JPH08195357A - Laser irradiating device - Google Patents

Laser irradiating device

Info

Publication number
JPH08195357A
JPH08195357A JP2101195A JP2101195A JPH08195357A JP H08195357 A JPH08195357 A JP H08195357A JP 2101195 A JP2101195 A JP 2101195A JP 2101195 A JP2101195 A JP 2101195A JP H08195357 A JPH08195357 A JP H08195357A
Authority
JP
Japan
Prior art keywords
laser
energy
mirror
beam
device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2101195A
Other languages
Japanese (ja)
Other versions
JP3727034B2 (en
Inventor
Koichiro Tanaka
Shunpei Yamazaki
舜平 山崎
幸一郎 田中
Original Assignee
Semiconductor Energy Lab Co Ltd
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Lab Co Ltd, 株式会社半導体エネルギー研究所 filed Critical Semiconductor Energy Lab Co Ltd
Priority to JP02101195A priority Critical patent/JP3727034B2/en
Priority claimed from US08/579,396 external-priority patent/US5854803A/en
Publication of JPH08195357A publication Critical patent/JPH08195357A/en
Application granted granted Critical
Publication of JP3727034B2 publication Critical patent/JP3727034B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Abstract

PURPOSE: To provide uniform effect, such as an annealing effect, of laser irradiation to semiconductor.
CONSTITUTION: The radiation energy of an excimer laser is measured, and the excimer laser is so controlled as to radiate laser beams of constant energy. Laser beams emitted from an optical system 4 and reflected by a mirror 9 are made to irradiate a specimen 11. At this point, a beam profiler is disposed just after the mirror 9 to measure the energy of laser beams. An energy attenuator arranged between a mirror 8 and the optical system 4 is actuated and controlled so as to irradiate the specimen 11 with laser beams constant in energy basing on the measured value.
COPYRIGHT: (C)1996,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、例えば半導体デバイスの作製する際に使用する、レーザー装置の構成に関する。 The present invention relates to, for example, used for manufacturing a semiconductor device to a structure of the laser device. 特に、本発明は、1部もしくは全部が非晶質成分からなる半導体材料、あるいは、実質的に真性な多結晶の半導体材料、さらには、イオン照射、イオン注入、イオンドーピング等によってダメージを受け、結晶性が著しく損なわれた半導体材料に対してレーザー光を照射することによって、該半導体材料の結晶性を向上せしめ、あるいは結晶性を回復させる目的で使用するレーザー装置の構成に関する。 In particular, the present invention relates to a semiconductor material part or all of amorphous component or the semiconductor material of the substantially intrinsic polycrystalline news, ion irradiation, ion implantation, damaged by ion doping or the like, by applying laser light to the semiconductor material crystallinity is significantly impaired to a structure of a laser apparatus used in the allowed improve the crystallinity of the semiconductor material, or the purpose of recovering the crystallinity.

【0002】 [0002]

【従来の技術】近年、半導体素子プロセスの低温化に関して盛んに研究が進められている。 In recent years, we are actively research is advanced with respect to the low temperature of the semiconductor device process. その大きな理由は、 Big reason is that,
ガラス等の絶縁基板上に半導体素子を形成する必要が生じたからである。 Necessary to form a semiconductor device on an insulating substrate such as a glass substrate because occurred. その他にも素子の微小化や素子の多層化に伴う要請もある。 Besides some request accompanying the multilayered micronized and elements of the device.

【0003】半導体プロセスにおいては、半導体材料に含まれる非晶質成分もしくは非晶質半導体材料を結晶化させることや、もともと結晶性であったものの、イオンを照射したために結晶性が低下した半導体材料の結晶性を回復することや、結晶性であるのだが、より結晶性を向上させることが必要とされることがある。 [0003] In the semiconductor process, and crystallizing the amorphous component or amorphous semiconductor material included in the semiconductor material, although were originally crystalline, the semiconductor material the crystallinity of which was lowered to irradiated ions of or to recover the crystallinity, but he is crystalline, it may be necessary to further improve the crystallinity. 従来、このような目的のためには熱的なアニールが用いられていた。 Conventionally, thermal annealing has been used is for such a purpose. 半導体材料として珪素を用いる場合には、600℃ In the case of using silicon as the semiconductor material, 600 ° C.
から1100℃の温度で0.1〜48時間、もしくはそれ以上の時間のアニールをおこなうことによって、非晶質の結晶化、結晶性の回復、結晶性の向上等がなされてきた。 0.1 to 48 hours at a temperature of 1100 ° C. from, or by performing a further time of annealing, the amorphous crystallization, crystallinity of recovery, improvement of crystallinity have been made.

【0004】このような、熱アニールは、一般に温度が高いほど処理時間は短くても良かったが、500℃以下の温度ではほとんど効果はなかった。 [0004] like this, thermal annealing is generally the temperature was good even shorter higher processing time had little effect at 500 ° C. or lower. したがって、プロセスの低温化の観点からは、従来、熱アニールによってなされていた工程を他の手段によって置き換えることが必要とされた。 Therefore, from the viewpoint of lowering the process, conventionally, to replace the step which has been made by thermal annealing by other means are required.

【0005】レーザー光照射技術は究極の低温プロセスと注目されている。 [0005] Laser irradiation technique is attracting attention as the ultimate low-temperature process. すなわち、レーザー光は熱アニールに匹敵する高いエネルギーを必要とされる箇所にのみ限定して与えることができ、基板全体を高い温度にさらす必要がないからである。 That is, the laser beam can give is limited only to the position required high energy comparable to thermal annealing, it is not necessary to expose the entire substrate at a high temperature. レーザー光の照射に関しては、 With respect to the irradiation of the laser light,
大きく分けて2つの方法が提案されていた。 Large two methods separately has been proposed.

【0006】第1の方法はアルゴンイオン・レーザー等の連続発振レーザーを用いたものであり、スポット状のビームを半導体材料に照射する方法である。 [0006] The first method is one using a continuous wave laser such as an argon ion laser, a method for irradiating a spot-shaped beam semiconductor material. これはビーム内部でのエネルギー分布の差、およびビームの移動によって、半導体材料が溶融した後、緩やかに凝固することによって半導体材料を結晶化させる方法である。 This difference in energy distribution of the beam inside, and by the movement of the beam, after the semiconductor material is melted, a method for crystallizing a semiconductor material by slowly solidified. 第2 The second
の方法はエキシマーレーザーのごときパルス発振レーザーを用いて、大エネルギーレーザーパルスを半導体材料に照射し、半導体材料を瞬間的に溶融させ、凝固させることによって半導体材料を結晶化させる方法である。 The method using a pulsed laser such as excimer laser, is irradiated with a large energy laser pulses to the semiconductor material, instantaneously melts the semiconductor material, a method of crystallizing a semiconductor material by solidifying.

【0007】 [0007]

【発明が解決しようとする課題】第1の方法の問題点は処理に時間がかかることであった。 Problems the Invention Problems to be Solved by the first method was to take longer to process. これは連続発振レーザーの最大エネルギーが限られたものであるため、ビームスポットのサイズがせいぜいmm単位となったためである。 Since this is what the maximum energy of the continuous wave laser limited, because the size of the beam spot becomes most mm. これに対し、第2の方法ではレーザーの最大エネルギーは非常に大きく、したがって、数cm 2以上の大きなスポットを用いて、より量産性を上げることができる。 In contrast, the maximum energy is very large lasers in the second method, therefore, can use the larger spot numbers cm 2 or more, increasing the mass productivity. しかしながら、通常用いられる正方形もしくは長方形の形状のビームでは、1枚の大きな面積の基板を処理するには、ビームを上下左右に移動させる必要があり、 However, the square or rectangular shape of the beam is typically used to process the substrate having a large area of ​​one sheet, it is necessary to move the beam vertically and horizontally,
量産性の面で依然として改善する余地があった。 There is room to still improve in terms of mass production.

【0008】これに関しては、ビームを線状に変形し、 [0008] In this regard, a modification of the beam in a linear shape,
ビームの幅を処理すべき基板を越える長さとし、このビームを走査することによって、大きく改善できる。 Exceeding substrate to be processed the width of the beam length Satoshi, by scanning the beam, it can be greatly improved. 改善すべき問題として残されていたことはレーザー照射効果の均一性である。 It is the uniformity of the laser irradiation effect was left as a problem to be improved. エキシマレーザーに代表されるガスに対して放電を行うことによってレーザー発振を行うパルス発振レーザーは、パルスごとにエネルギーがある程度変動する性質を有している。 Pulsed laser performing laser oscillation by performing discharge in gas typified by excimer laser, the energy has a property that varies somewhat for each pulse. さらに、パルス発振レーザーは出力されるエネルギーによってそのエネルギーの変動の度合いが変化する特性を有している。 Furthermore, pulsed laser has a characteristic that varies the degree of variation of the energy by the energy output. 特にレーザーが安定に発振しにくいエネルギー領域で照射を行なう場合、基板全面にわたって均一なエネルギーでレーザー処理することは困難である。 Especially when carried out by irradiating with laser stably oscillate difficult energy region, it is difficult to laser treatment with a uniform energy across the entire surface of the substrate.

【0009】パルス発振型のレーザーを使用するもう一つの問題点として、レーザーを長時間使用することによって、レーザー発振に必要なガスが劣化し、レーザーエネルギーが下がってゆくことが挙げられる。 [0009] Another problem of using laser pulse oscillation type, by prolonged use of lasers, gas is deteriorated necessary laser oscillation, and that Yuku down laser energy. このことに関してはレーザーの出力を上げれば、レーザーエネルギーも上がるので、問題ないように思われる。 Increasing the output of the laser is in this regard, since the laser energy also rises, seems to be no problem. しかし、実際はレーザーの出力を変えるとしばらくの間レーザーのエネルギーが安定しなくなるので、この方法はあまり好ましくない。 In practice, however, because the energy for some time between the laser and changing the output of the laser becomes unstable, this method is less preferred.

【0010】 [0010]

【課題を解決するための手段】本発明では、減光フィルターで代表されるエネルギー減衰装置とビームプロファイラーで代表されるエネルギー測定装置を組み合わせ用いることによって、これらの問題を解決する。 In the present invention, there is provided a means for solving], by using a combination of energy measurement apparatus represented by the energy attenuation device and the beam profiler represented by dimming filter solves these problems. 即ち、本発明は、レーザーができるだけ安定する出力でレーザー発振を行ない、さらにエネルギー減衰装置を組み合わせ用いることで、レーザー強度を被照射物に対して最適なエネルギーに調節し照射する方法に関する。 That is, the present invention performs a laser oscillation at the output of the laser is as stable as possible, by using a combination of more energy damping device, to a method of irradiating to adjust the laser intensity for optimal energy to the irradiated object.

【0011】なお、本発明の場合、エネルギー減衰装置はエネルギー減衰率が連続可変であることが望ましいが、不連続可変でも良い。 [0011] In the case of the present invention, it is desirable energy attenuation device energy decay rate is continuously variable, it may be a discontinuous variable. すなわち、本発明の概要はレーザーエネルギーを上記最適エネルギーより高く設定し、エネルギー減衰装置を使用することで上記最適エネルギーに調節する。 That is, summary of the invention laser energy is set to be higher than the optimal energy is adjusted to the optimum energy by using the energy attenuation apparatus. このとき、レーザーはできるだけ安定に発振できるエネルギー領域で発振させる。 In this case, the laser is oscillated in the energy region capable as stable as possible oscillation. そして、 And,
レーザーを長時間発振し続けるとレーザーエネルギーが低下してくる。 If you continue for a long time oscillation of the laser laser energy comes reduced. この低下分をエネルギー減衰装置を調節することで補うのが、本発明の主旨である。 The decreased amount that compensate by adjusting the energy attenuation apparatus is a gist of the present invention. 即ち、最終的に低下してしまうエネルギーを最初の段階ではエネルギー減衰装置で減衰させ、レーザー光の照射を続ける段階において、徐々に減衰率を低下させていくことで、常に一定のエネルギーでレーザー光を照射することを特徴とする。 That is, the energy would ultimately decrease the attenuation by energy attenuation device in the first stage, in the step of continuing the irradiation of the laser beam, by gradually lowering the attenuation factor, always laser beam at a constant energy and irradiating the. であるから、エネルギー減衰装置が連続可変である方が好ましい。 Since it is, it is preferable energy damping device is variable continuously.

【0012】 [0012]

【実施例】 【Example】

〔実施例1〕まず装置について説明する。 Example 1 First device will be described. 図1には本実施例で使用するレーザーアニール装置の概念図を示す。 The Figure 1 shows a conceptual diagram of a laser annealing apparatus used in this embodiment.
1がレーザーアニール装置の本体である。 1 is a main body of the laser annealing apparatus. レーザー光は発振器2で発振される。 Laser light is oscillated by the oscillator 2. 発振器2で発振されるレーザー光は、KrFエキシマレーザー(波長248nm、パルス幅25ns)である。 Laser beam oscillated by the oscillator 2 is a KrF excimer laser (wavelength 248 nm, pulse width 25 ns). 勿論、他のエキシマレーザーさらには他の方式のレーザーを用いることもできる。 Of course, other excimer lasers more may be used a laser of another type.

【0013】発振器2で発振されたレーザー光は、全反射ミラー5、6を経由して増幅器3で増幅され、さらに全反射ミラー7、8を経由して光学系4に導入される。 [0013] Laser light oscillated by the oscillator 2 is amplified by the amplifier 3 via the total reflection mirror 5 and 6, it is introduced to the optical system 4 and further through the total reflection mirrors 7 and 8.
なお、図1中には示さなかったが、8と4との間にエネルギー減衰装置を挿入する。 Although not shown in Figure 1, to insert the energy attenuation device between 8 and 4. この機械の構造は図3に示す。 The structure of this machine is shown in FIG.

【0014】図3の装置は1枚のフィルターをレーザービームの進行方向に対してほぼ面を向け、その角度を変えることでエネルギー透過率を変化させる方式ものである。 [0014] The apparatus of Figure 3 directs substantially flush with one filter with respect to the traveling direction of the laser beam, those method to change the energy transmission by changing its angle.

【0015】光学系に入射する直前のレーザー光のビームは、3×2cm 2程度の長方形であるが、光学系4によって、長さ8〜30cm、幅0〜0. 5mm程度の細長いビーム(線状ビーム)に加工される。 [0015] beam of laser light immediately before entering the optical system, 3 is a × 2 cm 2 approximately rectangular, the optical system 4, the length 8~30Cm, width 0 to 0. 5 mm approximately elongated beam (line is processed into Jo beam). この光学系4を経たレーザー光のエネルギーは最大で1000mJ/ショットである。 Energy of the laser beam passing through the optical system 4 is maximum at 1000 mJ / shot.

【0016】レーザー光をこのような細長いビームに加工するのは、加工性を向上させるためである。 [0016] to process the laser beam to such elongated beam is to improve the workability. 即ち、線状のビームは光学系4を出た後、全反射ミラー9を経て、試料11に照射されるが、ビームの幅は試料の幅よりも長いので、試料を1方向に移動させることで、試料全体に対してレーザー光を照射することができる。 That is, after the linear beam exiting the optical system 4, via the total reflection mirror 9, but is applied to the sample 11, since the width of the beam is longer than the width of the sample, moving the specimen in one direction in, it is possible to irradiate the laser beam for the entire sample. 従って、試料のステージ及び駆動装置10は構造が簡単で保守も用意である。 Thus, the stage and a driving device 10 of the sample is also provided the structure is simple maintenance. また、試料をセットする際の位置合わせの操作(アラインメント)も容易である。 Moreover, the alignment operation at the time of setting the specimen (alignment) is easy.

【0017】レーザー光が照射される試料のステージ1 [0017] The stage of the sample laser beam is irradiated 1
0はコンピュータにより制御されており線状のレーザー光に対してほぼ直角方向に動くよう設計されている。 0 is designed to move substantially perpendicularly to being controlled linear laser beam by a computer.

【0018】光学系4の内部の光路を図2に示す。 [0018] shows the optical path within the optical system 4 in FIG. 光学系4に入射したレーザー光はシリンドリカル凹レンズA、シリンドリカル凸レンズB、横方向のフライアイレンズC、Dを通過することによってレーザー光はそれまでのガウス分布型から短形分布に変化する。 Laser light entering the optical system 4 is cylindrical concave lens A, cylindrical convex lens B, transverse of the fly-eye lens C, the laser beam by passing through a D changes from a Gaussian distribution type until it rectangle distribution. さらに、シリンドリカル凸レンズE、Fを通過してミラーG(図1 Further, cylindrical convex lens E, passes through the F mirror G (FIG. 1
ではミラー9に相当)を介して、シリンドリカルレンズHによって集束され、試料に照射される。 In through the equivalent) to the mirror 9 is converged by the cylindrical lens H, it is applied to the sample.

【0019】ミラーG(図1のミラー9に相当する)はレーザーエネルギーを少し透過できるようにできており、ミラーGの後ろにビームプロファイラーを置いて、 [0019] (corresponding to the mirror 9 of Fig. 1) mirror G are made to allow little transmit laser energy, at a beam profiler behind mirror G,
レーザーを試料に照射中でもリアルタイムでレーザーエネルギーを測定できる。 Laser can measure laser energy in real time even during the irradiation to the sample. 線状レーザーは面積も大きいので、ビームプロファイラーを線状レーザー内でスキャンさせることでエネルギーを測定する。 Since linear laser also a large area, measuring energy by scanning the beam profiler within the linear laser. (図4参照)こうすることで線状レーザー内のエネルギー分布も測定できる。 Energy distribution in the linear laser in (see Fig. 4) this is possible it can also be measured.

【0020】これらの装置はレーザー照射中、線状レーザーのエネルギーが設定エネルギーよりもある一定の割合以上ずれてくると自動的にビームスプリッターからエネルギー減衰装置に信号がきて、レーザーエネルギーを上記設定エネルギーに直すよう設計されている。 [0020] In these devices the laser irradiation, automatically signals coming from the beam splitter to the energy attenuation device when the energy of the linear laser comes shifted more than a certain percentage of than the set energy, the set energy of laser energy It is designed to fix in.

【0021】〔実施例2〕実施例1の方法で図1記載のミラーGに透過性をもたせることは、レーザー照射のエネルギーをリアルタイムで測定できる利点を持つ反面、 [0021] It to have a permeability mirror G in FIG. 1 described in Example 2 of Example 1 method, although having the advantage of measuring the energy of the laser irradiation in real time,
レーザーエネルギーを損失してしまう欠点がある。 There is a disadvantage that a loss of laser energy. そこで本実施例では、上記欠点を解消する装置配置について述べる。 In this embodiment describes apparatus arranged to solve the above drawbacks. ただし、本実施例の装置配置だと試料照射中にリアルタイムで線状レーザービームのエネルギーを測定することはできなくなる。 However, measuring the energy of the linear laser beam in real time device's placement and the sample irradiated in this embodiment can not.

【0022】本実施例で使用する装置のレーザー照射部分を図5に示す。 [0022] The laser irradiated portion of the apparatus used in this embodiment is shown in FIG. 図5中のミラーPに図1のミラーGが対応する。 Mirror G in FIG. 1 corresponds to the mirror P in FIG. ミラーPは全反射ミラーで、その下に4%反射ミラーQがある。 Miller P is the total reflection mirror, there is a 4% reflective mirror Q thereunder. ミラーQで折り返されたエネルギーはビームプロファイラーRに入るようになっている。 Energy folded by the mirror Q is made to enter the beam profiler R. ミラーQはミラーPに比べるとサイズが小さい。 Mirror Q is smaller in size compared to the mirror P. というのは、ビームプロファイラーが一度に測定できる面積が小さいからである。 Because, since a small area beam profiler can measure at a time. ミラーQはビームプロファイラーRと連動していて、線状レーザーに沿って、線状レーザーよりも広い範囲でスライドできるようになっている。 Mirror Q is linked with the beam profiler R, along a linear laser, so that it slides in a wider range than the linear laser. ミラーQとビームプロファイラーRはレーザー照射時には線状レーザーの外までスライドさせておく。 Mirror Q a beam profiler R is during laser irradiation allowed to slide to the outside of the linear laser. ここで、もし被照射物が線状レーザーの幅にたいして狭いものであるなら、照射に影響しない線状レーザーの端のところにミラーQを置くことで、レーザー照射中もエネルギーを測定することが可能となる。 Here, if an object to be irradiated is narrow relative to the width of the linear laser, by placing a mirror Q at the end of not affect the irradiation linear laser, it can be in the laser irradiation to measure an energy to become.

【0023】 [0023]

【発明の効果】本発明のレーザー照射技術によって、レーザーエネルギーを極力一定に保ちながらレーザー処理を行うことが可能となった。 By laser irradiation techniques present invention, it becomes possible to perform laser processing while maintaining as much as possible constant laser energy. この結果、レーザー処理工程の再現性が高まり、レーザー処理工程を経る製品のバラツキが著しく減ることが期待できる。 As a result, increased reproducibility of the laser treatment process, it can be expected that variations in the product is reduced considerably undergo laser treatment process. 本発明は特に、 The present invention is particularly,
半導体デバイスのプロセスに利用される全てのレーザー処理プロセスに有効に利用できる。 It can be effectively used for all laser treatment process utilized in the process of semiconductor devices. なぜなら、上記プロセスはレーザーエネルギーのマージンが狭く、わずかなエネルギーの違いが特性に大きく影響するからである。 Because the process has a narrow margin of laser energy, because a slight difference in energy greatly influences the properties.
このように本発明は工業上、有益なものと考えられる。 Thus, the present invention is industrially believed to be beneficial.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 レーザーアニール装置の概略を示す図 FIG. 1 shows a schematic of a laser annealing device

【図2】 光学系を示す図 FIG. 2 is a diagram showing an optical system

【図3】 減光フィルターを示す図 FIG. 3 is a diagram showing a dimming filter

【図4】 線状レーザーのエネルギーを測定する状態を示す図 It shows a state of measuring the energy of FIG. 4 linear laser

【図5】 レーザー照射装置の概略の構成を示す図 5 is a diagram showing a schematic structure of a laser irradiation device

【符号の説明】 DESCRIPTION OF SYMBOLS

1 レーザー照射装置 2 レーザー光の発振器 3 レーザー光の増幅器 4 光学系 5、6、8、9 全反射ミラー 10 ステージ 11 試料 Oscillator 1 laser irradiation apparatus 2 laser beam 3 a laser beam amplifier 4 optics 5, 6, 8, 9 total reflection mirror 10 stage 11 samples

Claims (6)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 エキシマレーザーにエネルギー測定装置をつけたことを特徴とするレーザー照射装置。 1. A laser irradiation apparatus, characterized in that wearing energy measuring device to an excimer laser.
  2. 【請求項2】エキシマレーザーにエネルギー減衰装置をつけたことを特徴とするレーザー照射装置。 2. A laser irradiation apparatus, characterized in that wearing energy attenuation device to an excimer laser.
  3. 【請求項3】請求項2記載のエネルギー減衰装置のエネルギー減衰率が可変であることを特徴とするレーザー照射装置。 3. A laser irradiation apparatus, wherein the energy attenuation factor of energy damping device according to claim 2, wherein is variable.
  4. 【請求項4】エキシマレーザーにエネルギー測定装置とエネルギー減衰装置とをつけたことを特徴とするレーザー照射装置。 4. A laser irradiation apparatus, characterized in that wearing an energy measuring device and the energy attenuation device to an excimer laser.
  5. 【請求項5】エキシマレーザーにエネルギー測定装置とエネルギー減衰率が可変であるエネルギー減衰装置とをつけたことを特徴とするレーザー照射装置。 5. The laser irradiation apparatus energy measuring device to an excimer laser and the energy attenuation factor, characterized in that the wearing and energy damping device is variable.
  6. 【請求項6】請求項5記載のエネルギー測定装置とエネルギー減衰装置とが連動しており、レーザーエネルギーをある一定の値に保ってレーザー照射を行えることを特徴とするレーザー照射装置。 6. is backed energy measuring device according to claim 5, wherein the energy attenuation device, a laser irradiation apparatus, characterized in that perform the laser irradiation kept constant value in the laser energy.
JP02101195A 1995-01-13 1995-01-13 Laser irradiation device Expired - Fee Related JP3727034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02101195A JP3727034B2 (en) 1995-01-13 1995-01-13 Laser irradiation device

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP02101195A JP3727034B2 (en) 1995-01-13 1995-01-13 Laser irradiation device
US08/579,396 US5854803A (en) 1995-01-12 1995-12-27 Laser illumination system
US09/203,613 US6210996B1 (en) 1995-01-13 1998-12-02 Laser illumination system
US09/811,701 US6468842B2 (en) 1995-01-13 2001-03-20 Laser illumination system
US10/178,349 US6706570B2 (en) 1995-01-13 2002-06-25 Laser illumination system
US10/406,309 US6784030B2 (en) 1995-01-13 2003-04-04 Laser illumination system
US10/917,454 US7528079B2 (en) 1995-01-13 2004-08-13 Method of changing an energy attenuation factor of a linear light in order to crystallize a semiconductor film

Publications (2)

Publication Number Publication Date
JPH08195357A true JPH08195357A (en) 1996-07-30
JP3727034B2 JP3727034B2 (en) 2005-12-14

Family

ID=12043128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02101195A Expired - Fee Related JP3727034B2 (en) 1995-01-13 1995-01-13 Laser irradiation device

Country Status (1)

Country Link
JP (1) JP3727034B2 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214306A (en) * 1998-01-27 1999-08-06 Toshiba Corp Manufacture of polycrystal line semiconductor film, manufacture of liquid crystal display, and laser annealer
JP2003229359A (en) * 2001-11-29 2003-08-15 Semiconductor Energy Lab Co Ltd Manufacturing method for semiconductor device
JP2003257864A (en) * 2001-12-28 2003-09-12 Semiconductor Energy Lab Co Ltd Semiconductor device and production system thereof
US6700096B2 (en) 2001-10-30 2004-03-02 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
US6750423B2 (en) 2001-10-25 2004-06-15 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
US6770546B2 (en) 2001-07-30 2004-08-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US6808969B2 (en) 2001-10-30 2004-10-26 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device
US6841434B2 (en) 2002-03-26 2005-01-11 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US6847050B2 (en) 2002-03-15 2005-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and semiconductor device comprising the same
US6930326B2 (en) 2002-03-26 2005-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit and method of fabricating the same
US6933527B2 (en) 2001-12-28 2005-08-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
US6962860B2 (en) 2001-11-09 2005-11-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7105392B2 (en) 2002-01-28 2006-09-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7109073B2 (en) 2001-08-17 2006-09-19 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating semiconductor device
US7109069B2 (en) 2001-12-21 2006-09-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7112517B2 (en) 2001-09-10 2006-09-26 Semiconductor Energy Laboratory Co., Ltd. Laser treatment device, laser treatment method, and semiconductor device fabrication method
US7132375B2 (en) 2001-08-30 2006-11-07 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device by crystallization of a semiconductor region by use of a continuous wave laser beam through the substrate
US7138306B2 (en) 2001-09-25 2006-11-21 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US7148092B2 (en) 2002-01-28 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7160764B2 (en) 2000-12-27 2007-01-09 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method and semiconductor device fabricating method
US7226817B2 (en) 2001-12-28 2007-06-05 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing
US7259082B2 (en) 2002-10-03 2007-08-21 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US7312473B2 (en) 2001-12-28 2007-12-25 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device using the same
US7317205B2 (en) 2001-09-10 2008-01-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing a semiconductor device
US7326630B2 (en) 2003-04-04 2008-02-05 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device utilizing laser irradiation
US7387922B2 (en) 2003-01-21 2008-06-17 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, method for manufacturing semiconductor device, and laser irradiation system
US7390704B2 (en) 2004-06-16 2008-06-24 Semiconductor Energy Laboratory Co., Ltd. Laser process apparatus, laser irradiation method, and method for manufacturing semiconductor device
US7405114B2 (en) 2002-10-16 2008-07-29 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and method of manufacturing semiconductor device
US7439107B2 (en) 2002-12-26 2008-10-21 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, method of irradiating laser light, and method of manufacturing a semiconductor device
US7459406B2 (en) 2004-09-01 2008-12-02 Semiconductor Energy Laboratory Co., Ltd. Laser processing unit, laser processing method, and method for manufacturing semiconductor device
US7557991B2 (en) 2004-12-06 2009-07-07 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
US7705357B2 (en) 2002-03-05 2010-04-27 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with channel region in recess
US7709895B2 (en) 2002-02-08 2010-05-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having insulating stripe patterns
US7749818B2 (en) 2002-01-28 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7927983B2 (en) 2001-08-31 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
WO2011142154A1 (en) * 2010-05-11 2011-11-17 株式会社日本製鋼所 Laser annealing device, method for manufacturing laser-annealed object, and laser annealing program
US8346497B2 (en) 2003-03-26 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Method for testing semiconductor film, semiconductor device and manufacturing method thereof
US9178069B2 (en) 2002-01-17 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214306A (en) * 1998-01-27 1999-08-06 Toshiba Corp Manufacture of polycrystal line semiconductor film, manufacture of liquid crystal display, and laser annealer
JP4659930B2 (en) * 1998-01-27 2011-03-30 株式会社東芝 Manufacturing method and a laser annealing apparatus of the polycrystalline semiconductor film
US7872246B2 (en) 2000-12-27 2011-01-18 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method and semiconductor device fabricating method
US7498212B2 (en) 2000-12-27 2009-03-03 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method and semiconductor device fabricating method
US7160764B2 (en) 2000-12-27 2007-01-09 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method and semiconductor device fabricating method
US6770546B2 (en) 2001-07-30 2004-08-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US7679800B2 (en) 2001-07-30 2010-03-16 Semiconductor Energy Laboratory Co., Ltd. Laser treatment apparatus and method of manufacturing semiconductor device
US7218431B2 (en) 2001-07-30 2007-05-15 Semiconductor Energy Laboratory Co., Ltd. Laser treatment apparatus and method of manufacturing semiconductor device
US8035877B2 (en) 2001-07-30 2011-10-11 Semiconductor Energy Laboratory Co., Ltd. Laser treatment apparatus and method of manufacturing semiconductor device
US7393729B2 (en) 2001-08-17 2008-07-01 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating semiconductor device
US7109073B2 (en) 2001-08-17 2006-09-19 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating semiconductor device
US7422987B2 (en) 2001-08-30 2008-09-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7132375B2 (en) 2001-08-30 2006-11-07 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device by crystallization of a semiconductor region by use of a continuous wave laser beam through the substrate
US7927983B2 (en) 2001-08-31 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
US7317205B2 (en) 2001-09-10 2008-01-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing a semiconductor device
US7682949B2 (en) 2001-09-10 2010-03-23 Semiconductor Energy Laboratory Co., Ltd. Laser treatment device, laser treatment method, and semiconductor device fabrication method
US7112517B2 (en) 2001-09-10 2006-09-26 Semiconductor Energy Laboratory Co., Ltd. Laser treatment device, laser treatment method, and semiconductor device fabrication method
US7138306B2 (en) 2001-09-25 2006-11-21 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US9748099B2 (en) 2001-09-25 2017-08-29 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US7943885B2 (en) 2001-09-25 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and method of manufacturing semiconductor device
US8686315B2 (en) 2001-09-25 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US8993421B2 (en) 2001-10-25 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
US8530788B2 (en) 2001-10-25 2013-09-10 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
US6750423B2 (en) 2001-10-25 2004-06-15 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
US7037809B2 (en) 2001-10-30 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device using a laser irradiation process
US6700096B2 (en) 2001-10-30 2004-03-02 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
US7300516B2 (en) 2001-10-30 2007-11-27 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device
US6808969B2 (en) 2001-10-30 2004-10-26 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device
US7892952B2 (en) 2001-10-30 2011-02-22 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
US6962860B2 (en) 2001-11-09 2005-11-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
JP2003229359A (en) * 2001-11-29 2003-08-15 Semiconductor Energy Lab Co Ltd Manufacturing method for semiconductor device
US7109069B2 (en) 2001-12-21 2006-09-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US8093593B2 (en) 2001-12-21 2012-01-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having multichannel transistor
US6933527B2 (en) 2001-12-28 2005-08-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
US7312473B2 (en) 2001-12-28 2007-12-25 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device using the same
US7226817B2 (en) 2001-12-28 2007-06-05 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing
JP2003257864A (en) * 2001-12-28 2003-09-12 Semiconductor Energy Lab Co Ltd Semiconductor device and production system thereof
US9899419B2 (en) 2002-01-17 2018-02-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
US9178069B2 (en) 2002-01-17 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
US7795734B2 (en) 2002-01-28 2010-09-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7148092B2 (en) 2002-01-28 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7105392B2 (en) 2002-01-28 2006-09-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7749818B2 (en) 2002-01-28 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7737506B2 (en) 2002-01-28 2010-06-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7709895B2 (en) 2002-02-08 2010-05-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having insulating stripe patterns
US7705357B2 (en) 2002-03-05 2010-04-27 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with channel region in recess
US6847050B2 (en) 2002-03-15 2005-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and semiconductor device comprising the same
US6930326B2 (en) 2002-03-26 2005-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit and method of fabricating the same
US7179699B2 (en) 2002-03-26 2007-02-20 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US7704812B2 (en) 2002-03-26 2010-04-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit and method of fabricating the same
US7145175B2 (en) 2002-03-26 2006-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit and method of fabricating the same
US7547593B2 (en) 2002-03-26 2009-06-16 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US6841434B2 (en) 2002-03-26 2005-01-11 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US7259082B2 (en) 2002-10-03 2007-08-21 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US7800080B2 (en) 2002-10-03 2010-09-21 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and method of manufacturing semiconductor device
US7405114B2 (en) 2002-10-16 2008-07-29 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and method of manufacturing semiconductor device
US7439107B2 (en) 2002-12-26 2008-10-21 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, method of irradiating laser light, and method of manufacturing a semiconductor device
US7387922B2 (en) 2003-01-21 2008-06-17 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, method for manufacturing semiconductor device, and laser irradiation system
US8346497B2 (en) 2003-03-26 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Method for testing semiconductor film, semiconductor device and manufacturing method thereof
US7326630B2 (en) 2003-04-04 2008-02-05 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device utilizing laser irradiation
US7390704B2 (en) 2004-06-16 2008-06-24 Semiconductor Energy Laboratory Co., Ltd. Laser process apparatus, laser irradiation method, and method for manufacturing semiconductor device
US7459406B2 (en) 2004-09-01 2008-12-02 Semiconductor Energy Laboratory Co., Ltd. Laser processing unit, laser processing method, and method for manufacturing semiconductor device
US7557991B2 (en) 2004-12-06 2009-07-07 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
WO2011142154A1 (en) * 2010-05-11 2011-11-17 株式会社日本製鋼所 Laser annealing device, method for manufacturing laser-annealed object, and laser annealing program

Also Published As

Publication number Publication date
JP3727034B2 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
CN103551745B (en) Laser processing method
US8034698B2 (en) Systems and methods for inducing crystallization of thin films using multiple optical paths
KR100261853B1 (en) A method of manufacturing a semiconductor device
KR0153823B1 (en) Method of manufacturing semiconductor device
US6327875B1 (en) Control of median crack depth in laser scoring
US7375010B2 (en) Laser irradiation device
US6176922B1 (en) Method for improving crystalline thin films with a contoured beam pulsed laser
US7009140B2 (en) Laser thin film poly-silicon annealing optical system
US7910416B2 (en) Laser irradiation apparatus
US6169014B1 (en) Laser crystallization of thin films
US8457463B2 (en) Beam homogenizer, laser irradiation apparatus, and method for manufacturing semiconductor device
KR100321890B1 (en) Laser processing method
US7834353B2 (en) Method of manufacturing display device
US20070020942A1 (en) Method and system for providing a continuous motion sequential lateral solidification for reducing or eliminating artifacts, and a mask for facilitating such artifact reduction/elimination
JP3469337B2 (en) A method for manufacturing a semiconductor device
KR100371986B1 (en) Optical device and apparatus for laser heat treatment and method for producing semiconductor by using the same
KR100779318B1 (en) Method of manufacturing image display device using thin film semiconductor device
US20030003636A1 (en) Thin film crystal growth by laser annealing
US6336969B1 (en) Optical processing apparatus and optical processing method
JP5033296B2 (en) uv laser system and method for Ic fuse cutting single pulse
US20050141580A1 (en) Laser thin film poly-silicon annealing system
US7489454B2 (en) Laser processing device
US20040097103A1 (en) Laser annealing device and thin-film transistor manufacturing method
JP3626442B2 (en) Laser processing method
JP5000062B2 (en) How to achieve a continuous motion sequential lateral solidification and system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees