JPH08201278A - Spectrum measuring device - Google Patents

Spectrum measuring device

Info

Publication number
JPH08201278A
JPH08201278A JP733195A JP733195A JPH08201278A JP H08201278 A JPH08201278 A JP H08201278A JP 733195 A JP733195 A JP 733195A JP 733195 A JP733195 A JP 733195A JP H08201278 A JPH08201278 A JP H08201278A
Authority
JP
Japan
Prior art keywords
measurement
light
reflected
attached
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP733195A
Other languages
Japanese (ja)
Inventor
Kenji Nakamura
健次 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP733195A priority Critical patent/JPH08201278A/en
Publication of JPH08201278A publication Critical patent/JPH08201278A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection

Abstract

PURPOSE: To provide the spectrum measuring device using a compact ATR (Attenuated Total Reflectance measurement) prism, which has the few number of constituent parts and does not require an adjusting mechanism. CONSTITUTION: An ATR prism 11 has the pairs of a plurality of incident surfaces and outgoing surfaces. Light sources 12a and 12b, which emit the lights having the specified wavelengths are attached to the respective incident surfaces in tight contact. Detectors 13a and 13b, which receive the measuring lights that are emitted from the light sources 12a and 12b attached to the incident surface for forming the pairs and reflected from the reflecting surfaces, are attached to the outgoing surfaces in tight contact. the measurement of a plurality of wavelengths is performed by the respective pairs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スペクトル測定装置に
関し、さらに詳しくは赤外、近赤外スペクトル測定原理
に基づき物質の構造測定、特にプロセスのオンライン測
定に利用されるスペクトル測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectrum measuring apparatus, and more particularly to a spectrum measuring apparatus used for on-line measurement of a structure of a substance based on the principle of infrared and near-infrared spectrum measurement.

【0002】[0002]

【従来の技術】試料表面で全反射する光を測定すること
により試料表面の吸収スペクトルを得て物質測定を行う
全反射吸収測定(以下、ATRという)によるスペクト
ル分析の方法が知られている。
2. Description of the Related Art There is known a method of spectrum analysis by total reflection absorption measurement (hereinafter referred to as ATR) in which an absorption spectrum of the sample surface is obtained by measuring light totally reflected on the sample surface to measure a substance.

【0003】従来のATRによるスペクトル測定装置
は、図9に示すように反射鏡などを使った集光光学系を
用いて、平板状のATRプリズムの所定角度に切り出さ
れた入射側の側面に測定光を入射し、被測定試料が密着
されたATRプリズムの平行な反射面間で繰り返し反射
された後に、ATRプリズムの出射側の側面からの出力
光を検出器に導いて測定していた。このような装置でA
TR測定をする場合、ATRプリズム周辺に配置される
光学部品の光学的、機械的な制約を受けるため、分光器
1干渉計からの出力光を一点から入射し、波長走査を行
うことにより、多波長での測定を行っている。複数の単
色光源を使うようにした応用例でもプリズムの外で複雑
な光束合成器を用いる必要がある。
A conventional ATR spectrum measuring apparatus uses a condensing optical system using a reflecting mirror or the like as shown in FIG. 9 to measure on a side surface of an incident side cut out at a predetermined angle of a flat plate-shaped ATR prism. After the light was incident and the sample to be measured was repeatedly reflected between the parallel reflecting surfaces of the ATR prism to which the sample was adhered, the output light from the side surface on the exit side of the ATR prism was guided to a detector for measurement. A device like this
In the case of TR measurement, there are optical and mechanical restrictions of the optical components arranged around the ATR prism, so that the output light from the spectroscope 1 interferometer is made incident from one point, and wavelength scanning is performed, so that many We are measuring at the wavelength. Even in an application in which a plurality of monochromatic light sources are used, it is necessary to use a complicated light beam combiner outside the prism.

【0004】[0004]

【発明が解決しようとする課題】上記のようなATR測
定では、ATRプリズムの周辺に集光光学系を有すると
ともにこの光学系を調整するための調整機構を必要とす
る。そのため、構成部品数が多くなり、複雑な光学系と
なる。また、これらの光学系の調整も煩雑である。 本
発明は以上のような問題を解決し、光学系の構成部品数
を低減し、低価格化、高生産性を図るとともに装置の小
型化を図り、さらには調整機構を不要として安定性、操
作性を向上させることを目的とする。
The above ATR measurement requires a focusing optical system around the ATR prism and an adjusting mechanism for adjusting this optical system. Therefore, the number of constituent parts is increased and the optical system becomes complicated. Also, adjustment of these optical systems is complicated. The present invention solves the above problems, reduces the number of components of the optical system, achieves cost reduction, high productivity, and downsizing of the device. Furthermore, the adjustment mechanism is unnecessary, and stability and operation are achieved. The purpose is to improve sex.

【0005】[0005]

【課題を解決するための手段】上記問題を解決するため
になされた本発明のスペクトル測定装置は、測定光が入
射される入射面、被測定試料表面が密着され被測定試料
表面により前記測定光が反射される反射面、反射面にお
いて反射された後の測定光が出射される出射面を有する
ATRプリズムを用いて測定するスペクトル測定装置に
おいて、前記ATRプリズムは複数の入射面と出射面と
の対を有し、各入射面にはそれぞれ特定波長の光を発す
る光源をこの入射面に密着させて取り付け、各出射面に
は対となる入射面に取り付けた光源から発せられ反射面
にて反射された測定光を受光する検出器をこの出射面に
密着させて取り付けることにより、複数の波長の全反射
吸収測定を行うようにしたことを特徴とする。以下、こ
のスペクトル測定装置がどのように作用するかを説明す
る。
The spectrum measuring apparatus of the present invention made to solve the above-mentioned problems is such that the incident surface on which the measurement light is incident and the surface of the sample to be measured are in close contact with each other, and In a spectrum measuring apparatus for measuring using an ATR prism having a reflection surface for reflecting light and an emission surface for emitting the measurement light after being reflected by the reflection surface, the ATR prism is composed of a plurality of incidence surfaces and an emission surface. A light source that emits light of a specific wavelength is attached to each incident surface in close contact with this incident surface, and each exit surface is emitted from the light source attached to the incident surface to be paired and reflected by the reflection surface. It is characterized in that a detector for receiving the measured light thus measured is attached to the emission surface so as to be in close contact therewith, thereby performing total reflection absorption measurement of a plurality of wavelengths. Hereinafter, how this spectrum measuring device works will be described.

【0006】[0006]

【作用】本発明のスペクトル測定装置では、ATRプリ
ズムに光源、検出器が密着されているので、従来ATR
測定に必要であった反射鏡、レンズなどの集光光学系が
不要となり、装置構成が簡易なものとなる。測定は、複
数の入射面と出射面との対ごとに1つの波長の測定をす
るので、これらの複数対により複数の波長での測定が行
われる。ここで被測定試料に合わせて測定する波長の組
み合わせを選ぶことにより、必要な情報が得られる。特
にプロセスのオンライン測定では連続的に波長を走査し
て測定することなく、特定の波長を測定すればよいので
本装置が有効である。
In the spectrum measuring apparatus of the present invention, since the light source and the detector are closely attached to the ATR prism, the conventional ATR prism is used.
The condensing optical system such as the reflecting mirror and the lens, which was necessary for the measurement, is not required, and the device configuration becomes simple. In the measurement, one wavelength is measured for each of the plurality of pairs of the entrance surface and the exit surface, so that the plurality of pairs perform the measurements at the plurality of wavelengths. Here, necessary information can be obtained by selecting a combination of wavelengths to be measured according to the sample to be measured. Particularly, in the online measurement of the process, the present apparatus is effective because it is sufficient to measure a specific wavelength without continuously scanning and measuring the wavelength.

【0007】[0007]

【実施例】以下、本発明の実施例を図を用いて説明す
る。図1は本発明の一実施例を示すスペクトル測定装置
の全体構成図を示す。また、図2は本発明の一実施例を
示すスペクトル測定装置のATRプリズム部分の平面
図、図3は図2の3−3’断面図、図4は図2の4−
4’断面図を示す。このスペクトル測定装置10は、A
TRプリズム11、光源としての半導体レーザ12a、
12b、検出器としてのフォトダイオード13a、13
b、半導体レーザの電源14a、14b、フォトダイオ
ードの出力信号の増幅器15a、15b、装置の制御や
演算を行う制御部16とからなる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an overall configuration diagram of a spectrum measuring apparatus showing an embodiment of the present invention. 2 is a plan view of an ATR prism portion of a spectrum measuring apparatus showing an embodiment of the present invention, FIG. 3 is a sectional view taken along line 3-3 ′ of FIG. 2, and FIG.
4'shows a cross section. This spectrum measuring device 10 is
TR prism 11, semiconductor laser 12a as a light source,
12b, photodiodes 13a and 13 as detectors
b, semiconductor laser power supplies 14a and 14b, photodiode output signal amplifiers 15a and 15b, and a control unit 16 that controls and calculates the apparatus.

【0008】ATRプリズム11は、互いに平行である
上面、下面と、これらの面に対して45度の角度で切り
落とされた4つの側面からなる正四角錐台の形状を有し
ている。ATRプリズムの上面と下面とには被測定試料
が密着するように取り付けられる(これらの面は反射面
となる)。ATRプリズムの4つの側面のうち隣合う2
つの面には半導体レーザ12a、12bがこの面に直接
に密着するように取り付けられる(これらの面は入射面
となる)。半導体レーザ12a、12bが取り付けられ
た面の対面にはフォトダイオード13a、13bが直接
に密着するように取り付けられる(これらの面は出射面
となる)。そして、半導体レーザ12aから発せられる
光は反射面で繰り返し反射された後でフォトダイオード
13aに至り、同様に、半導体レーザ12bから発せら
れる光はフォトダイオード13bに至るようにされてい
る。
The ATR prism 11 has the shape of a regular quadrangular pyramid having an upper surface and a lower surface which are parallel to each other, and four side surfaces cut off at an angle of 45 degrees with respect to these surfaces. The sample to be measured is attached to the upper and lower surfaces of the ATR prism so as to be in close contact with each other (these surfaces serve as reflecting surfaces). Adjacent two of the four sides of the ATR prism
The semiconductor lasers 12a and 12b are attached to one surface so as to be in direct contact with this surface (these surfaces are incident surfaces). Photodiodes 13a and 13b are attached so as to be in direct contact with the surface opposite to the surface to which the semiconductor lasers 12a and 12b are attached (these surfaces become emission surfaces). The light emitted from the semiconductor laser 12a reaches the photodiode 13a after being repeatedly reflected by the reflecting surface, and similarly, the light emitted from the semiconductor laser 12b reaches the photodiode 13b.

【0009】半導体レーザ12a、12bは、被測定試
料に応じて適当な発光波長λ1、λ2を有するものが選
択される。波長が任意に変更できる可変波長レーザを用
いれば被測定試料ごとに容易に最適な条件での測定が可
能となる。なお、光源としては半導体レーザに限るもの
ではなく、要するにATRプリズムに密着させることが
できて、特定波長の光を発することができ、プリズム対
向面に全反射した光を投影できる性質を実現できるもの
であればよい。また、検出器についてもフォトダイオー
ドに限らず、要するにATRプリズムに密着でき、測定
光を検出できるものであればよい。
As the semiconductor lasers 12a and 12b, those having appropriate emission wavelengths λ1 and λ2 are selected according to the sample to be measured. If a variable wavelength laser whose wavelength can be arbitrarily changed is used, it is possible to easily perform measurement under optimum conditions for each sample to be measured. It should be noted that the light source is not limited to the semiconductor laser, in short, it can be brought into close contact with the ATR prism, can emit light of a specific wavelength, and can realize the property of projecting totally reflected light on the prism facing surface. If Further, the detector is not limited to the photodiode, and any detector can be used as long as it can be in close contact with the ATR prism and can detect the measurement light.

【0010】図5に2波長測定の原理を示す。図におい
てλ2は被測定試料の測定対象となる特有の吸収波長で
あり、λ1はバックグランド、すなわち被測定試料の測
定対象外の介存物による吸収波長である。したがって、
被測定試料の存在量はB/Aの比によって求められる。
本実施例では、たとえば半導体レーザ12aの発光波長
としてλ1を選び、半導体レーザ12bとしてとしてλ
2を選ぶようにすれば、フォトダイオード13a、13
bの出力の比を求めることによりこの原理による測定を
行うことができる。
FIG. 5 shows the principle of dual wavelength measurement. In the figure, λ2 is a specific absorption wavelength to be measured by the sample to be measured, and λ1 is a background, that is, an absorption wavelength due to inclusions outside the object to be measured of the sample to be measured. Therefore,
The abundance of the sample to be measured is determined by the B / A ratio.
In this embodiment, for example, λ1 is selected as the emission wavelength of the semiconductor laser 12a and λ is selected as the semiconductor laser 12b.
If 2 is selected, the photodiodes 13a and 13a
Measurement based on this principle can be performed by obtaining the ratio of the outputs of b.

【0011】なお、ATRプリズム11の材料は従来か
らのATRプリズムと同じ基準で選択された材料を用い
ればよい。
The material of the ATR prism 11 may be selected from the same standard as that of the conventional ATR prism.

【0012】測定をするときは、電源14a、14bを
ONにして半導体レーザ12a、12bを駆動する。半
導体レーザ12a、12bからはそれぞれλ1、λ2の
波長の光が発せられ、ATRプリズム内を図3、図4に
て矢印で示すように進み、試料表面で繰り返し全反射さ
れる。反射された測定光はやがてフォトダイオード13
a、13bに至り、増幅器15a、15bを介して測定
信号がスペクトル測定装置の制御部16に送られて演算
される。制御部ではそれぞれの信号の比が算出されて出
力される。このようにして、2波長測定による試料の測
定を行うことができる。
At the time of measurement, the power supplies 14a and 14b are turned on to drive the semiconductor lasers 12a and 12b. Lights of wavelengths λ1 and λ2 are emitted from the semiconductor lasers 12a and 12b respectively, and travel through the ATR prism as shown by arrows in FIGS. 3 and 4, and are repeatedly totally reflected on the sample surface. The reflected measurement light will eventually come to the photodiode 13
a, 13b, the measurement signal is sent to the control unit 16 of the spectrum measuring apparatus via the amplifiers 15a, 15b and is calculated. The control unit calculates and outputs the ratio of each signal. In this way, the sample can be measured by the two-wavelength measurement.

【0013】上記の実施例では、2つの半導体レーザを
同時に連続発振させるようにしたが、試料やプリズムが
粒子的な散乱要素を含むときは一方のみを交互にパルス
発振するようにすることにより、散乱による迷光の影響
を抑えることができる。さらに、試料を通じて外光の影
響がある場合は、2つの半導体レーザともOFFの周期
を設けて外光の影響を除去することもできる。
In the above embodiment, the two semiconductor lasers are continuously oscillated simultaneously. However, when the sample or the prism includes a particle-like scattering element, only one of them is alternately oscillated by pulse oscillation. The influence of stray light due to scattering can be suppressed. Further, when there is an influence of outside light through the sample, it is possible to remove the influence of outside light by providing an OFF cycle for both the two semiconductor lasers.

【0014】なお、上記の実施例では側面の切り落とし
角を45度としたが、これに限るものではなく、30
度、60度など被測定試料との関係により選択すればよ
い。また、側面の数を6面にすれば3組の入射面と出射
面の対ができ、3波長での測定が行える。同様に、8
面、10面と増加させていってもよい。
Although the cut-off angle of the side surface is set to 45 degrees in the above-mentioned embodiment, the cut-off angle is not limited to this, and it is not limited to this.
It may be selected according to the relationship with the sample to be measured, such as 60 degrees or 60 degrees. Further, if the number of side surfaces is 6, three pairs of entrance and exit surfaces can be formed, and measurement at three wavelengths can be performed. Similarly, 8
The number may be increased to 10 faces.

【0015】図6、7、8は本発明による他の実施例を
示すもので、図6は平面図、図7は図6における7−
7’断面図、図8は図6における8−8’断面図であ
る。このものは、レーザの直進性を利用したものであ
り、平行な上面と下面を有する柱状のプリズムの上面
(先端部分)にたとえば45度に切り落とした正四角形
面などの多角形面を設け、この多角形面の外面に被測定
試料を密着させる。また、下面(他端側の面)に半導体
レーザ22a、22b、フォトダイオード23a、23
bを取り付ける。このとき、半導体レーザ22aから発
せられる光が先端の多角形面で反射した後で、対となる
フォトダイオード23aに至るように半導体レーザ22
a、フォトダイオード23aが取り付けられる。半導体
レーザ22b、フォトダイオード23bについても同様
である。この場合、半導体レーザとフォトダイオードと
が同一面に取り付けられていることから入射面と出射面
とは同一面で兼用した形となっている。
FIGS. 6, 7 and 8 show another embodiment according to the present invention. FIG. 6 is a plan view and FIG.
7'is a sectional view, and FIG. 8 is an 8-8 'sectional view in FIG. This one utilizes the straightness of a laser, and a polygonal surface such as a square surface cut off at 45 degrees is provided on the upper surface (tip portion) of a columnar prism having a parallel upper surface and a lower surface. The sample to be measured is brought into close contact with the outer surface of the polygonal surface. The semiconductor lasers 22a and 22b and the photodiodes 23a and 23 are provided on the lower surface (the surface on the other end side).
Attach b. At this time, after the light emitted from the semiconductor laser 22a is reflected by the polygonal surface of the tip, the semiconductor laser 22 reaches the paired photodiodes 23a.
a and the photodiode 23a are attached. The same applies to the semiconductor laser 22b and the photodiode 23b. In this case, since the semiconductor laser and the photodiode are mounted on the same surface, the entrance surface and the exit surface have the same surface.

【0016】以下に、本発明が応用されている態様をま
とめておく。
The manner in which the present invention is applied will be summarized below.

【0017】(1)測定光が入射される入射面、被測定
試料表面が密着され被測定試料表面により前記測定光が
反射される反射面、反射面において反射された後の測定
光が出射される出射面を有するATRプリズムを用いて
測定するスペクトル測定装置において、前記ATRプリ
ズムは複数の入射面と出射面との対を有し、各入射面に
はそれぞれ特定波長の光を発する光源をこの入射面に密
着させて取り付け、各出射面には対となる入射面に取り
付けた光源から発せられ反射面にて反射された測定光を
受光する検出器をこの出射面に密着させて取り付け、各
光源を別々のタイミングで点灯する制御手段を設け、複
数の波長の全反射吸収測定を別々のタイミングで行うよ
うにしたことを特徴とするスペクトル測定装置。
(1) An incident surface on which the measurement light is incident, a reflection surface on which the surface of the sample to be measured is closely attached and the measurement light is reflected by the surface of the sample to be measured, and the measurement light after being reflected by the reflection surface is emitted. In a spectrum measuring apparatus for measuring using an ATR prism having an output surface, the ATR prism has a plurality of pairs of an entrance surface and an exit surface, and each entrance surface is provided with a light source that emits light of a specific wavelength. Each detector is attached in close contact with the entrance surface, and each exit surface is attached in close contact with this exit surface by a detector that receives the measurement light emitted from the light source attached to the pair of entrance surfaces and reflected by the reflection surface. A spectrum measuring apparatus characterized in that control means for turning on a light source at different timings is provided, and total reflection absorption measurement of a plurality of wavelengths is performed at different timings.

【0018】(2)測定光が入射される入射面、被測定
試料表面が密着され被測定試料表面により前記測定光が
反射される反射面、反射面において反射された後の測定
光が出射される出射面を有するATRプリズムを用いて
測定するスペクトル測定装置において、前記ATRプリ
ズムは柱状をなし、その下面には特定波長を発する光源
と、この光源から発せられ、上面に形成された反射面に
て反射され再び下面から出射される反射測定光を検出す
る検出器とからなる複数の対が密着して取り付けられ、
複数の波長の全反射吸収測定を個々の対により測定する
ようにしたことを特徴とするスペクトル測定装置。
(2) An incident surface on which the measurement light is incident, a reflection surface on which the surface of the sample to be measured is closely attached and the measurement light is reflected by the surface of the sample to be measured, and the measurement light after being reflected on the reflection surface is emitted. In a spectrum measuring apparatus that measures using an ATR prism having an emission surface, the ATR prism has a columnar shape, a light source emitting a specific wavelength on the lower surface thereof, and a reflection surface formed on the upper surface of the light source emitting from the light source. A plurality of pairs consisting of a detector that detects reflected measurement light that is reflected from the bottom surface and emitted again from the bottom surface,
A spectrum measuring device characterized in that total reflection absorption measurements of a plurality of wavelengths are measured by individual pairs.

【0019】[0019]

【発明の効果】以上、説明したように本発明によれば、
ATRプリズムに複数の入射面と出射面との対を設け
て、各入射面にはそれぞれ特定波長の光を発する光源を
この入射面に密着させて取り付け、各出射面には対とな
る入射面に取り付けた光源から発せられ反射面にて反射
された測定光を受光する検出器をこの出射面に密着させ
て取り付けたので、複雑な光学系を用いることなく、A
TR測定を行うことができる。そのため、構成部品が少
なくなり、光学系の調整も不要であり、装置の小型化が
可能となる。特に、プロセスのオンライン測定において
いくつかの特定の波長についての測定連続的に監視する
場合に小型で安定性のよい本発明のスペクトル測定装置
は効果的である。
As described above, according to the present invention,
The ATR prism is provided with a plurality of pairs of an entrance surface and an exit surface, and a light source that emits light of a specific wavelength is attached to each entrance surface in close contact with the entrance surface. Each exit surface forms a pair of entrance surfaces. Since a detector for receiving the measurement light emitted from the light source attached to and reflected by the reflection surface is attached in close contact with this emission surface, it is possible to use A without using a complicated optical system.
TR measurement can be performed. Therefore, the number of components is reduced, the adjustment of the optical system is not necessary, and the device can be downsized. In particular, the compact and stable spectrum measuring apparatus of the present invention is effective for continuous monitoring of several specific wavelengths in the on-line measurement of the process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例であるスペクトル測定装置の
全体構成図。
FIG. 1 is an overall configuration diagram of a spectrum measuring apparatus that is an embodiment of the present invention.

【図2】本発明の一実施例であるスペクトル測定装置の
ATRプリズム部分の平面図。
FIG. 2 is a plan view of an ATR prism portion of a spectrum measuring apparatus which is an embodiment of the present invention.

【図3】図2における3−3’断面図。3 is a sectional view taken along line 3-3 'in FIG.

【図4】図2における4−4’断面図。4 is a cross-sectional view taken along line 4-4 'of FIG.

【図5】2波長測定の原理を示す図。FIG. 5 is a diagram showing the principle of dual wavelength measurement.

【図6】本発明の他の一実施例であるスペクトル測定装
置のATRプリズム部分の平面図(下面図)。
FIG. 6 is a plan view (bottom view) of an ATR prism portion of a spectrum measuring apparatus which is another embodiment of the present invention.

【図7】図6における7−7’断面図。7 is a sectional view taken along line 7-7 'of FIG.

【図8】図6における8−8’断面図。8 is a sectional view taken along line 8-8 'of FIG.

【図9】従来からのATRプリズムを用いたスペクトル
測定の原理図。
FIG. 9 is a principle diagram of spectrum measurement using a conventional ATR prism.

【符号の説明】[Explanation of symbols]

10:スペクトル測定装置 11:ATRプリズム 12a、12b:半導体レーザ 13a、13b:フォトダイオード 16:制御部 10: spectrum measuring device 11: ATR prism 12a, 12b: semiconductor laser 13a, 13b: photodiode 16: control unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】測定光が入射される入射面、被測定試料表
面が密着され被測定試料表面により前記測定光が反射さ
れる反射面、反射面において反射された後の測定光が出
射される出射面を有するATRプリズムを用いて測定す
るスペクトル測定装置において、前記ATRプリズムは
複数の入射面と出射面との対を有し、各入射面にはそれ
ぞれ特定波長の光を発する光源をこの入射面に密着させ
て取り付け、各出射面には対となる入射面に取り付けた
光源から発せられ反射面にて反射された測定光を受光す
る検出器をこの出射面に密着させて取り付けることによ
り、複数の波長の全反射吸収測定を行うようにしたこと
を特徴とするスペクトル測定装置。
1. An incident surface on which measurement light is incident, a reflection surface on which the surface of the sample to be measured is in close contact and the measurement light is reflected by the surface of the sample to be measured, and the measurement light after being reflected by the reflection surface is emitted. In a spectrum measuring apparatus that measures using an ATR prism having an exit surface, the ATR prism has a plurality of pairs of entrance surfaces and exit surfaces, and each entrance surface is provided with a light source that emits light of a specific wavelength. By closely attaching to the surface, by attaching to each emission surface a detector that receives the measurement light emitted from the light source attached to the pair of incident surfaces and reflected by the reflection surface is closely attached to the emission surface, A spectrum measuring apparatus, characterized in that total reflection absorption measurement of a plurality of wavelengths is performed.
JP733195A 1995-01-20 1995-01-20 Spectrum measuring device Pending JPH08201278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP733195A JPH08201278A (en) 1995-01-20 1995-01-20 Spectrum measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP733195A JPH08201278A (en) 1995-01-20 1995-01-20 Spectrum measuring device

Publications (1)

Publication Number Publication Date
JPH08201278A true JPH08201278A (en) 1996-08-09

Family

ID=11662981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP733195A Pending JPH08201278A (en) 1995-01-20 1995-01-20 Spectrum measuring device

Country Status (1)

Country Link
JP (1) JPH08201278A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1444502A2 (en) * 2001-10-11 2004-08-11 Sentelligence, Inc. Low-cost on-line and in-line spectral sensors based on solid-state source and detector combinations for monitoring lubricants and functional fluids
EP1583955A1 (en) * 2003-01-07 2005-10-12 The Lubrizol Corporation Apparatus for on-line monitoring quality/condition of fluids
JP2006064405A (en) * 2004-08-24 2006-03-09 System Instruments Kk Light absorption measuring method, light absorption measuring instrument and optical waveguide usable in them
JP2008070391A (en) * 2007-12-05 2008-03-27 Fujifilm Corp Measuring apparatus utilizing total reflection light
US7459713B2 (en) 2003-08-14 2008-12-02 Microptix Technologies, Llc Integrated sensing system approach for handheld spectral measurements having a disposable sample handling apparatus
US20110051125A1 (en) * 2008-02-27 2011-03-03 Jsm Healthcare Inc. Apparatus and Method for Analyzing Urine Components in Toilet in Real-Time by Using Miniature ATR Infrared Spectroscopy
JP2011508887A (en) * 2008-01-03 2011-03-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Evanescent field modulation in biosensors
JP2011169738A (en) * 2010-02-18 2011-09-01 Sharp Corp Chemical material detector

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1444502A2 (en) * 2001-10-11 2004-08-11 Sentelligence, Inc. Low-cost on-line and in-line spectral sensors based on solid-state source and detector combinations for monitoring lubricants and functional fluids
EP1444502A4 (en) * 2001-10-11 2007-05-09 Sentelligence Inc Low-cost on-line and in-line spectral sensors based on solid-state source and detector combinations for monitoring lubricants and functional fluids
US7339657B2 (en) 2001-10-11 2008-03-04 Sentelligence, Inc. Low-cost on-line and in-line spectral sensors based on solid-state source and detectors combinations for monitoring lubricants and functional fluids
EP1583955A1 (en) * 2003-01-07 2005-10-12 The Lubrizol Corporation Apparatus for on-line monitoring quality/condition of fluids
AU2004204512B2 (en) * 2003-01-07 2008-11-06 The Lubrizol Corporation Apparatus for on-line monitoring quality/condition of fluids
US7459713B2 (en) 2003-08-14 2008-12-02 Microptix Technologies, Llc Integrated sensing system approach for handheld spectral measurements having a disposable sample handling apparatus
JP2006064405A (en) * 2004-08-24 2006-03-09 System Instruments Kk Light absorption measuring method, light absorption measuring instrument and optical waveguide usable in them
JP4516803B2 (en) * 2004-08-24 2010-08-04 システム・インスツルメンツ株式会社 Optical absorption measurement method and apparatus
JP2008070391A (en) * 2007-12-05 2008-03-27 Fujifilm Corp Measuring apparatus utilizing total reflection light
JP2011508887A (en) * 2008-01-03 2011-03-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Evanescent field modulation in biosensors
US20110051125A1 (en) * 2008-02-27 2011-03-03 Jsm Healthcare Inc. Apparatus and Method for Analyzing Urine Components in Toilet in Real-Time by Using Miniature ATR Infrared Spectroscopy
JP2011169738A (en) * 2010-02-18 2011-09-01 Sharp Corp Chemical material detector

Similar Documents

Publication Publication Date Title
US10401281B2 (en) Optical absorption spectroscopy based gas analyzer systems and methods
JP3741465B2 (en) Dual beam tunable spectrometer
FI119259B (en) Determination of surface and thickness
EP2756283B1 (en) Apparatus and method for measuring particle size distribution by light scattering
US20080309943A1 (en) Modulated reflectance measurement system with multiple wavelengths
JPH0843306A (en) Gas laser and gas detection using gas laser
US7564032B2 (en) Gas sensor
JPH08201278A (en) Spectrum measuring device
WO2001086257A3 (en) Ellipsometer
JP6342445B2 (en) Optical measuring device and method
JP2000019104A (en) Surface plasmon sensor
JPH0450639A (en) Optical sample analyzer
JPH06213658A (en) Method and equipment for distance measurement
US7154607B2 (en) Flat spectrum illumination source for optical metrology
JP2003164415A (en) Method and apparatus for obtaining fluorescence spectrum
US11092727B2 (en) High-resolution single photodiode spectrometer using a narrowband optical filter
JPH10115583A (en) Spectrochemical analyzer
CN113412561A (en) Method and apparatus for characterizing a laser gain chip
KR100961138B1 (en) Beam Spectrometer
WO2017164033A1 (en) Gas measuring device
CN115165762B (en) Chip with spectrum resolution function
JPH11101739A (en) Ellipsometry apparatus
FI84940C (en) SENSOR SOM AER BASERAD PAO YTPLASMONRESONANSFENOMENET.
JPH0510880A (en) Gas detector
JP7069786B2 (en) Detection device