlling the operation of a laser
EP0547394B1 (en) Optical transmitter having optical modulator
JP3210061B2 (en) Operating point stabilizer for optical interferometer
US5521749A (en) Optical modulation apparatus
JP2005202400A (en) Optical modulating apparatus having bias controller and bias control method using the same
US6334004B1 (en) Optical modulator, bias control circuit therefor, and optical transmitter including the optical modulator
JP2848942B2 (en) Optical transmitter
JPH11119176A (en) Driving circuit for electric field absorption type optical modulator and optical transmitter using the same
US7630651B2 (en) Method and apparatus for controlling bias point of optical transmitter
JPH08184790A (en) Ln modulator dc bias circuit
JPH0511672B2 (en)
JP4704596B2 (en) Optical quaternary modulator and optical quaternary modulation method
JPH08201742A (en) Mach-zehnder type light intensity modulator bias voltage control circuit
JPH1051389A (en) Optical transmitter
JP3527832B2 (en) Bias voltage control circuit for mark rate fluctuation
US7075694B2 (en) Apparatus and method for automatically correcting bias voltage for carrier suppressed pulse generating modulator
JP2004117729A (en) Optical modulator controlling device, optical transmitting device, and controlling method and controlling program for optical modulator
JPH1168669A (en) Optical transmitter
US7266309B2 (en) Apparatus and method for stabilizing bias voltage for pulse generating modulator
JPH05232412A (en) Controller for linbo3 mach-zehnder interference type modulator
JP2003149613A (en) Optical modulation circuit
JPH10117170A (en) Light transmitter