JPH08181378A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH08181378A
JPH08181378A JP31795494A JP31795494A JPH08181378A JP H08181378 A JPH08181378 A JP H08181378A JP 31795494 A JP31795494 A JP 31795494A JP 31795494 A JP31795494 A JP 31795494A JP H08181378 A JPH08181378 A JP H08181378A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
band structure
layer
structure
carrier
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31795494A
Other languages
Japanese (ja)
Inventor
Shigekazu Minagawa
Toshiaki Tanaka
Kenji Uchida
憲治 内田
俊明 田中
重量 皆川
Original Assignee
Hitachi Ltd
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PURPOSE: To improve the efficiency of carrier injection to a light emitting active layer, and realize a highly efficient laser operation at a low threshold value, by restraining the carrier which transfers from the direct transition Γband structure to the indirect transition X band structure.
CONSTITUTION: The carrier which causes the band filling effect making electron density of a conduction band in a light emitting active layer excessive and transfers from the direct transition Γ band structure to the indirect X band structure is restrained. By the carrier restraint, the band structure wherein the carrier is confined in the direct transition Γ band structure is formed. The transition provability of light emission from the direct transition Γ band structure is increased and laser operation is realized. Even in the case where the direct transition band structure is adjacent to the indirect transition band structure, the carrier injection efficiency is improved and the luminous efficiency can be increased, by improving the the carrier density stored in the direct transition band structure.
COPYRIGHT: (C)1996,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、光情報処理或いは光応用計測用に適した光源となる半導体レーザ素子に関する。 The present invention relates to a semiconductor laser device comprising a light source suitable for optical information processing or optical application measurement.

【0002】 [0002]

【従来の技術】従来の技術では、GaInP/AlGaInP可視発光材料を用いてダブルヘテロ構造を作製することにより、赤色発光ダイオードの発光効率をホモ接合の場合に比べて約十倍に高めたことについて、例えば、公知例1)エレクトロニクス・レタース1993年,29巻, In conventional techniques, by making the double hetero structure using GaInP / AlGaInP visible light emitting material for the light emission efficiency of the red light-emitting diode was increased to approximately ten times that in the case of homozygous , for example, well-known example 1) Electronics Retasu 1993, Vol. 29,
1346頁(Electron. Lett.,29,1346−134 1346 pages (Electron. Lett., 29,1346-134
7(1993). 7 (1993). )に述べられている。 It is described in).

【0003】 [0003]

【発明が解決しようとする課題】従来技術では、短波長半導体レーザの量子効率を向上させるための構造的な手段について述べていない。 In THE INVENTION Problems to be Solved prior art does not describe structural means for improving the quantum efficiency of a short wavelength semiconductor lasers. また発光活性層に対するキャリア注入の効率を向上させる方法について詳細を述べていない。 Although not stated in detail how to improve the efficiency of carrier injection into the light emitting active layer.

【0004】本発明の目的は、直接遷移のバンド構造が間接遷移のバンド構造に接近している場合にも、直接遷移のバンド構造に蓄積するキャリア密度を向上させる手段を用いて、発光活性層に対するキャリア注入の効率を向上させ、低閾値でかつ高効率のレーザ動作を達成することにある。 An object of the present invention, even when the band structure of the direct transition is close to the band structure of the indirect transition, with a means for improving the density of carriers accumulated in the band structure of the direct transition, light emitting active layer to improve the efficiency of carrier injection for, is to achieve a laser operation of the low threshold and high efficiency.

【0005】 [0005]

【課題を解決するための手段】本発明の主な目的は、直接遷移Γ点エネルギが間接遷移X点エネルギに接近した材料により半導体レーザの発光活性層が形成されるときに、これまでよりも低閾値でかつ高効率で動作する素子を得るための手段を講じることである。 Means for Solving the Problems] The main object of the present invention, when a material direct transition Γ point energy approaches the indirect transition point X energy emitting active layer of the semiconductor laser is formed, than ever it is take steps to obtain a device that operates at a low threshold and high efficiency. この手段では、 In this means,
発光活性層で伝導帯の電子密度を過剰にするバンドフィリング効果を容易に引き起こさせるために、n型不純物ドープによって5×10 18 /cm 3以上の電子濃度を設定する。 To the band filling effect of an excess of electron density in the conduction band at the light emitting active layer easily caused, sets the electron concentration of 5 × 10 18 / cm 3 or more by n-type impurity doped. このとき、発光活性層を多重量子井戸構造とし、 At this time, the light emitting active layer and a multiple quantum well structure,
不純物散乱の影響を受けないように、量子障壁層に変調ドープする。 So as not to be affected by impurity scattering and modulation doped quantum barrier layer. また、光導波層から発光活性層に電子を供給するために、まず間接遷移型の光導波層を超格子構造としてゾーンフォルディング効果によって直接遷移型のバンド構造を形成させ、さらに超格子障壁層にn型不純物を変調ドープする。 In order to supply electrons to the light emitting active layer from the optical waveguide layer, first an indirect transition type optical waveguide layer of to form a direct transition type band structure by zone folding effect as superlattice structure, further superlattice barrier layer the n-type impurity is modulated doped. 超格子導波層に発生した電子は、 Electrons generated in the superlattice waveguide layer,
トンネル効果により発光活性層へ注入させる。 It is injected into the light emitting active layer by the tunnel effect.

【0006】 [0006]

【作用】本発明では、直接遷移Γ点エネルギが間接遷移X点エネルギに接近した材料の伝導帯バンド構造で、バンドフィリング効果を十分生じる5×10 18 /cm 3以上のキャリア濃度を発生させるにより、電子過剰の状態を作り出す。 According to the present invention is a conduction band structure of the material that the direct transition Γ point energy approaches the indirect transition point X energy, and more to generate a sufficient resulting 5 × 10 18 / cm 3 or more carrier concentration band filling effect , produce the electron-rich state. このように、発光活性層と光導波層でn型不純物をドープすることにより、間接遷移Xバンド構造に分布する電子密度を極端に増大させると、直接遷移Γバンド構造から間接遷移Xバンド構造へ移行する電子を抑制させることができる。 Thus, by doping the n-type impurity in the light emitting active layer and the optical waveguide layer, the extremely increasing the electron density distributed in indirect X-band structure, the direct transition Γ band structure to indirect X-band structure the transition to the electronic can be suppressed. その結果、直接遷移Γバンド構造に蓄積する電子密度を増大させることができ、キャリア閉じ込めの効果が向上する。 As a result, it is possible to increase the electron density that accumulate direct transition Γ band structure, the effect of carrier confinement is improved. 発光活性層では、直接遷移の確率が増して発光効率が改善されることになる。 The light emitting active layer, so that the luminous efficiency increases the probability of a direct transition is improved.

【0007】 [0007]

【実施例】 【Example】

(実施例1)本発明の一実施例を図1,図2により説明する。 Figure 1 an embodiment (Embodiment 1) The present invention will be described with reference to FIG. まず図1で、(001)面から25.2°傾いた First, in FIG. 1, inclined 25.2 ° from the (001) plane
(311)面を有するn型GaAs基板1(N=5×1 (311) n-type GaAs substrate 1 having a surface (N = 5 × 1
17 〜1×10 18 /cm 3 )を用いて、その上にPの組成がグレーデッドに変化したn型GaAs 1-xxバッファ層2(d=50〜70μm,N=5×10 17 〜1×10 18 With 0 17 ~1 × 10 18 / cm 3), the n-type composition of P is changed to graded on GaAs 1-x P x buffer layer 2 (d = 50~70μm, N = 5 × 10 17 ~1 × 10 18 /
cm 3 ,x=0〜0.4),n型Ga 0.7 In 0.3 P層3(d cm 3, x = 0~0.4), n -type Ga 0.7 In 0.3 P layer 3 (d
=5μm,N=7〜9×10 17 /cm 3 ),n型(Al y = 5μm, N = 7~9 × 10 17 / cm 3), n -type (Al y G
1-y ) 0.7 In 0.3 P 光導波層4(d=1.3μm,N= a 1-y) 0.7 In 0.3 P optical waveguide layer 4 (d = 1.3μm, N =
5〜7×10 17 /cm 3 ,y=0.7),膜厚50nmのアンドープGa 0.7 In 0.3 P活性層5,p型(Al y Ga 5~7 × 10 17 / cm 3, y = 0.7), an undoped Ga 0.7 In 0.3 P active layer having a thickness of 50 nm 5, p-type (Al y Ga
1-y ) 0.7 In 0.3 P 光導波層6(d=1.0μm,N=3 1-y) 0.7 In 0.3 P optical waveguide layer 6 (d = 1.0μm, N = 3
〜5×10 17 /cm 3 ,y=0.7),p型Ga 0.7 In 0.3 ~5 × 10 17 / cm 3, y = 0.7), p -type Ga 0.7 an In 0.3
P層7(d=0.1μm,N=7×10 17 〜1×10 18 P layer 7 (d = 0.1μm, N = 7 × 10 17 ~1 × 10 18
/cm 3 )をエピタキシャル成長した。 / Cm 3) was epitaxially grown.

【0008】ここで活性層5の周辺の伝導帯および価電子帯バンド構造の概略は図2のようになり、活性層5にはn型不純物をドープして1×10 19 /cm 3濃度のキャリアを設定する。 [0008] Here, outline of the conduction band and valence band structure near the active layer 5 is as shown in FIG. 2, the active layer 5 n-type impurity doped to 1 × 10 19 / cm 3 concentration of to set a career.

【0009】この後、ホトリソグラフィによりSiO 2 [0009] After that, by photolithography SiO 2
マスク(膜厚d=0.1μm)を形成し、ケミカルエッチングにより層6を活性層5から0.2μm 残すところまで層7と層6をエッチング除去してリッジストライプを形成する。 Forming a mask (thickness d = 0.1 [mu] m), the layer 7 and the layer 6 to the point where left 0.2μm layer 6 by chemical etching from the active layer 5 is removed by etching to form a ridge stripe. 次に、SiO 2マスクを残したまま、n型GaAs 0.60.4電流狭窄層8(d=1μm,N=1× Then, while leaving the SiO 2 mask, n-type GaAs 0.6 P 0.4 current confinement layer 8 (d = 1μm, N = 1 ×
10 18 /cm 3 )を選択成長する。 10 18 / cm 3) to selectively grown. SiO 2マスクを除去した後、p型GaAs 0.6 P 0.4コンタクト層9(d=2〜3 After removing the SiO 2 mask, p-type GaAs 0.6 P 0.4 contact layer 9 (d = 2 to 3
μm,N A =5×10 18 〜1×10 19 /cm 3 )を埋め込み成長する。 μm, N A = 5 × 10 18 ~1 × 10 19 / cm 3) embedding grow. その後、p電極10及びn電極11を蒸着する。 Then, depositing a p electrode 10 and n electrode 11. さらに、劈開してバー状の素子に切り出し、図1の断面を有する素子を得る。 Further, cut into bars of the device is cleaved to obtain an element having a cross-section of FIG.

【0010】本実施例における素子では、波長範囲57 [0010] In the element of this embodiment, the wavelength range 57
0〜590nmで、閾値電流は70〜90mAであり、 In 0~590nm, the threshold current is 70~90mA,
内部量子効率30〜50%のレーザ発振が可能であった。 It was possible lasing internal quantum efficiency 30-50%. これらは、n型不純物をドーピングしない素子に比べて、閾値電流は2/3に低減できており、内部量子効率は2倍以上の値である。 These are compared to the element without doping an n-type impurity, the threshold current is able to reduce to 2/3, the internal quantum efficiency is a value more than twice.

【0011】(実施例2)本発明の他の実施例を図3, [0011] (Example 2) Another embodiment of the present invention FIG. 3,
図4により説明する。 It will be described with reference to FIG. まず図3で、実施例1と同様に素子を作製し、発光活性層は膜厚8nmのアンドープGa First, in FIG. 3, to produce a device in the same manner as in Example 1, the light emitting active layer thickness 8nm undoped Ga
0.65 In 0.35 P歪量子井戸層3層と,膜厚8nmのアンドープ(Al y Ga 1-y ) 0.7 In 0.3 P(y=0.5 )量子障壁層2層、および両側に設けた膜厚30nmのアンドープ(Al y Ga 1-y ) 0.7 In 0.3 P(y=0.5)光分離閉じ込め層から構成される歪多重量子井戸構造12とする。 0.65 an In 0.35 and P strained quantum well layer 3 layer thickness 8nm undoped (Al y Ga 1-y) 0.7 In 0.3 P (y = 0.5) quantum barrier layer 2 layer, and the film thickness 30nm provided on both sides the undoped (Al y Ga 1-y) 0.7 in 0.3 P (y = 0.5) and an optical separate confinement layer strained multiple quantum well structure 12.

【0012】このとき多重量子井戸層周辺の伝導帯および価電子帯バンド構造の概略は図4のようになる。 [0012] Summary of the conduction band and valence band structure near multi-quantum well layer at this time is as shown in FIG.

【0013】n型不純物を変調ドープする量子障壁層と光分離閉じ込め層には、1×10 19 /cm 3濃度のキャリアを設定する。 [0013] The n-type impurity in the quantum barrier layer and the light separation confinement layer that modulation doping sets 1 × 10 19 / cm 3 concentration of carrier. その他、実施例1と全く同様に素子を作製する。 Other, just as to produce an element that of Example 1.

【0014】本実施例の素子では、波長範囲570〜5 [0014] In element of this embodiment, the wavelength range from 570 to 5
90nmで、閾値電流は50〜70mAであり、内部量子効率50〜70%のレーザ発振が可能であった。 In 90 nm, the threshold current is 50~70MA, it was possible lasing internal quantum efficiency 50% to 70%. これらは実施例1よりも改善できており、n型不純物をドーピングしない素子に比べて、閾値電流は2/3に低減できており、内部量子効率は2倍以上の値を得た。 These are can be improved than in Example 1, as compared with the element not doped with an n-type impurity, the threshold current is able to reduce to 2/3, the internal quantum efficiency was obtained a value of twice or more.

【0015】(実施例3)本発明の他の実施例を図5, [0015] (Example 3) Another embodiment of the present invention FIG 5,
図6により説明する。 It will be described with reference to FIG. まず図5で、実施例2と同様に素子を作製し、発光活性層は同様の歪多重量子井戸構造とするが、量子障壁層と光閉じ込め層の一部を3原子層から成るアンドープGa 0.7 In 0.3 P超格子井戸層とn型変調ドープした4原子層から成る(Al y Ga 1-y ) 0.7 First, in FIG. 5, to produce a device in the same manner as in Example 2, the light-emitting active layer is the same strained MQW structure, an undoped Ga 0.7 comprising a portion of the quantum barrier layer and the light confinement layer 3 atomic layer an In 0.3 P consisting superlattice well layers and n-type modulation-doped 4 atomic layer (Al y Ga 1-y) 0.7 I
0.3 P (y=0.5)超格子障壁層により形成した超格子構造の層13および層14とする。 n 0.3 P (y = 0.5) and layers 13 and layer 14 of super lattice structure formed by the superlattice barrier layers.

【0016】このとき多重量子井戸層周辺の伝導帯および価電子帯バンド構造の概略は図6のようになる。 [0016] Summary of the conduction band and valence band structure near multi-quantum well layer at this time is as shown in FIG.

【0017】n型不純物を変調ドープする超格子障壁層には、1×10 19 /cm 3濃度のキャリアを設定する。 [0017] superlattice barrier layer of n-type impurity to modulation doping sets 1 × 10 19 / cm 3 concentration of carrier. その他、実施例2と全く同様に素子を作製する。 Other, just as to produce an element in Example 2.

【0018】本実施例における素子では、波長範囲57 [0018] In the element of this embodiment, the wavelength range 57
0〜590nmで、閾値電流は30〜50mAであり、 In 0~590nm, the threshold current is 30~50mA,
内部量子効率60〜80%のレーザ発振が可能であった。 It was possible lasing internal quantum efficiency 60-80%. これらは実施例1および2よりも改善できており、 These are can be improved than in Example 1 and 2,
n型不純物をドーピングしない素子に比べて、閾値電流は2/3に低減できており、内部量子効率は2倍以上の値を得た。 The n-type impurity than the device undoped, the threshold current is able to reduce to 2/3, the internal quantum efficiency was obtained a value of twice or more.

【0019】 [0019]

【発明の効果】本発明により、短波長半導体レーザで、 Effect of the Invention] The present invention, in the short wavelength semiconductor laser,
直接遷移のバンド構造が間接遷移のバンド構造に接近している場合でも、直接遷移のバンド構造に蓄積されるキャリア密度を向上させることにより、キャリア注入効率を改善して発光効率を向上させることができた。 Even if the band structure of the direct transition is close to the band structure of the indirect transition, by improving the density of carriers accumulated in the band structure of the direct transition it is possible to improve the luminous efficiency by improving the carrier injection efficiency did it. これは、間接遷移を示すXバンド構造にバンドフィリング効果を引き起こさせて十分キャリアを充満させることにより、直接遷移Γバンド構造から間接遷移Xバンド構造へ移行するキャリアを抑制した効果を発現させた。 This may be achieved by filling a sufficient carrier by causing the band filling effect in X band structure showing the indirect transition, it was expressed effect of suppressing the carrier to shift from direct transition Γ band structure to indirect X-band structure. 本発明では、従来よりも低閾値で高効率のレーザ素子を得ることができ、n型不純物をドーピングしない素子に比べて、閾値電流を2/3に低減し、内部量子効率を2倍以上の値に改善した。 In the present invention, than conventional can be obtained laser device having high efficiency at low threshold, the n-type impurity than the device undoped, reduces the threshold current to 2/3, the internal quantum efficiency of more than twice and improvement in value. 例えば、GaInP/AlGaInP材料系で、 For example, in GaInP / AlGaInP material system,
発振波長570〜590nmでレーザ発振し、閾値電流は30〜50mAであり、内部量子効率は60〜80% Laser oscillation with an oscillation wavelength 570~590Nm, the threshold current is 30~50MA, internal quantum efficiency 60-80%
を得ることが可能であった。 It was possible to obtain.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の一実施例を示す素子の断面図。 Sectional view of the device showing an embodiment of the present invention; FIG.

【図2】本発明の一実施例における活性層内の伝導帯および価電子帯バンド構造とn型不純物ドープを示す説明図。 FIG. 2 is an explanatory diagram showing the conduction band and valence band structure and the n-type impurity doped in the active layer in an embodiment of the present invention.

【図3】本発明の他の実施例を示す素子の断面図。 Sectional view of the device showing another embodiment of the present invention; FIG.

【図4】本発明の他の実施例における多重量子井戸活性層内の伝導帯および価電子帯バンド構造と量子障壁層へのn型変調ドープを示す説明図。 Figure 4 is an explanatory view showing the n-type modulation-doped into the conduction band and valence band structure and quantum barrier layer having the multiple quantum well active layer in another embodiment of the present invention.

【図5】本発明の他の実施例を示す素子の断面図。 Sectional view of the device showing another embodiment of the present invention; FIG.

【図6】本発明の他の実施例における多重量子井戸活性層内の伝導帯および価電子帯バンド構造と超格子量子障壁層へのn型変調ドープを示す説明図。 Figure 6 is an explanatory diagram showing a n-type modulation doped into multiple quantum well active conduction band in the layer and the valence band structure and a superlattice quantum barrier layer according to another embodiment of the present invention.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…n型GaAs基板、2…n型GaAsPバッファ層、3…n型GaInP層、4…n型AlGaInP光導波層、6…p型AlGaInP光導波層、7…p型GaInP 1 ... n-type GaAs substrate, 2 ... n-type GaAsP buffer layer, 3 ... n-type GaInP layer, 4 ... n-type AlGaInP optical guide layer, 6 ... p-type AlGaInP optical waveguide layer, 7 ... p-type GaInP
層、8…p型GaAsP光吸収電流狭窄層、9…p型G Layer, 8 ... p-type GaAsP light absorption current confinement layer, 9 ... p-type G
aAsPコンタクト層、10…p電極、11…n電極、 aAsP contact layer, 10 ... p electrode, 11 ... n electrodes,
13…超格子光導波層、14…超格子量子障壁層。 13 ... superlattice optical waveguide layer, 14 ... superlattice quantum barrier layer.

Claims (7)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】半導体発光活性層において、間接遷移を示すXバンド構造に十分キャリアを充満させてバンドフィリング(Band Filling)効果を引き起こし、直接遷移Γ 1. A semiconductor light-emitting active layer, is filled with sufficient carrier to X band structure showing the indirect cause band filling (Band Filling) effects, direct transition Γ
    バンド構造から前記間接遷移Xバンド構造へ移行するキャリアを抑制することにより、前記直接遷移Γバンド構造にキャリアが閉じ込められるバンド構造を形成し、前記バンド構造の前記直接遷移Γバンド構造から発光する遷移確率が増大してレーザ動作することを特徴とする半導体レーザ素子。 By suppressing the carrier to migrate from the band structure to the indirect X-band structure, to form a band structure in which carriers are confined in the direct transition Γ band structure, emitting light from the direct transition Γ band structure of the band structure transition the semiconductor laser element characterized by probabilities laser operation increases.
  2. 【請求項2】請求項1において、前記発光活性層が、前記直接遷移Γ点エネルギが前記間接遷移X点エネルギに接近した材料によって形成されるときに、n型不純物を前記発光活性層へ直接ドープするか或いは前記発光活性層にキャリアを閉じ込めるための障壁となる層にドープする半導体レーザ素子。 2. A method according to claim 1, wherein the light emitting active layer, wherein when the direct transition Γ point energy is formed by the material in close proximity to the indirect transition point X energy directly n-type impurity into the light-emitting active layer the semiconductor laser element to be doped into the layer comprising a barrier for confining or carrier in the light emitting active layer is doped.
  3. 【請求項3】請求項1または2において、前記発光活性層は量子井戸層と量子障壁層を周期的に設けた多重量子井戸構造から成り、前記量子障壁層にのみn型不純物を変調ドープする半導体レーザ素子。 3. An apparatus according to claim 1 or 2, wherein the light emitting active layer comprises a multiple quantum well structure provided periodically a quantum well layer and the quantum barrier layer, modulates doped with n-type impurity only to the quantum barrier layer semiconductor laser element.
  4. 【請求項4】請求項1または2において、半導体基板上に前記発光活性層の両側に光導波層を設けてあり、前記光導波層は原子層オーダの膜厚から成る超格子構造から形成されており、前記超格子構造が間接遷移型の材料で形成されていても前記間接遷移Xバンド構造の前記直接遷移Γバンド構造への折り返しによるゾーンフォルディング(Zone Folding)効果により直接遷移のエネルギバンド構造を示し、前記超格子障壁層にのみn型不純物を変調ドープする半導体レーザ素子。 4. The method of claim 1 or 2, on both sides of the light emitting active layer on a semiconductor substrate is provided with the optical waveguide layer, said optical waveguide layer is formed of a superlattice structure consisting of the thickness of the atomic layer order and has the direct transition energy band superlattice structure folded by zone folding also be formed of a material indirect transition to the direct transition Γ band structure of the indirect transition X band structure (zone folding) effect It shows the structure, a semiconductor laser element for modulating doped with an n-type impurity only to the superlattice barrier layers.
  5. 【請求項5】請求項1または4において、前記超格子障壁層にドープしたn型不純物により発生したキャリアがトンネル効果により輸送されて、前記発光活性層に注入され蓄積される半導体レーザ素子。 5. A method according to claim 1 or 4, wherein the carriers generated by n-type impurity doped superlattice barrier layer is transported by the tunnel effect, are injected into the light emitting active layer semiconductor laser device to be stored.
  6. 【請求項6】請求項1または5において、前記発光活性層に蓄積されるレーザ発振に必要なキャリア密度よりも、前記発光活性層における量子障壁層や前記超格子構造における超格子障壁層に変調ドープした不純物によるキャリア濃度の方が相対的に高く、活性化したキャリア濃度はバンドフィリング効果を容易に引き起こすために十分な5×10 18 /cm 3以上に設定してある半導体レーザ素子。 6. The method according to claim 1 or 5, wherein the than the carrier density required for laser oscillation to be accumulated in the light emitting active layer, the modulation superlattice barrier layer in the quantum barrier layer and the superlattice structure in the light emitting active layer doped it is relatively high in carrier concentration due to impurities, the semiconductor laser element carrier concentration which is set to a sufficient 5 × 10 18 / cm 3 or more in order to cause the band filling effect easily activated.
  7. 【請求項7】請求項1,2,3,4,5または6において、前記半導体基板は基板面方位が(001)面から0 7. The method of claim 2, 3, 4, 5 or 6, wherein the semiconductor substrate from the substrate surface orientation of (001) plane 0
    °〜54.7°の範囲に傾いている半導体レーザ素子。 ° semiconductor laser device are inclined in the range of ~54.7 °.
JP31795494A 1994-12-21 1994-12-21 Semiconductor laser element Pending JPH08181378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31795494A JPH08181378A (en) 1994-12-21 1994-12-21 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31795494A JPH08181378A (en) 1994-12-21 1994-12-21 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH08181378A true true JPH08181378A (en) 1996-07-12

Family

ID=18093863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31795494A Pending JPH08181378A (en) 1994-12-21 1994-12-21 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH08181378A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851547A1 (en) * 1996-12-21 1998-07-01 Sharp Kabushiki Kaisha Laser devices
US7211822B2 (en) 1997-01-09 2007-05-01 Nichia Chemical Industries, Ltd. Nitride semiconductor device
JP2007288218A (en) * 2007-07-06 2007-11-01 Hitachi Ltd Semiconductor laser
US7684456B2 (en) 1999-08-04 2010-03-23 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851547A1 (en) * 1996-12-21 1998-07-01 Sharp Kabushiki Kaisha Laser devices
US6084898A (en) * 1996-12-21 2000-07-04 Sharp Kabushiki Kaisha Laser devices including separate confinement heterostructure
US7211822B2 (en) 1997-01-09 2007-05-01 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US7615804B2 (en) 1997-01-09 2009-11-10 Nichia Chemical Industries, Ltd. Superlattice nitride semiconductor LD device
US8541794B2 (en) 1997-01-09 2013-09-24 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting devices
US7684456B2 (en) 1999-08-04 2010-03-23 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
US8009714B2 (en) 1999-08-04 2011-08-30 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
US8537870B2 (en) 1999-08-04 2013-09-17 Ricoh Company, Limited Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
JP2007288218A (en) * 2007-07-06 2007-11-01 Hitachi Ltd Semiconductor laser

Similar Documents

Publication Publication Date Title
US6525335B1 (en) Light emitting semiconductor devices including wafer bonded heterostructures
US6580736B1 (en) Semiconductor light emitting device
US6057562A (en) High efficiency light emitting diode with distributed Bragg reflector
US4932033A (en) Semiconductor laser having a lateral p-n junction utilizing inclined surface and method of manufacturing same
US5936258A (en) Optical semiconductor memory device and read/write method therefor
US20030116767A1 (en) Edge-emitting nitride-based laser diode with P-N tunnel junction current injection
US6841409B2 (en) Group III-V compound semiconductor and group III-V compound semiconductor device using the same
US4839307A (en) Method of manufacturing a stripe-shaped heterojunction laser with unique current confinement
US20030118066A1 (en) Graded semiconductor layers for reducing threshold voltage for a nitride-based laser diode structure
US5164797A (en) Lateral heterojunction bipolar transistor (LHBT) and suitability thereof as a hetero transverse junction (HTJ) laser
US4667332A (en) Semiconductor laser element suitable for production by a MO-CVD method
JP2002016312A (en) Nitride semiconductor element and its manufacturing method
JPH09129974A (en) Semiconductor laser device
JPH10126010A (en) Manufacturing method of semiconductor laser device
US5321712A (en) Semiconductor light-emitting device having a cladding layer composed of an InGaAlp-based compound
JPH05243669A (en) Semiconductor laser element
US5757835A (en) Semiconductor laser device
US5556804A (en) Method of manufacturing semiconductor laser
US5459746A (en) Surface emission type semiconductor light-emitting device
US4802181A (en) Semiconductor superlattice light emitting sevice
JPH08195522A (en) Semiconductor laser
US5519722A (en) II-VI compound semiconductor laser with burying layers
JP2000244070A (en) Semiconductor device and semiconductor light-emitting element
US4999844A (en) Semiconductor quantum well laser
US5331656A (en) Very short wavelength semiconductor laser