JPH08195357A - Laser irradiating device - Google Patents

Laser irradiating device

Info

Publication number
JPH08195357A
JPH08195357A JP2101195A JP2101195A JPH08195357A JP H08195357 A JPH08195357 A JP H08195357A JP 2101195 A JP2101195 A JP 2101195A JP 2101195 A JP2101195 A JP 2101195A JP H08195357 A JPH08195357 A JP H08195357A
Authority
JP
Japan
Prior art keywords
laser
energy
mirror
irradiation
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2101195A
Other languages
Japanese (ja)
Other versions
JP3727034B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Koichiro Tanaka
幸一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP02101195A priority Critical patent/JP3727034B2/en
Priority to US08/579,396 priority patent/US5854803A/en
Publication of JPH08195357A publication Critical patent/JPH08195357A/en
Priority to US09/203,613 priority patent/US6210996B1/en
Priority to US09/811,701 priority patent/US6468842B2/en
Priority to US10/178,349 priority patent/US6706570B2/en
Priority to US10/406,309 priority patent/US6784030B2/en
Priority to US10/917,454 priority patent/US7528079B2/en
Application granted granted Critical
Publication of JP3727034B2 publication Critical patent/JP3727034B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE: To provide uniform effect, such as an annealing effect, of laser irradiation to semiconductor. CONSTITUTION: The radiation energy of an excimer laser is measured, and the excimer laser is so controlled as to radiate laser beams of constant energy. Laser beams emitted from an optical system 4 and reflected by a mirror 9 are made to irradiate a specimen 11. At this point, a beam profiler is disposed just after the mirror 9 to measure the energy of laser beams. An energy attenuator arranged between a mirror 8 and the optical system 4 is actuated and controlled so as to irradiate the specimen 11 with laser beams constant in energy basing on the measured value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば半導体デバイス
の作製する際に使用する、レーザー装置の構成に関す
る。特に、本発明は、1部もしくは全部が非晶質成分か
らなる半導体材料、あるいは、実質的に真性な多結晶の
半導体材料、さらには、イオン照射、イオン注入、イオ
ンドーピング等によってダメージを受け、結晶性が著し
く損なわれた半導体材料に対してレーザー光を照射する
ことによって、該半導体材料の結晶性を向上せしめ、あ
るいは結晶性を回復させる目的で使用するレーザー装置
の構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a laser device used for manufacturing a semiconductor device, for example. In particular, the present invention is a semiconductor material which is partially or wholly composed of an amorphous component, or a substantially intrinsic polycrystalline semiconductor material, and further, which is damaged by ion irradiation, ion implantation, ion doping, or the like. The present invention relates to the configuration of a laser device used for the purpose of improving the crystallinity of a semiconductor material or recovering the crystallinity by irradiating the semiconductor material whose crystallinity is significantly impaired with laser light.

【0002】[0002]

【従来の技術】近年、半導体素子プロセスの低温化に関
して盛んに研究が進められている。その大きな理由は、
ガラス等の絶縁基板上に半導体素子を形成する必要が生
じたからである。その他にも素子の微小化や素子の多層
化に伴う要請もある。
2. Description of the Related Art In recent years, much research has been conducted on lowering the temperature of semiconductor device processes. The big reason is
This is because it becomes necessary to form a semiconductor element on an insulating substrate such as glass. In addition, there are demands for miniaturization of elements and multilayering of elements.

【0003】半導体プロセスにおいては、半導体材料に
含まれる非晶質成分もしくは非晶質半導体材料を結晶化
させることや、もともと結晶性であったものの、イオン
を照射したために結晶性が低下した半導体材料の結晶性
を回復することや、結晶性であるのだが、より結晶性を
向上させることが必要とされることがある。従来、この
ような目的のためには熱的なアニールが用いられてい
た。半導体材料として珪素を用いる場合には、600℃
から1100℃の温度で0.1〜48時間、もしくはそ
れ以上の時間のアニールをおこなうことによって、非晶
質の結晶化、結晶性の回復、結晶性の向上等がなされて
きた。
[0003] In a semiconductor process, an amorphous component contained in a semiconductor material or an amorphous semiconductor material is crystallized, or a semiconductor material whose crystallinity is lowered due to irradiation of ions although it is originally crystalline. It may be necessary to recover the crystallinity of (3) or to improve the crystallinity, although it is crystalline. Conventionally, thermal annealing has been used for this purpose. 600 ° C. when using silicon as the semiconductor material
Therefore, by performing annealing at a temperature of 1 to 1100 ° C. for 0.1 to 48 hours or more, amorphous crystallization, recovery of crystallinity, improvement of crystallinity and the like have been performed.

【0004】このような、熱アニールは、一般に温度が
高いほど処理時間は短くても良かったが、500℃以下
の温度ではほとんど効果はなかった。したがって、プロ
セスの低温化の観点からは、従来、熱アニールによって
なされていた工程を他の手段によって置き換えることが
必要とされた。
[0004] In such thermal annealing, in general, the higher the temperature, the shorter the processing time may be, but at a temperature of 500 ° C or lower, there is almost no effect. Therefore, from the viewpoint of lowering the process temperature, it has been necessary to replace the step conventionally performed by thermal annealing with another means.

【0005】レーザー光照射技術は究極の低温プロセス
と注目されている。すなわち、レーザー光は熱アニール
に匹敵する高いエネルギーを必要とされる箇所にのみ限
定して与えることができ、基板全体を高い温度にさらす
必要がないからである。レーザー光の照射に関しては、
大きく分けて2つの方法が提案されていた。
The laser light irradiation technique is drawing attention as the ultimate low temperature process. That is, the laser light can be applied to only the places where high energy comparable to thermal annealing is required, and it is not necessary to expose the entire substrate to high temperature. Regarding the irradiation of laser light,
Two methods were roughly proposed.

【0006】第1の方法はアルゴンイオン・レーザー等
の連続発振レーザーを用いたものであり、スポット状の
ビームを半導体材料に照射する方法である。これはビー
ム内部でのエネルギー分布の差、およびビームの移動に
よって、半導体材料が溶融した後、緩やかに凝固するこ
とによって半導体材料を結晶化させる方法である。第2
の方法はエキシマーレーザーのごときパルス発振レーザ
ーを用いて、大エネルギーレーザーパルスを半導体材料
に照射し、半導体材料を瞬間的に溶融させ、凝固させる
ことによって半導体材料を結晶化させる方法である。
The first method uses a continuous wave laser such as an argon ion laser and irradiates a semiconductor material with a spot-like beam. This is a method of crystallizing the semiconductor material by melting the semiconductor material and then slowly solidifying it due to the difference in energy distribution inside the beam and the movement of the beam. Second
Is a method of crystallizing a semiconductor material by irradiating the semiconductor material with a high-energy laser pulse using a pulsed laser such as an excimer laser to instantaneously melt and solidify the semiconductor material.

【0007】[0007]

【発明が解決しようとする課題】第1の方法の問題点は
処理に時間がかかることであった。これは連続発振レー
ザーの最大エネルギーが限られたものであるため、ビー
ムスポットのサイズがせいぜいmm単位となったためで
ある。これに対し、第2の方法ではレーザーの最大エネ
ルギーは非常に大きく、したがって、数cm2 以上の大
きなスポットを用いて、より量産性を上げることができ
る。しかしながら、通常用いられる正方形もしくは長方
形の形状のビームでは、1枚の大きな面積の基板を処理
するには、ビームを上下左右に移動させる必要があり、
量産性の面で依然として改善する余地があった。
The problem of the first method is that the processing takes a long time. This is because the maximum energy of the continuous wave laser is limited and the size of the beam spot is at most mm. On the other hand, in the second method, the maximum energy of the laser is very large, and therefore, mass productivity can be further improved by using a large spot of several cm 2 or more. However, with a commonly used square or rectangular shaped beam, it is necessary to move the beam up, down, left and right in order to process one large area substrate.
There was still room for improvement in terms of mass productivity.

【0008】これに関しては、ビームを線状に変形し、
ビームの幅を処理すべき基板を越える長さとし、このビ
ームを走査することによって、大きく改善できる。改善
すべき問題として残されていたことはレーザー照射効果
の均一性である。エキシマレーザーに代表されるガスに
対して放電を行うことによってレーザー発振を行うパル
ス発振レーザーは、パルスごとにエネルギーがある程度
変動する性質を有している。さらに、パルス発振レーザ
ーは出力されるエネルギーによってそのエネルギーの変
動の度合いが変化する特性を有している。特にレーザー
が安定に発振しにくいエネルギー領域で照射を行なう場
合、基板全面にわたって均一なエネルギーでレーザー処
理することは困難である。
In this regard, the beam is deformed linearly,
This can be greatly improved by making the width of the beam longer than the substrate to be processed and scanning this beam. What remains to be improved is the uniformity of the laser irradiation effect. A pulsed laser that oscillates by discharging a gas represented by an excimer laser has a property that energy varies to some extent for each pulse. Further, the pulsed laser has a characteristic that the degree of fluctuation of the energy changes depending on the energy output. In particular, when the laser is irradiated in an energy region where stable oscillation is difficult, it is difficult to perform laser processing with uniform energy over the entire surface of the substrate.

【0009】パルス発振型のレーザーを使用するもう一
つの問題点として、レーザーを長時間使用することによ
って、レーザー発振に必要なガスが劣化し、レーザーエ
ネルギーが下がってゆくことが挙げられる。このことに
関してはレーザーの出力を上げれば、レーザーエネルギ
ーも上がるので、問題ないように思われる。しかし、実
際はレーザーの出力を変えるとしばらくの間レーザーの
エネルギーが安定しなくなるので、この方法はあまり好
ましくない。
Another problem of using the pulse oscillation type laser is that the gas required for laser oscillation deteriorates and the laser energy decreases as the laser is used for a long time. In this regard, increasing the laser power also increases the laser energy, so there seems to be no problem. However, in practice, changing the laser output makes the laser energy unstable for a while, so this method is not very preferable.

【0010】[0010]

【課題を解決するための手段】本発明では、減光フィル
ターで代表されるエネルギー減衰装置とビームプロファ
イラーで代表されるエネルギー測定装置を組み合わせ用
いることによって、これらの問題を解決する。即ち、本
発明は、レーザーができるだけ安定する出力でレーザー
発振を行ない、さらにエネルギー減衰装置を組み合わせ
用いることで、レーザー強度を被照射物に対して最適な
エネルギーに調節し照射する方法に関する。
In the present invention, these problems are solved by using an energy attenuator represented by a neutral density filter and an energy measuring instrument represented by a beam profiler in combination. That is, the present invention relates to a method of irradiating an object by adjusting the laser intensity to an optimum energy by irradiating the laser with an output that is as stable as possible and using an energy attenuator in combination.

【0011】なお、本発明の場合、エネルギー減衰装置
はエネルギー減衰率が連続可変であることが望ましい
が、不連続可変でも良い。すなわち、本発明の概要はレ
ーザーエネルギーを上記最適エネルギーより高く設定
し、エネルギー減衰装置を使用することで上記最適エネ
ルギーに調節する。このとき、レーザーはできるだけ安
定に発振できるエネルギー領域で発振させる。そして、
レーザーを長時間発振し続けるとレーザーエネルギーが
低下してくる。この低下分をエネルギー減衰装置を調節
することで補うのが、本発明の主旨である。即ち、最終
的に低下してしまうエネルギーを最初の段階ではエネル
ギー減衰装置で減衰させ、レーザー光の照射を続ける段
階において、徐々に減衰率を低下させていくことで、常
に一定のエネルギーでレーザー光を照射することを特徴
とする。であるから、エネルギー減衰装置が連続可変で
ある方が好ましい。
In the case of the present invention, the energy attenuation device preferably has a continuously variable energy attenuation rate, but may have a discontinuously variable energy attenuation rate. That is, according to the outline of the present invention, the laser energy is set higher than the optimum energy, and the optimum energy is adjusted by using the energy attenuator. At this time, the laser oscillates in an energy range in which it can oscillate as stably as possible. And
If the laser continues to oscillate for a long time, the laser energy will decrease. It is the gist of the present invention to compensate for this decrease by adjusting the energy attenuator. That is, the energy that is finally reduced is attenuated by the energy attenuator in the first stage, and the attenuation rate is gradually reduced in the stage where the laser light irradiation is continued, so that the laser light is always kept at a constant energy. It is characterized by irradiating. Therefore, it is preferable that the energy attenuator is continuously variable.

【0012】[0012]

【実施例】【Example】

〔実施例1〕まず装置について説明する。図1には本実
施例で使用するレーザーアニール装置の概念図を示す。
1がレーザーアニール装置の本体である。レーザー光は
発振器2で発振される。発振器2で発振されるレーザー
光は、KrFエキシマレーザー(波長248nm、パル
ス幅25ns)である。勿論、他のエキシマレーザーさ
らには他の方式のレーザーを用いることもできる。
[Embodiment 1] First, the apparatus will be described. FIG. 1 shows a conceptual diagram of a laser annealing apparatus used in this embodiment.
Reference numeral 1 is the main body of the laser annealing apparatus. The laser light is oscillated by the oscillator 2. The laser light oscillated by the oscillator 2 is a KrF excimer laser (wavelength 248 nm, pulse width 25 ns). Of course, other excimer lasers or lasers of other types can be used.

【0013】発振器2で発振されたレーザー光は、全反
射ミラー5、6を経由して増幅器3で増幅され、さらに
全反射ミラー7、8を経由して光学系4に導入される。
なお、図1中には示さなかったが、8と4との間にエネ
ルギー減衰装置を挿入する。この機械の構造は図3に示
す。
The laser light oscillated by the oscillator 2 is amplified by the amplifier 3 via the total reflection mirrors 5 and 6, and is further introduced into the optical system 4 via the total reflection mirrors 7 and 8.
Although not shown in FIG. 1, an energy attenuator is inserted between 8 and 4. The structure of this machine is shown in FIG.

【0014】図3の装置は1枚のフィルターをレーザー
ビームの進行方向に対してほぼ面を向け、その角度を変
えることでエネルギー透過率を変化させる方式ものであ
る。
The apparatus shown in FIG. 3 is a system in which one filter is oriented substantially in the direction of the laser beam and the energy transmittance is changed by changing the angle.

【0015】光学系に入射する直前のレーザー光のビー
ムは、3×2cm2 程度の長方形であるが、光学系4によ
って、長さ8〜30cm、幅0〜0. 5mm程度の細長い
ビーム(線状ビーム)に加工される。この光学系4を経
たレーザー光のエネルギーは最大で1000mJ/ショ
ットである。
The beam of laser light immediately before entering the optical system is a rectangle of about 3 × 2 cm 2 , but the optical system 4 allows a long and narrow beam (line of 8 to 30 cm and width of 0 to 0.5 mm). Beam). The energy of the laser beam that has passed through this optical system 4 is 1000 mJ / shot at the maximum.

【0016】レーザー光をこのような細長いビームに加
工するのは、加工性を向上させるためである。即ち、線
状のビームは光学系4を出た後、全反射ミラー9を経
て、試料11に照射されるが、ビームの幅は試料の幅よ
りも長いので、試料を1方向に移動させることで、試料
全体に対してレーザー光を照射することができる。従っ
て、試料のステージ及び駆動装置10は構造が簡単で保
守も用意である。また、試料をセットする際の位置合わ
せの操作(アラインメント)も容易である。
The reason why the laser beam is processed into such an elongated beam is to improve the workability. That is, the linear beam exits the optical system 4, passes through the total reflection mirror 9, and is irradiated on the sample 11. However, since the width of the beam is longer than the width of the sample, the sample should be moved in one direction. Thus, the entire sample can be irradiated with laser light. Therefore, the sample stage and the driving device 10 have a simple structure and are easy to maintain. In addition, the positioning operation (alignment) when setting the sample is easy.

【0017】レーザー光が照射される試料のステージ1
0はコンピュータにより制御されており線状のレーザー
光に対してほぼ直角方向に動くよう設計されている。
Stage 1 of the sample irradiated with laser light
0 is controlled by a computer and is designed to move in a direction substantially perpendicular to the linear laser beam.

【0018】光学系4の内部の光路を図2に示す。光学
系4に入射したレーザー光はシリンドリカル凹レンズ
A、シリンドリカル凸レンズB、横方向のフライアイレ
ンズC、Dを通過することによってレーザー光はそれま
でのガウス分布型から短形分布に変化する。さらに、シ
リンドリカル凸レンズE、Fを通過してミラーG(図1
ではミラー9に相当)を介して、シリンドリカルレンズ
Hによって集束され、試料に照射される。
The optical path inside the optical system 4 is shown in FIG. The laser light incident on the optical system 4 passes through the cylindrical concave lens A, the cylindrical convex lens B, and the lateral fly-eye lenses C and D, so that the laser light changes from the Gaussian distribution type to the rectangular distribution. Further, the light passes through the cylindrical convex lenses E and F, and the mirror G (see FIG.
Then, it is focused by the cylindrical lens H via the mirror 9) and is irradiated onto the sample.

【0019】ミラーG(図1のミラー9に相当する)は
レーザーエネルギーを少し透過できるようにできてお
り、ミラーGの後ろにビームプロファイラーを置いて、
レーザーを試料に照射中でもリアルタイムでレーザーエ
ネルギーを測定できる。線状レーザーは面積も大きいの
で、ビームプロファイラーを線状レーザー内でスキャン
させることでエネルギーを測定する。(図4参照)こう
することで線状レーザー内のエネルギー分布も測定でき
る。
Mirror G (corresponding to mirror 9 in FIG. 1) is designed to allow a small amount of laser energy to be transmitted, and a beam profiler is placed behind mirror G to
Laser energy can be measured in real time even when the sample is irradiated with laser. Since the linear laser has a large area, the energy is measured by scanning the beam profiler inside the linear laser. (See FIG. 4) By doing so, the energy distribution in the linear laser can also be measured.

【0020】これらの装置はレーザー照射中、線状レー
ザーのエネルギーが設定エネルギーよりもある一定の割
合以上ずれてくると自動的にビームスプリッターからエ
ネルギー減衰装置に信号がきて、レーザーエネルギーを
上記設定エネルギーに直すよう設計されている。
In these devices, when the energy of the linear laser deviates from the set energy by a certain ratio or more during laser irradiation, a signal is automatically sent from the beam splitter to the energy attenuator, and the laser energy is changed to the set energy. It is designed to be fixed.

【0021】〔実施例2〕実施例1の方法で図1記載の
ミラーGに透過性をもたせることは、レーザー照射のエ
ネルギーをリアルタイムで測定できる利点を持つ反面、
レーザーエネルギーを損失してしまう欠点がある。そこ
で本実施例では、上記欠点を解消する装置配置について
述べる。ただし、本実施例の装置配置だと試料照射中に
リアルタイムで線状レーザービームのエネルギーを測定
することはできなくなる。
[Embodiment 2] While making the mirror G shown in FIG. 1 transparent by the method of Embodiment 1 has the advantage that the energy of laser irradiation can be measured in real time,
It has the drawback of losing laser energy. Therefore, in the present embodiment, a device arrangement for solving the above-mentioned drawback will be described. However, with the apparatus arrangement of this embodiment, the energy of the linear laser beam cannot be measured in real time during sample irradiation.

【0022】本実施例で使用する装置のレーザー照射部
分を図5に示す。図5中のミラーPに図1のミラーGが
対応する。ミラーPは全反射ミラーで、その下に4%反
射ミラーQがある。ミラーQで折り返されたエネルギー
はビームプロファイラーRに入るようになっている。ミ
ラーQはミラーPに比べるとサイズが小さい。というの
は、ビームプロファイラーが一度に測定できる面積が小
さいからである。ミラーQはビームプロファイラーRと
連動していて、線状レーザーに沿って、線状レーザーよ
りも広い範囲でスライドできるようになっている。ミラ
ーQとビームプロファイラーRはレーザー照射時には線
状レーザーの外までスライドさせておく。ここで、もし
被照射物が線状レーザーの幅にたいして狭いものである
なら、照射に影響しない線状レーザーの端のところにミ
ラーQを置くことで、レーザー照射中もエネルギーを測
定することが可能となる。
The laser-irradiated portion of the apparatus used in this embodiment is shown in FIG. The mirror G in FIG. 1 corresponds to the mirror P in FIG. The mirror P is a total reflection mirror, and below it is a 4% reflection mirror Q. The energy returned by the mirror Q enters the beam profiler R. The size of the mirror Q is smaller than that of the mirror P. This is because the beam profiler has a small area that can be measured at one time. The mirror Q is interlocked with the beam profiler R so that it can slide along the linear laser in a wider range than that of the linear laser. The mirror Q and the beam profiler R are slid to the outside of the linear laser during laser irradiation. Here, if the irradiation target is narrower than the width of the linear laser, it is possible to measure the energy during laser irradiation by placing the mirror Q at the end of the linear laser that does not affect the irradiation. Becomes

【0023】[0023]

【発明の効果】本発明のレーザー照射技術によって、レ
ーザーエネルギーを極力一定に保ちながらレーザー処理
を行うことが可能となった。この結果、レーザー処理工
程の再現性が高まり、レーザー処理工程を経る製品のバ
ラツキが著しく減ることが期待できる。本発明は特に、
半導体デバイスのプロセスに利用される全てのレーザー
処理プロセスに有効に利用できる。なぜなら、上記プロ
セスはレーザーエネルギーのマージンが狭く、わずかな
エネルギーの違いが特性に大きく影響するからである。
このように本発明は工業上、有益なものと考えられる。
The laser irradiation technique of the present invention makes it possible to perform laser processing while keeping laser energy as constant as possible. As a result, it can be expected that the reproducibility of the laser processing step is improved and the variation in products that have undergone the laser processing step is significantly reduced. The present invention, in particular,
It can be effectively used for all laser processing processes used for semiconductor device processes. This is because the above process has a narrow laser energy margin, and a slight difference in energy greatly affects the characteristics.
As described above, the present invention is considered to be industrially useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】 レーザーアニール装置の概略を示す図FIG. 1 is a diagram showing an outline of a laser annealing apparatus.

【図2】 光学系を示す図FIG. 2 is a diagram showing an optical system.

【図3】 減光フィルターを示す図FIG. 3 is a diagram showing a neutral density filter.

【図4】 線状レーザーのエネルギーを測定する状態を
示す図
FIG. 4 is a diagram showing a state in which the energy of a linear laser is measured.

【図5】 レーザー照射装置の概略の構成を示す図FIG. 5 is a diagram showing a schematic configuration of a laser irradiation device.

【符号の説明】[Explanation of symbols]

1 レーザー照射装置 2 レーザー光の発振器 3 レーザー光の増幅器 4 光学系 5、6、8、9 全反射ミラー 10 ステージ 11 試料 1 Laser irradiation apparatus 2 Laser light oscillator 3 Laser light amplifier 4 Optical system 5, 6, 8, 9 Total reflection mirror 10 Stage 11 Sample

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 エキシマレーザーにエネルギー測定装置
をつけたことを特徴とするレーザー照射装置。
1. A laser irradiation apparatus comprising an excimer laser provided with an energy measuring device.
【請求項2】エキシマレーザーにエネルギー減衰装置を
つけたことを特徴とするレーザー照射装置。
2. An excimer laser equipped with an energy attenuating device, which is a laser irradiation device.
【請求項3】請求項2記載のエネルギー減衰装置のエネ
ルギー減衰率が可変であることを特徴とするレーザー照
射装置。
3. A laser irradiation device according to claim 2, wherein the energy attenuation device has a variable energy attenuation rate.
【請求項4】エキシマレーザーにエネルギー測定装置と
エネルギー減衰装置とをつけたことを特徴とするレーザ
ー照射装置。
4. A laser irradiating device comprising an excimer laser provided with an energy measuring device and an energy attenuating device.
【請求項5】エキシマレーザーにエネルギー測定装置と
エネルギー減衰率が可変であるエネルギー減衰装置とを
つけたことを特徴とするレーザー照射装置。
5. A laser irradiation apparatus comprising an excimer laser equipped with an energy measuring device and an energy attenuating device having a variable energy attenuating rate.
【請求項6】請求項5記載のエネルギー測定装置とエネ
ルギー減衰装置とが連動しており、レーザーエネルギー
をある一定の値に保ってレーザー照射を行えることを特
徴とするレーザー照射装置。
6. A laser irradiating device, wherein the energy measuring device according to claim 5 and the energy attenuating device are interlocked with each other, and laser irradiation can be performed while keeping the laser energy at a certain value.
JP02101195A 1995-01-12 1995-01-13 Laser irradiation device Expired - Fee Related JP3727034B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP02101195A JP3727034B2 (en) 1995-01-13 1995-01-13 Laser irradiation device
US08/579,396 US5854803A (en) 1995-01-12 1995-12-27 Laser illumination system
US09/203,613 US6210996B1 (en) 1995-01-13 1998-12-02 Laser illumination system
US09/811,701 US6468842B2 (en) 1995-01-13 2001-03-20 Laser illumination system
US10/178,349 US6706570B2 (en) 1995-01-13 2002-06-25 Laser illumination system
US10/406,309 US6784030B2 (en) 1995-01-13 2003-04-04 Laser illumination system
US10/917,454 US7528079B2 (en) 1995-01-13 2004-08-13 Method of changing an energy attenuation factor of a linear light in order to crystallize a semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02101195A JP3727034B2 (en) 1995-01-13 1995-01-13 Laser irradiation device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP35258998A Division JP3929190B2 (en) 1998-12-11 1998-12-11 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPH08195357A true JPH08195357A (en) 1996-07-30
JP3727034B2 JP3727034B2 (en) 2005-12-14

Family

ID=12043128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02101195A Expired - Fee Related JP3727034B2 (en) 1995-01-12 1995-01-13 Laser irradiation device

Country Status (1)

Country Link
JP (1) JP3727034B2 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214306A (en) * 1998-01-27 1999-08-06 Toshiba Corp Manufacture of polycrystal line semiconductor film, manufacture of liquid crystal display, and laser annealer
JP2003059831A (en) * 2001-08-17 2003-02-28 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2003224070A (en) * 2001-11-26 2003-08-08 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2003229359A (en) * 2001-11-29 2003-08-15 Semiconductor Energy Lab Co Ltd Manufacturing method for semiconductor device
JP2003257864A (en) * 2001-12-28 2003-09-12 Semiconductor Energy Lab Co Ltd Semiconductor device and production system thereof
US6700096B2 (en) 2001-10-30 2004-03-02 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
US6750423B2 (en) 2001-10-25 2004-06-15 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
US6770546B2 (en) 2001-07-30 2004-08-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US6808969B2 (en) 2001-10-30 2004-10-26 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device
US6841434B2 (en) 2002-03-26 2005-01-11 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US6847050B2 (en) 2002-03-15 2005-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and semiconductor device comprising the same
US6930326B2 (en) 2002-03-26 2005-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit and method of fabricating the same
US6933527B2 (en) 2001-12-28 2005-08-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
US6962860B2 (en) 2001-11-09 2005-11-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7105392B2 (en) 2002-01-28 2006-09-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7109069B2 (en) 2001-12-21 2006-09-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7112517B2 (en) 2001-09-10 2006-09-26 Semiconductor Energy Laboratory Co., Ltd. Laser treatment device, laser treatment method, and semiconductor device fabrication method
US7132375B2 (en) 2001-08-30 2006-11-07 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device by crystallization of a semiconductor region by use of a continuous wave laser beam through the substrate
US7138306B2 (en) 2001-09-25 2006-11-21 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US7148092B2 (en) 2002-01-28 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7160764B2 (en) 2000-12-27 2007-01-09 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method and semiconductor device fabricating method
US7226817B2 (en) 2001-12-28 2007-06-05 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing
US7259082B2 (en) 2002-10-03 2007-08-21 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US7312473B2 (en) 2001-12-28 2007-12-25 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device using the same
US7317205B2 (en) 2001-09-10 2008-01-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing a semiconductor device
US7326630B2 (en) 2003-04-04 2008-02-05 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device utilizing laser irradiation
US7387922B2 (en) 2003-01-21 2008-06-17 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, method for manufacturing semiconductor device, and laser irradiation system
US7390704B2 (en) 2004-06-16 2008-06-24 Semiconductor Energy Laboratory Co., Ltd. Laser process apparatus, laser irradiation method, and method for manufacturing semiconductor device
US7405114B2 (en) 2002-10-16 2008-07-29 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and method of manufacturing semiconductor device
US7439107B2 (en) 2002-12-26 2008-10-21 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, method of irradiating laser light, and method of manufacturing a semiconductor device
US7459406B2 (en) 2004-09-01 2008-12-02 Semiconductor Energy Laboratory Co., Ltd. Laser processing unit, laser processing method, and method for manufacturing semiconductor device
US7557991B2 (en) 2004-12-06 2009-07-07 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
US7705357B2 (en) 2002-03-05 2010-04-27 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with channel region in recess
US7709895B2 (en) 2002-02-08 2010-05-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having insulating stripe patterns
US7749818B2 (en) 2002-01-28 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7927983B2 (en) 2001-08-31 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
WO2011142154A1 (en) * 2010-05-11 2011-11-17 株式会社日本製鋼所 Laser annealing device, method for manufacturing laser-annealed object, and laser annealing program
US8346497B2 (en) 2003-03-26 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Method for testing semiconductor film, semiconductor device and manufacturing method thereof
US9178069B2 (en) 2002-01-17 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659930B2 (en) * 1998-01-27 2011-03-30 株式会社東芝 Polycrystalline semiconductor film manufacturing method and laser annealing apparatus
JPH11214306A (en) * 1998-01-27 1999-08-06 Toshiba Corp Manufacture of polycrystal line semiconductor film, manufacture of liquid crystal display, and laser annealer
US7872246B2 (en) 2000-12-27 2011-01-18 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method and semiconductor device fabricating method
US7498212B2 (en) 2000-12-27 2009-03-03 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method and semiconductor device fabricating method
US7160764B2 (en) 2000-12-27 2007-01-09 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method and semiconductor device fabricating method
US8035877B2 (en) 2001-07-30 2011-10-11 Semiconductor Energy Laboratory Co., Ltd. Laser treatment apparatus and method of manufacturing semiconductor device
US7679800B2 (en) 2001-07-30 2010-03-16 Semiconductor Energy Laboratory Co., Ltd. Laser treatment apparatus and method of manufacturing semiconductor device
US6770546B2 (en) 2001-07-30 2004-08-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US7218431B2 (en) 2001-07-30 2007-05-15 Semiconductor Energy Laboratory Co., Ltd. Laser treatment apparatus and method of manufacturing semiconductor device
US7109073B2 (en) 2001-08-17 2006-09-19 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating semiconductor device
JP2003059831A (en) * 2001-08-17 2003-02-28 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US7393729B2 (en) 2001-08-17 2008-07-01 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating semiconductor device
US7132375B2 (en) 2001-08-30 2006-11-07 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device by crystallization of a semiconductor region by use of a continuous wave laser beam through the substrate
US7422987B2 (en) 2001-08-30 2008-09-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7927983B2 (en) 2001-08-31 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
US7112517B2 (en) 2001-09-10 2006-09-26 Semiconductor Energy Laboratory Co., Ltd. Laser treatment device, laser treatment method, and semiconductor device fabrication method
US7682949B2 (en) 2001-09-10 2010-03-23 Semiconductor Energy Laboratory Co., Ltd. Laser treatment device, laser treatment method, and semiconductor device fabrication method
US7317205B2 (en) 2001-09-10 2008-01-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing a semiconductor device
US9748099B2 (en) 2001-09-25 2017-08-29 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US7943885B2 (en) 2001-09-25 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and method of manufacturing semiconductor device
US7138306B2 (en) 2001-09-25 2006-11-21 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US8686315B2 (en) 2001-09-25 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US10910219B2 (en) 2001-09-25 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US10366885B2 (en) 2001-09-25 2019-07-30 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device
US8993421B2 (en) 2001-10-25 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
US8530788B2 (en) 2001-10-25 2013-09-10 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
US6750423B2 (en) 2001-10-25 2004-06-15 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
US7300516B2 (en) 2001-10-30 2007-11-27 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device
CN100437911C (en) * 2001-10-30 2008-11-26 株式会社半导体能源研究所 Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device
US7892952B2 (en) 2001-10-30 2011-02-22 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
CN1312730C (en) * 2001-10-30 2007-04-25 株式会社半导体能源研究所 Laser apparatus, laser irradiation method and semiconductor device and its producing method
US6808969B2 (en) 2001-10-30 2004-10-26 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device
US6700096B2 (en) 2001-10-30 2004-03-02 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
US7037809B2 (en) 2001-10-30 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device using a laser irradiation process
US6962860B2 (en) 2001-11-09 2005-11-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
JP2003224070A (en) * 2001-11-26 2003-08-08 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2003229359A (en) * 2001-11-29 2003-08-15 Semiconductor Energy Lab Co Ltd Manufacturing method for semiconductor device
US7109069B2 (en) 2001-12-21 2006-09-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US8093593B2 (en) 2001-12-21 2012-01-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having multichannel transistor
US7226817B2 (en) 2001-12-28 2007-06-05 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing
US6933527B2 (en) 2001-12-28 2005-08-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
US7312473B2 (en) 2001-12-28 2007-12-25 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device using the same
JP2003257864A (en) * 2001-12-28 2003-09-12 Semiconductor Energy Lab Co Ltd Semiconductor device and production system thereof
US9899419B2 (en) 2002-01-17 2018-02-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
US10515983B2 (en) 2002-01-17 2019-12-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
US10361222B2 (en) 2002-01-17 2019-07-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
US10879272B2 (en) 2002-01-17 2020-12-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
US9178069B2 (en) 2002-01-17 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
US7148092B2 (en) 2002-01-28 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7737506B2 (en) 2002-01-28 2010-06-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7749818B2 (en) 2002-01-28 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7795734B2 (en) 2002-01-28 2010-09-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7105392B2 (en) 2002-01-28 2006-09-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7709895B2 (en) 2002-02-08 2010-05-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having insulating stripe patterns
US7705357B2 (en) 2002-03-05 2010-04-27 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with channel region in recess
US6847050B2 (en) 2002-03-15 2005-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and semiconductor device comprising the same
US6841434B2 (en) 2002-03-26 2005-01-11 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US7145175B2 (en) 2002-03-26 2006-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit and method of fabricating the same
US7547593B2 (en) 2002-03-26 2009-06-16 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US7179699B2 (en) 2002-03-26 2007-02-20 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US6930326B2 (en) 2002-03-26 2005-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit and method of fabricating the same
US7704812B2 (en) 2002-03-26 2010-04-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit and method of fabricating the same
US7259082B2 (en) 2002-10-03 2007-08-21 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US7800080B2 (en) 2002-10-03 2010-09-21 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and method of manufacturing semiconductor device
US7405114B2 (en) 2002-10-16 2008-07-29 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and method of manufacturing semiconductor device
US7439107B2 (en) 2002-12-26 2008-10-21 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, method of irradiating laser light, and method of manufacturing a semiconductor device
US7387922B2 (en) 2003-01-21 2008-06-17 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, method for manufacturing semiconductor device, and laser irradiation system
US8346497B2 (en) 2003-03-26 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Method for testing semiconductor film, semiconductor device and manufacturing method thereof
US7326630B2 (en) 2003-04-04 2008-02-05 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device utilizing laser irradiation
US7390704B2 (en) 2004-06-16 2008-06-24 Semiconductor Energy Laboratory Co., Ltd. Laser process apparatus, laser irradiation method, and method for manufacturing semiconductor device
US7459406B2 (en) 2004-09-01 2008-12-02 Semiconductor Energy Laboratory Co., Ltd. Laser processing unit, laser processing method, and method for manufacturing semiconductor device
US7557991B2 (en) 2004-12-06 2009-07-07 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
WO2011142154A1 (en) * 2010-05-11 2011-11-17 株式会社日本製鋼所 Laser annealing device, method for manufacturing laser-annealed object, and laser annealing program

Also Published As

Publication number Publication date
JP3727034B2 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
JPH08195357A (en) Laser irradiating device
US5854803A (en) Laser illumination system
US8737438B2 (en) Systems and methods for implementing an interaction between a laser shaped as line beam and a film deposited on a substrate
JP4567984B2 (en) Flat panel display manufacturing equipment
EP1063049B1 (en) Apparatus with an optical system for laser heat treatment and method for producing semiconductor devices by using the same
KR101167324B1 (en) Laser thin film poly-silicon annealing optical system
US8796159B2 (en) Processes and systems for laser crystallization processing of film regions on a substrate utilizing a line-type beam, and structures of such film regions
JP3033120B2 (en) Manufacturing method of semiconductor thin film
US7277188B2 (en) Systems and methods for implementing an interaction between a laser shaped as a line beam and a film deposited on a substrate
JP2000357667A (en) Laser processing apparatus
US6545248B2 (en) Laser irradiating apparatus
WO2007053338A2 (en) Systems and methods to shape laser light as a homogeneous line beam for interaction with a film deposited on a substrate
JP2002176007A (en) Method and apparatus for measuring laser power of laser treating unit
JP2003510825A (en) Laser system
JPH0888196A (en) Laser treatment method
JP3205478B2 (en) Laser irradiation system
JP4551385B2 (en) Laser irradiation device
JP3929190B2 (en) Manufacturing method of semiconductor device
JP2003243322A (en) Method of manufacturing semiconductor device
JPH09260302A (en) Laser casting device
JPS5940526A (en) Laser process and device thereof
JPH03289128A (en) Manufacture of semiconductor thin film crystal layer
JPH10150003A (en) Laser processing equipment
JP2007019539A (en) Laser processing method
JPH10150002A (en) Method for manufacturing semiconductor film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees