JPH08160246A - Fiber fusion stretching type polarization beam splitter - Google Patents

Fiber fusion stretching type polarization beam splitter

Info

Publication number
JPH08160246A
JPH08160246A JP30359494A JP30359494A JPH08160246A JP H08160246 A JPH08160246 A JP H08160246A JP 30359494 A JP30359494 A JP 30359494A JP 30359494 A JP30359494 A JP 30359494A JP H08160246 A JPH08160246 A JP H08160246A
Authority
JP
Japan
Prior art keywords
polarization
beam splitter
optical fiber
stretched
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30359494A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sasaki
弘之 佐々木
Yoshitaka Onozawa
良孝 小野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP30359494A priority Critical patent/JPH08160246A/en
Publication of JPH08160246A publication Critical patent/JPH08160246A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE: To make it possible to lessen dependency on wavelength to such an extent that has to hindrance for practicable use by setting the stretching amount of a fused part at a specific range. CONSTITUTION: Optical fibers OPF1 and OPF2 are fused to each other in the heated position in the state that a flame exists nearest the optical fibers OPF1 and OPF2 . These fibers are then stretched by the tension of a stretching machine 13. A branching ratio is measured with a branching ratio measuring instrument 23 during stretching and the state that the incident, for example, Y polarized light on the optical fiber OPF1 from a light source 19 is branched to the other optical fiber OPF2 100% or nearly in the same state as it, is detected. The state that the polarized light is branched 100% to another optical fiber different from the optical fiber on which the light described above is made incident or the state nearly the same as it gives a detection signal to a controller 24 in the first time, thereby stopping the stretching operation of a stretching machine 13. The stretching amount of this time is about 7mm, the wavelength λ1 of the y polarized light from the light source 19 is 1.55μm and the stretching amount is about 4500 times the wavelength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は例えば光ファイバ中の
障害点検出装置のビームスプリッタ等にして利用するこ
とができるファイバ融着延伸型偏波ビームスプリッタに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber fusion-stretched polarization beam splitter which can be used as, for example, a beam splitter of a device for detecting a fault in an optical fiber.

【0002】[0002]

【従来の技術】直交する偏波面を持つX偏光とY偏光を
分離する手段として一般にはバルク型偏波ビームスプリ
ッタがよく知られている。図8にバルク型偏波ビームス
プリッタを用いた光ファイバ障害点検出装置の概略の構
成を示す。このようなバルク型偏波ビームスプリッタで
はレーザ発振器1、バルク型偏波ビームスプリッタ2、
集光レンズ3、被測定ファイバ4、受光器5を何らかの
方法(例えば接着剤)で固定しなくてはならないが、こ
の固定方法は通常、温度変化あるいは経時変化するた
め、偏波ビームスプリッタとしての性能も変動する不都
合がある。
2. Description of the Related Art A bulk polarization beam splitter is generally well known as a means for separating X-polarized light and Y-polarized light having orthogonal polarization planes. FIG. 8 shows a schematic configuration of an optical fiber fault point detection device using a bulk polarization beam splitter. In such a bulk type polarization beam splitter, a laser oscillator 1, a bulk type polarization beam splitter 2,
The condenser lens 3, the fiber 4 to be measured, and the light receiver 5 must be fixed by some method (for example, an adhesive), but since this fixing method usually changes with temperature or changes with time, it can be used as a polarization beam splitter. There is an inconvenience that the performance also fluctuates.

【0003】このようなことから、光ファイバを素材と
した偏波ビームスプリッタが例えば電子通信学会技報V
OL.85,NO.18(P19〜24)で提案されて
いる。この論文では2本の偏波面保存光ファイバを相互
に融着延伸し、その融着延伸量を通常の光分岐器を作る
場合より大きく採ることにより偏波ビームスプリット特
性が得られることが報告されている。
From the above, a polarization beam splitter made of an optical fiber is described in, for example, IEICE Technical Report V.
OL. 85, NO. 18 (P19-24). In this paper, it is reported that polarization beam splitting characteristics can be obtained by fusion-spreading two polarization-maintaining optical fibers with each other, and making the fusion-spreading amount larger than that in the case of making an ordinary optical branching device. ing.

【0004】図9にこの論文で提案された光ファイバ融
着延伸型偏波ビームスプリッタの構造を示す。光ファイ
バOPF1 とOPF2 は図10に断面構造を示すよう
に、クラッド10内にコア11を挟んで180°対向す
る位置に応力付与部12を具備した偏波面保存型光ファ
イバが用いられる。応力付与部12を結ぶ線が平行な姿
勢に配置した状態で光ファイバOPF1 とOPF2 の一
部を加熱し、側縁を接触させて融着させる。この融着部
分を延伸させて所望の偏波ビームスプリット特性を得た
としている。
FIG. 9 shows the structure of the optical fiber fusion-stretched polarization beam splitter proposed in this paper. As shown in the sectional structure of FIG. 10, the optical fibers OPF 1 and OPF 2 are polarization-maintaining optical fibers having a stress imparting portion 12 at a position facing each other 180 ° in the clad 10 with the core 11 interposed therebetween. Part of the optical fibers OPF 1 and OPF 2 are heated in a state where the lines connecting the stress applying portions 12 are arranged in parallel, and the side edges are brought into contact and fused. It is said that this fused portion is stretched to obtain a desired polarized beam splitting characteristic.

【0005】つまり、偏波ビームスプリット特性とはア
ームAからX軸方向とY軸方向に偏波面を持つ光EX
Y を入射すると、アームCからY軸方向に偏波面を持
つ光EY (以下y偏波光と称す)が得られ、アームDか
らX軸方向に偏波面を持つ光EX (以下x偏波光と称
す)が得られる特性を指す。この論文の執筆者が試作し
た結果を図11と図12に示す。図11は融着延伸量を
9mmとした場合の分岐比波長特性を示す。図12は融
着延伸量を20mmとした場合の分岐比波長特性を示
す。
That is, the polarization beam splitting characteristic means the light E X having a plane of polarization from the arm A in the X-axis direction and the Y-axis direction,
When E Y is incident, a light E Y having a plane of polarization in the Y-axis direction (hereinafter referred to as y-polarized light) is obtained from the arm C, and a light E X having a plane of polarization in the X-axis direction (hereinafter x polarization) is obtained from the arm D. (Referred to as wave light). The results of trial production by the author of this paper are shown in FIGS. 11 and 12. FIG. 11 shows the branching ratio wavelength characteristics when the fusion drawing amount is 9 mm. FIG. 12 shows the branching ratio wavelength characteristics when the fusion drawing amount is 20 mm.

【0006】分岐比波長特性とは例えばアームAから入
射する光の波長を0.8〜1.5μmまで変化させた場
合に、アームC又はアームDから出射される偏波光の強
度の変化、つまりアームAとC又はAとDの間の分岐比
の変化を指す。図中実線はx偏波光の強度、破線はy偏
波光の強度を示す。図11の例ではx偏波光とy偏波光
が変化する位相の差が近接している。このことから、x
偏波光とy偏波光を充分分離して取出すことができない
ことを示している。
The branching ratio wavelength characteristic is, for example, a change in intensity of polarized light emitted from arm C or arm D when the wavelength of light incident from arm A is changed from 0.8 to 1.5 μm, that is, Refers to the change in branching ratio between arms A and C or A and D. In the figure, the solid line indicates the intensity of x-polarized light, and the broken line indicates the intensity of y-polarized light. In the example of FIG. 11, the phase difference in which the x-polarized light and the y-polarized light change is close to each other. From this, x
It shows that the polarized light and the y-polarized light cannot be separated sufficiently.

【0007】図12では長波長側に近ずく程、x偏波光
とy偏波光の位相が全く逆位相の関係となり、例えば
1.4μmの波長ではy偏波光に関しては分岐比がほぼ
100%、x偏波光に関しては分岐比がほぼ0%とな
り、y偏波光だけを取出すことができる特性を示してい
る。尚、このとき、他方のアームではx偏波光だけが取
出せる状態にある。
In FIG. 12, the closer the wavelength is to the long wavelength side, the more the phases of the x-polarized light and the y-polarized light have opposite phases. For example, at the wavelength of 1.4 μm, the branching ratio of the y-polarized light is almost 100%. With respect to the x-polarized light, the branching ratio is almost 0%, which shows the characteristic that only the y-polarized light can be extracted. At this time, the other arm is in a state where only the x-polarized light can be extracted.

【0008】図12に示した測定結果から明らかなよう
に、融着延伸量を長く採り、且つ光の波長を或る波長に
限定すれば偏波ビームスプリッタとして実用できること
が確認された。
As is clear from the measurement results shown in FIG. 12, it was confirmed that the polarization beam splitter can be used practically if the fusion and stretching amount is long and the wavelength of light is limited to a certain wavelength.

【0009】[0009]

【発明が解決しようとする課題】図12に示した分岐比
波長特性を持つ偏波ビームスプリッタを実用した場合、
ビームスプリット可能な光の波長が限られてしまう不都
合がある。また、図12に示した特性から明らかなよう
に、波長の変化に対して、分岐比が大きく変化する特性
(以下この特性を波長依存法と称することにする)を呈
している。この結果、波長を限定して実用したとして
も、波長がわずかでも変化すると、その波長変化により
分岐比が大きく変動するため、分離したx偏波光及びy
偏波光の強度も変動するため、例えば図8に示した光フ
ァイバ障害点検出装置に利用したとすると、その障害点
の測定に支障を示す欠点もある。
When the polarization beam splitter having the branching ratio wavelength characteristic shown in FIG. 12 is put into practical use,
There is an inconvenience that the wavelength of light that can be beam-split is limited. Further, as is clear from the characteristics shown in FIG. 12, it exhibits a characteristic in which the branching ratio largely changes with a change in wavelength (hereinafter, this characteristic is referred to as a wavelength-dependent method). As a result, even if the wavelength is limited and put to practical use, if the wavelength changes even slightly, the branching ratio greatly changes due to the wavelength change.
Since the intensity of polarized light also fluctuates, if it is used in the optical fiber fault point detection device shown in FIG. 8, for example, there is a drawback that it hinders the measurement of the fault point.

【0010】波長依存性を低減することを目的とした報
告が2nd Workshop on Optical
SensorsにおけるWOFS2−13でなされて
いる。この論文では使用する偏波面保存光ファイバの応
力複屈折を大きくするか、又は応力付与部12とクラッ
ド10の屈折率差を大きくすることにより光ファイバ融
着延伸型ビームスプリッタの波長依存性を低減できるこ
とが報告されている。
A report aimed at reducing the wavelength dependence is the 2nd Workshop on Optical.
This is done in WOFS2-13 at Sensors. In this paper, the wavelength dependence of the optical fiber fusion drawing type beam splitter is reduced by increasing the stress birefringence of the polarization-maintaining optical fiber used or by increasing the refractive index difference between the stress applying part 12 and the cladding 10. It is reported that it can be done.

【0011】然し乍ら、この論文で報告された方法によ
って波長依存性を低減したとしても、どの程度低減され
たかについては、何も記述されていない。そこで本発明
者がこの論文で報告されている方法を用いて偏波ビーム
スプリッタを試作して、その低減効果を確認した。図1
2に示した前出の論文で報告されている分岐比波長特性
の周期Tが120nmであるのに対し、本発明者が後者
論文で提案された方法の最良な条件で試作したところ、
分岐比が変化する周期Tが200nmに改善された。つ
まり、現状で複屈折率Bが最も高い(B=4.4×10
-4 )偏波面保存ファイバを用いて試作を行なった、そ
の結果が、結合比波長特性の周期Tが200nmに改善
された程度であり、依然として波長依存性が高いと言え
る。
However, even if the wavelength dependence is reduced by the method reported in this paper, nothing is described about how much the wavelength dependence is reduced. Therefore, the present inventor prototyped a polarization beam splitter using the method reported in this paper, and confirmed its reduction effect. FIG.
While the period T of the branching ratio wavelength characteristic reported in the above-mentioned paper shown in FIG. 2 is 120 nm, the present inventor made a prototype under the best conditions of the method proposed in the latter paper.
The cycle T at which the branching ratio changes was improved to 200 nm. That is, the birefringence index B is currently the highest (B = 4.4 × 10
-4 ) A prototype was made using a polarization-maintaining fiber, and the result was that the period T of the coupling ratio wavelength characteristic was improved to 200 nm, and it can be said that the wavelength dependence is still high.

【0012】この発明の目的は実用上支障のない程度に
波長依存性を低減することができる光ファイバ融着延伸
型偏波ビームスプリッタと、その製造方法を提案するも
のである。
An object of the present invention is to propose an optical fiber fusion-stretched polarization beam splitter capable of reducing the wavelength dependence to the extent that there is no practical problem, and a manufacturing method thereof.

【0013】[0013]

【課題を解決するための手段】この発明による光ファイ
バ融着延伸型偏波ビームスプリッタの製造方法は光ファ
イバの従来の融解温度より低い温度で偏波面保存ファイ
バを加熱し、側縁の一部を融着させると共に、粘性の高
い状態で延伸を実行し、融着部分の内部応力を高めるよ
うに製造することを特徴とするものである。
SUMMARY OF THE INVENTION A method for manufacturing an optical fiber fusion-stretched polarization beam splitter according to the present invention heats a polarization-maintaining fiber at a temperature lower than the conventional melting temperature of the optical fiber and forms a part of a side edge. Is fused and stretched in a highly viscous state so as to increase the internal stress of the fused portion.

【0014】この発明では更に、融着延伸を実行する過
程において、一方の光ファイバの一端からY軸偏波光を
入射させ、光ファイバの他端側の双方に分岐比測定器を
接続し、分岐比の変化を監視しながら融着延伸を実行す
る。融着部分が延伸する過程において、偏波光を入射し
たファイバ以外のファイバから入射した偏波光の100
%に近い偏波光が出射された時点で延伸を停止させる。
Further, in the present invention, in the process of executing the fusion drawing, the Y-axis polarized light is made incident from one end of one optical fiber, and a branching ratio measuring device is connected to both ends of the optical fiber to branch the light. The fusion drawing is performed while monitoring the change in ratio. In the process of extending the fusion-bonded portion, 100 of the polarized light incident from a fiber other than the fiber into which the polarized light is incident.
The stretching is stopped at the time when the polarized light close to% is emitted.

【0015】このようにして作られたファイバ融着延伸
型偏波ビームスプリッタの特徴とする特性は分岐比10
0:0(%)を実現した波長より短波長側では分岐比が
変化しない平坦な特性を呈し、更に、その波長の長波長
側では充分に長い波長の周期を持つ。従って波長の変化
に対して分岐比の変化は緩やかになり、波長依存性を充
分に低減することができる。
The characteristic feature of the fiber fusion-spreading type polarization beam splitter thus produced is that the branching ratio is 10
On the shorter wavelength side than the wavelength at which 0: 0 (%) is achieved, the branching ratio does not change and exhibits a flat characteristic, and on the long wavelength side of that wavelength, a sufficiently long wavelength period is provided. Therefore, the change of the branching ratio becomes gradual with respect to the change of the wavelength, and the wavelength dependence can be sufficiently reduced.

【0016】この発明によるファイバ融着延伸型偏波ビ
ームスプリッタの特徴とする構成は延伸部分の延伸量が
分岐比が100:0(%)を実現した光の波長の約60
00倍以下の寸法になっている点である。因みに先に発
表された論文で報告された光ファイバ融着延伸型偏波ビ
ームスプリッタでは延伸量(20mm)は分岐比10
0:0(%)を実現する波長(1.4μm)の約14×
103 倍強となっている。
The fiber fusion-spreading type polarization beam splitter according to the present invention is characterized in that the stretching amount of the stretching portion achieves a branching ratio of 100: 0 (%), which is about 60 of the wavelength of light.
The point is that the size is less than 00 times. By the way, in the optical fiber fusion stretched polarization beam splitter reported in the previously published paper, the stretched amount (20 mm) is 10%.
Approximately 14 x of wavelength (1.4 μm) that realizes 0: 0 (%)
It is a little over 10 3 times.

【0017】この発明のように短かい延伸量で所定の偏
波分離特性を得ることができると言うことは、融着延伸
部分の内部応力の高まりから、この部分の複屈折が高め
られていることを意味し、融着延伸部分の複屈折の高ま
りによって、周波数依存性の低い偏波分離特性が得られ
ることとなる。これは、論文(後者)で提案されている
光ファイバ自体の複屈折が高い光ファイバを用いる方法
よりも、さらに低い偏波分離特性が得られる。
The fact that a predetermined polarization separation characteristic can be obtained with a short amount of stretching as in the present invention means that the birefringence of this portion is increased due to the increase of the internal stress in the fusion-stretched portion. This means that the polarization separation characteristics with low frequency dependence can be obtained by increasing the birefringence of the fused and stretched portion. This provides a polarization splitting characteristic that is even lower than the method proposed in the paper (latter) that uses an optical fiber with high birefringence of the optical fiber itself.

【0018】[0018]

【実施例】図1にこの発明の製造方法を説明するための
図を示す。図1に示す光ファイバ融着延伸装置は「特開
平5−307128号公報」に開示されたものと全く同
じ構成となっている。この実施例では2本の偏波面保存
ファイバを融着延伸する場合について説明する。2本の
偏波面保存ファイバ(以下では単に光ファイバと称する
ことにする)OPF1 とOPF2 は平行して配置され、
一端側が固定クランプ14で固定され、他端側が延伸機
13に支持される。延伸機13はモータ15で光ファイ
バOPF1 とOPF2 に延伸力を与える。光ファイバO
PF1 とOPF2 は予め光源19から単一偏波光が与え
られ、その透過光の偏波軸方向を計測して応力付与部1
2(図10参照)の配列方向を特定し、2本の光ファイ
バOPF1 とOPF2 の応力付与部12の配列方向を平
行する姿勢に揃える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a diagram for explaining the manufacturing method of the present invention. The optical fiber fusion splicing and drawing apparatus shown in FIG. 1 has exactly the same configuration as that disclosed in Japanese Patent Laid-Open No. 5-307128. In this embodiment, a case where two polarization-maintaining fibers are fused and drawn will be described. Two polarization-maintaining fibers (hereinafter, simply referred to as optical fibers) OPF 1 and OPF 2 are arranged in parallel,
One end side is fixed by the fixed clamp 14, and the other end side is supported by the stretching machine 13. The drawing machine 13 applies a drawing force to the optical fibers OPF 1 and OPF 2 by the motor 15. Optical fiber O
The PF 1 and OPF 2 are given a single polarized light from the light source 19 in advance, and the stress applying unit 1 is measured by measuring the polarization axis direction of the transmitted light.
The arrangement direction of 2 (see FIG. 10) is specified, and the arrangement directions of the stress applying portions 12 of the two optical fibers OPF 1 and OPF 2 are aligned in parallel postures.

【0019】光源19はX軸偏波光又はY軸偏波光を一
方の光ファイバ、図の例ではOPF 1 の一方の端部に入
射する。光ファイバOPF1 とOPF2 の他方の端部に
は光検出器21と22が光結合されて配置され、その光
検出信号が分岐比測定器23に入力され、融着部分の分
岐比を測定できるように構成される。光ファイバOPF
1 とOPF2 の融着予定位置と対向して加熱手段16と
17が配置される。加熱手段16と17は例えばガスバ
ーナ或は電気加熱ヒータ等を用いることができる。図の
例ではガスバーナを用いた場合を示す。加熱手段16と
17は図2に示すように移動ステージ18に搭載され、
制御器24の制御によって光ファイバOPF1 とOPF
2 に向って近ずく方向及び離れる方向に移動操作され
る。つまり、当初、加熱手段16と17は光ファイバO
PF1 とOPF2から離れた位置に配置される。融着の
開始操作と共に、加熱手段16と17は光ファイバOP
1 とOPF2 に近ずく方向に移動を始める。加熱手段
16と17をガスバーナとした場合、ガスバーナに与え
るガスの流量を一定値に維持し、火力、即ち温度を一定
値に維持する。制御器24には予めガスバーナの炎の先
端と光ファイバOPF1 とOPF2 の間が最も近ずく寸
法を設定する。
The light source 19 emits X-axis polarized light or Y-axis polarized light.
Optical fiber, OPF in the example shown 1Enter into one end of
Shoot. Optical fiber OPF1And OPF2On the other end of
Is arranged so that the photodetectors 21 and 22 are optically coupled and
The detection signal is input to the branching ratio measuring device 23, and
It is configured so that the ratio can be measured. Optical fiber OPF
1And OPF2Of the heating means 16 facing the planned fusion position of
17 are arranged. The heating means 16 and 17 are, for example, gas
A heater or an electric heater can be used. In the figure
The example shows the case where a gas burner is used. Heating means 16 and
17 is mounted on a moving stage 18 as shown in FIG.
The optical fiber OPF is controlled by the controller 24.1And OPF
2It is operated to move toward and away from
It That is, initially, the heating means 16 and 17 have the optical fiber O
PF1And OPF2It is located in a position away from. Fused
Along with the start operation, the heating means 16 and 17 cause the optical fiber OP
F1And OPF2Start moving in the direction of approaching. Heating means
If 16 and 17 are gas burners, give them to the gas burner.
Gas flow rate is maintained at a constant value, and thermal power, that is, temperature is kept constant
Keep at the value. The controller 24 has the tip of the gas burner flame in advance.
End and optical fiber OPF1And OPF2The closest distance between
Set the law.

【0020】光ファイバOPF1 とOPF2 を完全融解
に近い状態(粘度が充分低く抵抗なく延伸できる状態)
に融解する場合は炎の先端と光ファイバOPF1 及びO
PF 2 との間の最接近距離は2mmであった。従来の技
術の項で説明した試作はこの距離に設定した。これに対
し、この発明では炎の先端と光ファイバOPF1 ,OP
2 その間の最接近距離を2.3mmに設定した。最接
近距離をわずかに離すことにより、光ファイバOPF1
とOPF2 は完全融解に近い状態に到らずに、半融解状
態(粘度が高い状態)で光ファイバOPF1 とOPF2
は融着し、その半融解状態で延伸機13の張力によって
延伸される。炎が最も近ずく位置で加熱手段16と17
は約1秒程度静止し、その静止時間の経過後、再び光フ
ァイバOPF1 とOPF 2 から離れる方向に移動させ、
炎の熱の影響が無い位置まで移動して停止する。
Optical fiber OPF1And OPF2Completely melt
Close to (the viscosity is low enough to stretch without resistance)
If it melts, the tip of the flame and the optical fiber OPF1And O
PF 2The closest distance between and was 2 mm. Conventional technique
This distance was set for the prototype described in the section on surgery. Against this
However, in this invention, the tip of the flame and the optical fiber OPF1, OP
F2The closest distance between them was set to 2.3 mm. Closest
Optical fiber OPF1
And OPF2Is in a semi-molten state without reaching a state close to complete melting.
Optical fiber OPF in the state (high viscosity state)1And OPF2
Are fused and in the semi-molten state by the tension of the stretching machine 13.
It is stretched. Heating means 16 and 17 at the position where the flame is closest
Will remain stationary for about 1 second, and after the stationary
Fiber OPF1And OPF 2Move away from,
Move to a position where there is no effect of flame heat and stop.

【0021】炎の最接近距離はガスバーナの温度が(ガ
ス供給量を絞ることにより)低くなれば近ずく方向に変
えなければならない。また最接近位置での静止時間を長
く採る場合には、最接近距離を離す方向に変える必要が
ある。 実施例1 ノズル径が0.5mmφのガスバーナから1分間に10
ccのガスを流出させて点火し約5mmφの炎を形成し
た。この炎を1秒間に1cmの速度で光ファイバOPF
1 ,OPF2 の両側に近ずけ最接近距離2mmの位置で
停止させた。0.8秒間経過した時点で炎を再び1秒に
つき1cmの速度で移動させ、光ファイバOPF1 ,O
PF2 から引き離した。
The closest distance of the flame must be changed to the closer direction when the temperature of the gas burner becomes lower (by reducing the gas supply amount). Further, in the case of taking a long stationary time at the closest position, it is necessary to change the closest distance to the direction of separating. Example 1 10 minutes per minute from a gas burner with a nozzle diameter of 0.5 mmφ
Gas of cc was caused to flow out and ignited to form a flame of about 5 mmφ. The optical fiber OPF with this flame at a speed of 1 cm per second
1. Close to both sides of OPF 2 and stop at the position with the closest distance of 2 mm. When 0.8 seconds had elapsed, the flame was moved again at a speed of 1 cm per second, and the optical fibers OPF 1 , O
Separated from PF 2 .

【0022】炎が光ファイバOPF1 ,OPF2 に最も
接近している状態で、光ファイバOPF1 とOPF2
その加熱位置で相互に融着し、延伸機13の張力によっ
て延伸される。延伸中に分岐比測定器23で分岐比を測
定し、光源19から光ファイバOPF1 に入射した例え
ばY偏波光が他方の光ファイバOPF2 に100%乃至
はこれに近い状態に分岐した状態を検出する。入射した
光ファイバとは異なる他の光ファイバに偏波光が100
%乃至はこれに近い状態に分岐した状態が初回目で制御
器24に検出信号を与え、延伸機13の延伸動作を停止
させた。このときの延伸量は7mm、光源19から入射
したy偏波光の波長λ1 は1.55μmであった。従っ
て延伸量は波長の約4500倍程度になっている。
The flame in a state that is closest to the optical fiber OPF 1, OPF 2, optical fibers OPF 1 and OPF 2 is fused to each other at the heating position, it is stretched by the tension of the drawing machine 13. The branching ratio measuring device 23 measures the branching ratio during the extension, and a state in which, for example, Y-polarized light incident on the optical fiber OPF 1 from the light source 19 is branched to the other optical fiber OPF 2 in a state of 100% or close thereto. To detect. Polarized light is transmitted to another optical fiber different from the incident optical fiber.
% Or a state close to this state, the detection signal was given to the controller 24 at the first time, and the stretching operation of the stretching machine 13 was stopped. At this time, the stretching amount was 7 mm, and the wavelength λ 1 of the y-polarized light incident from the light source 19 was 1.55 μm. Therefore, the stretching amount is about 4500 times the wavelength.

【0023】このようにして作られた光ファイバ融着延
伸型偏波ビームスプリッタの分岐比特性を図3に示す。
図3に示す点線はY偏波光の分岐特性を示す。光源19
から波長λ1 のY偏波光を光ファイバOPF1 に与えそ
のY偏波光が光ファイバOPF2 に100%近く分岐し
た状態を示す。このとき、光源19からX偏波光を光フ
ァイバOPF1 に入射すると、光ファイバOPF2 から
はX偏波光は全く出射されない。つまり、この状態では
X偏波光は入射した光ファイバと同じ光ファイバOPF
1 の端部から出射され偏波ビームスプリット特性を呈す
る。
FIG. 3 shows the branching ratio characteristics of the optical fiber fusion-stretched polarization beam splitter manufactured as described above.
The dotted line shown in FIG. 3 indicates the branching characteristic of Y polarized light. Light source 19
From the above, Y polarized light of wavelength λ 1 is applied to the optical fiber OPF 1 and the Y polarized light is branched to the optical fiber OPF 2 by nearly 100%. At this time, when the X polarized light is incident on the optical fiber OPF 1 from the light source 19, the X polarized light is not emitted from the optical fiber OPF 2 at all. That is, in this state, the X polarized light is the same optical fiber OPF as the incident optical fiber.
It is emitted from the end of 1 and exhibits polarization beam splitting characteristics.

【0024】この分岐比特性の特徴は融着延伸時に分岐
比測定のために光源19から与えた偏波光の波長λ1
分岐比が100:0(%)を実現する点と、その波長λ
1 より短波長側で分岐比が一定値に収斂する点と、Y偏
波光又はX偏波光の何れか一方の分岐比が短波長側の収
斂値から長波長側に向ってなだらかに変化する点であ
る。このなだらかに変化する特性部分を利用することに
より、波長依存性を充分低くすることができる。分岐比
特性の波長依存性が低いことから、この実施例で作られ
たビームスプリッタの融着延伸の融着部分の内部応力が
高められて複屈折が高められたものと考えられる。つま
り、融着延伸部分の断面は図4に示すように、クラッド
10と応力付与部12の形状が大きく楕円化されている
ものと見ることができる。クラッド10及び応力付与部
12の断面形状が大きく楕円化されることによりクラッ
ド内の複屈折が高められ、これにより図3に示したよう
な分岐特性が得られたものと考えることができる。 実施例2 ノズル径が0.5mmφのガスバーナから1分間に10
ccのガスを流出させて点火し、約5mmφの炎を形成
した。この炎を1秒間1cmの速度で光ファイバOPF
1 ,OPF2 の両側に近ずけ、最接近距離2.3mmの
位置で停止させた。
The characteristic of this branching ratio characteristic is that a branching ratio of 1: 0 (%) is realized at the wavelength λ 1 of polarized light provided from the light source 19 for measuring the branching ratio at the time of fusion drawing, and its wavelength λ.
A point where the branching ratio converges to a constant value on the shorter wavelength side than 1 and a point where the branching ratio of either Y polarized light or X polarized light changes gradually from the convergent value on the short wavelength side toward the long wavelength side. Is. By utilizing this gently changing characteristic portion, the wavelength dependence can be sufficiently reduced. Since the wavelength dependence of the branching ratio characteristic is low, it is considered that the internal stress in the fused portion of the fused extension of the beam splitter made in this example was increased and the birefringence was enhanced. That is, the cross section of the fusion-stretched portion can be regarded as a shape in which the clad 10 and the stress applying portion 12 are largely ovalized, as shown in FIG. It can be considered that the birefringence in the clad is increased by making the cross-sectional shapes of the clad 10 and the stress applying portion 12 largely oval, and as a result, the branching characteristic as shown in FIG. 3 is obtained. Example 2 10 minutes per minute from a gas burner with a nozzle diameter of 0.5 mmφ
A gas of cc was caused to flow out and ignited to form a flame of about 5 mmφ. This flame is applied to the optical fiber OPF at a speed of 1 cm for 1 second.
1 and OPF 2 were approached on both sides and stopped at the position where the closest distance was 2.3 mm.

【0025】1秒間経過した時点で炎を再び1秒につき
1cmの速度で移動させ、光ファイバOPF1 ,OPF
2 から引き離した。炎が光ファイバOPF1 ,OPF2
に最も接近している状態で、光ファイバOPF1 とOP
2 はその加熱位置で相互に融着し、延伸機13の張力
によって延伸される。延伸中に分岐比測定器23で分岐
比を測定し、光源19から光ファイバOPF1 に入射し
た例えばY偏波光が他方の光ファイバOPF2 に100
%乃至はこれに近い状態に分岐した1回目の状態を検出
し、その時点で延伸を停止させる。このときの延伸量は
8mmであった。光源19から入射したY偏波光の波長
λ1 が1.55μmであったから、延伸量は分岐比10
0:0(%)を実現した波長λ1 の約5200倍程度に
なっている。この条件で製造したビームスプリッタも図
3に示した分岐比特性を示した。
When one second has passed, the flame is moved again at a speed of 1 cm per second, and the optical fibers OPF 1 and OPF 1 are moved.
Pulled away from 2 . Flame is optical fiber OPF 1 , OPF 2
With the optical fibers OPF 1 and OP
F 2 is fused to each other at the heating position and is stretched by the tension of the stretching machine 13. The branching ratio measuring device 23 measures the branching ratio during the extension, and the Y-polarized light incident on the optical fiber OPF 1 from the light source 19 enters the other optical fiber OPF 2 at 100%.
% Or the first state branched to a state close to this is detected, and the stretching is stopped at that time. The stretched amount at this time was 8 mm. Since the wavelength λ 1 of the Y polarized light incident from the light source 19 was 1.55 μm, the stretching amount was 10
It is about 5200 times the wavelength λ 1 that realizes 0: 0 (%). The beam splitter manufactured under these conditions also exhibited the branching ratio characteristic shown in FIG.

【0026】ここでガスバーナの炎の条件を上述の実施
例と同一に揃え、最接近距離と、静止時間と、延伸の長
さを変えた比較例を示す。 比較例1 最接近距離を2mm、静止時間を1秒、延伸の長さを分
岐比が100:0%を2回目に示した時点で延伸を停止
させた。このようにして得られた分岐器の分岐比特性を
図5に示す。この製造条件を採った場合には延伸中に分
岐比の測定に用いた偏波光の波長λ1 より短波長側にお
いて分岐比が一旦0:100(%)に逆転し、再び10
0:0(%)に戻る特性を呈する。結局、延伸中に分岐
比が何回反転したかを計数することにより、波長λ1
り短波長側の分岐比の変動回数を規定することができ
る。然も、この比較例では最接近距離を2mm、静止時
間を1秒としたから、光ファイバOPF1 とOPF2
充分加熱され、完全融解状態に近ずく、この結果延伸に
際しては融着部分は何等抵抗なく、従って内部応力が高
められることなく延伸されるものと考えられる。このこ
とは図5に示す分岐特性がよく物語っている。つまり図
5に示した分岐比特性は波長依存性が高いことが解る。
このことは光ファイバOPF1 ,OPF2 の特に融着部
分の複屈折が上述した実施例で得られたビームスプリッ
タの複屈折より低いことを意味し、低い複屈折で短い延
伸量ではX偏波とY偏波の位相が近いため、ビームスプ
リット特性は得られないことが解る。 比較例2 最接近距離2.3mm、静止時間1.2秒、延伸の長さ
を分岐比が100:0(%)を3回目に示した時点で延
伸を停止させた。このようにして得られたビームスプリ
ッタの分岐特性を図6に示す。この製造条件を採った場
合も、融着部分は充分加熱され完全融解状態に近い状態
まで融解が進むから、延伸時に発生する応力は小さい。
つまり小さい力で延伸されるから、融着部分の内部応力
は高められることがなく、複屈折は高められることがな
いから、分岐比特性の周波数依存性が高いものしか得ら
れない。
A comparative example in which the conditions of the gas burner flame are the same as those in the above-mentioned embodiment, and the closest distance, the rest time and the stretching length are changed will be shown. Comparative Example 1 The stretching was stopped when the closest distance was 2 mm, the resting time was 1 second, and the stretching length was the second time when the branching ratio was 100: 0%. The branching ratio characteristic of the branching device thus obtained is shown in FIG. When this manufacturing condition is adopted, the branching ratio once reverses to 0: 100 (%) on the shorter wavelength side than the wavelength λ 1 of the polarized light used for the measurement of the branching ratio during the stretching, and then 10
It exhibits the characteristic of returning to 0: 0 (%). After all, by counting how many times the branching ratio is inverted during stretching, the number of times the branching ratio changes on the shorter wavelength side than the wavelength λ 1 can be specified. However, in this comparative example, the closest distance was set to 2 mm and the rest time was set to 1 second. Therefore, the optical fibers OPF 1 and OPF 2 were sufficiently heated and did not approach a completely melted state. It is considered that the film is stretched without any resistance, and therefore without increasing the internal stress. This is well illustrated by the branching characteristic shown in FIG. That is, it is understood that the branching ratio characteristic shown in FIG. 5 has a high wavelength dependency.
This means that the birefringence of the optical fibers OPF 1 and OPF 2 is lower than the birefringence of the beam splitter obtained in the above-described embodiment, especially in the fused portion. It can be seen that the beam splitting characteristics cannot be obtained because the phases of the Y polarization are close to each other. Comparative Example 2 The stretching was stopped at the time when the closest approach distance was 2.3 mm, the rest time was 1.2 seconds, and the stretching length was the third branch ratio of 100: 0 (%). The branching characteristics of the beam splitter thus obtained are shown in FIG. Even when this manufacturing condition is adopted, the fusion-bonded portion is sufficiently heated and the melting proceeds to a state close to a completely melted state, so that the stress generated during stretching is small.
That is, since it is stretched with a small force, the internal stress in the fused portion is not increased, and the birefringence is not increased, so that only the branch ratio characteristic having high frequency dependence can be obtained.

【0027】上述した実施例1と2では光ファイバを2
本とした場合を説明したが、図7に示すように、3本の
偏波面保存ファイバを融着して偏波ビームスプリッタを
作ることもできる。このように3本の光ファイバを融着
させる場合は、例えば中央の光ファイバOPF2 の一端
に単一偏波光を与え、この偏波光が他の2本の内の1本
又は双方の光ファイバに100%近く分岐した状態で延
伸を停止させれば図3と同様の分岐特性を得ることがで
きる。
In the first and second embodiments described above, two optical fibers are used.
Although the case of using a polarization beam splitter has been described, as shown in FIG. 7, three polarization plane maintaining fibers can be fused to form a polarization beam splitter. When the three optical fibers are fused as described above, for example, a single polarized light is given to one end of the central optical fiber OPF 2 , and this polarized light is one or both of the other two optical fibers. Further, if the stretching is stopped in the state of nearly 100% branching, branching characteristics similar to those in FIG. 3 can be obtained.

【0028】[0028]

【発明の効果】上述したように、この発明によるファイ
バ融着延伸型偏波ビームスプリッタの製造方法によれ
ば、分岐比特性の周波数依存性が低いファイバ融着延伸
型偏波ビームスプリッタを得ることができる。また、周
波数依存性の低いファイバ融着延伸型偏波ビームスプリ
ッタを得ることができることにより、例えば被測定光の
波長が多少ゆらいでも、その波長のゆらぎが光量の変化
として現れない。よって測定精度の高い光測定器を実現
できる実益が得られる。
As described above, according to the method of manufacturing the fiber fusion-stretched polarization beam splitter according to the present invention, it is possible to obtain the fiber fusion-stretched polarization beam splitter whose branch ratio characteristic has low frequency dependence. You can In addition, since it is possible to obtain the fiber fusion-stretched polarization beam splitter with low frequency dependence, even if the wavelength of the measured light fluctuates to some extent, the fluctuation of the wavelength does not appear as a change in the light quantity. Therefore, the actual benefit of realizing an optical measuring instrument with high measurement accuracy can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明によるファイバ融着延伸型偏波ビーム
スプリッタの製造方法を説明するための図。
FIG. 1 is a diagram for explaining a method of manufacturing a fiber fusion-stretched polarization beam splitter according to the present invention.

【図2】図1に示した製造方法の要部の構造を説明する
ための正面図。
FIG. 2 is a front view for explaining the structure of the main part of the manufacturing method shown in FIG.

【図3】この発明による製造方法によって作られたファ
イバ融着延伸型偏波ビームスプリッタの分岐比特性を示
す特性曲線図。
FIG. 3 is a characteristic curve diagram showing a branching ratio characteristic of a fiber fusion-spreading type polarization beam splitter manufactured by the manufacturing method according to the present invention.

【図4】この発明による製造方法で製造したファイバ融
着延伸型偏波ビームスプリッタの融着部分の断面構造を
説明するための断面図。
FIG. 4 is a cross-sectional view for explaining a cross-sectional structure of a fusion-bonded portion of a fiber fusion-stretched polarization beam splitter manufactured by the manufacturing method according to the present invention.

【図5】この発明による製造方法とは異なる条件の比較
例で製造した場合のビームスプリッタの分岐比特性を示
す特性曲線図。
FIG. 5 is a characteristic curve diagram showing a branching ratio characteristic of a beam splitter when manufactured by a comparative example under conditions different from those of the manufacturing method according to the present invention.

【図6】図5と同様の特性曲線図。FIG. 6 is a characteristic curve diagram similar to FIG.

【図7】この発明によるファイバ融着延伸型偏波ビーム
スプリッタの変形実施例を示す断面図。
FIG. 7 is a cross-sectional view showing a modified embodiment of the fiber fusion-spreading polarization beam splitter according to the present invention.

【図8】偏波ビームスプリッタの実用例を説明するため
の図。
FIG. 8 is a diagram for explaining a practical example of a polarization beam splitter.

【図9】従来の技術を説明するための側面図。FIG. 9 is a side view for explaining a conventional technique.

【図10】偏波面保存ファイバの構造を説明するための
断面図。
FIG. 10 is a cross-sectional view for explaining the structure of a polarization-maintaining fiber.

【図11】従来の製造方法で得られる分岐比特性を説明
するための特性曲線図。
FIG. 11 is a characteristic curve diagram for explaining a branching ratio characteristic obtained by a conventional manufacturing method.

【図12】図11と同様の特性曲線図。FIG. 12 is a characteristic curve diagram similar to FIG.

【符号の説明】 OPF1 ,OPF2 光ファイバ 13 延伸機 14 固定クランプ 15 モータ 16,17 加熱手段 18 移動ステージ 19 光源 21,22 光検出器 23 分岐比測定器 24 制御器[Description of Reference Signs] OPF 1 and OPF 2 Optical fiber 13 Stretching machine 14 Fixed clamp 15 Motor 16, 17 Heating means 18 Moving stage 19 Light source 21, 22 Photodetector 23 Branching ratio measuring device 24 Controller

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 クラッド内において、コアを挟んで18
0°対向する位置に応力付与部が配置された断面構造を
持つ複数本の偏波面保存ファイバによって構成され、こ
れら複数本の偏波面保存ファイバを互に隣接させ偏波面
保存ファイバの互に対向する側縁の一部を融着させ、そ
の溶着部分を軸線方向に延伸させて形成した一つのアー
ムから互に直交する偏波面を持つ光を入射し、他のアー
ムの中の2つのアームからそれぞれ一方の偏波面と他方
の偏波面を持つ光をビームスプリットして取出すことが
できるファイバ融着延伸型偏波ビームスプリッタにおい
て、 上記溶着部分の延伸量をビームスプリットすべき光の波
長の約6000倍以下に設定したことを特徴とするファ
イバ融着延伸型偏波ビームスプリッタ。
1. A clad having a core sandwiched between 18
It is composed of a plurality of polarization-maintaining fibers having a cross-sectional structure in which stress-applying portions are arranged at positions facing each other by 0 °, and these polarization-maintaining fibers are adjacent to each other and face each other. A part of the side edge is fused and the welded part is stretched in the axial direction to form light beams with polarization planes orthogonal to each other from one arm, and the two arms in the other arms respectively. A fiber fusion-stretched polarization beam splitter capable of beam-splitting and extracting light having one polarization plane and the other polarization plane, wherein the stretched amount of the welded portion is approximately 6000 times the wavelength of light to be beam-split. A fiber fusion drawing type polarization beam splitter characterized by being set as follows.
【請求項2】 クラッド内において、コアを挟んで18
0°対向する位置に応力付与部が配置された断面構造を
持つ複数本の偏波面保存ファイバによって構成され、こ
れら複数本の偏波面保存ファイバの互に対向する側縁の
一部を融着させ、その融着部分を軸線方向に延伸させて
形成した一つの入射側アームから互に直交する2つの偏
波面を持つ光を入射し、出射側のアームの中の2つのア
ームからそれぞれ一方の偏波面と、他方の偏波面を持つ
光を分離して取出すことができるファイバ融着延伸型偏
波ビームスプリッタにおいて、 ビームスプリットすべき光の波長より短波長側では周期
的に分岐比が変動しない特性を有することを特徴とする
ファイバ融着延伸型偏波ビームスプリッタ。
2. The core is sandwiched between 18
It is composed of a plurality of polarization-maintaining fibers having a cross-sectional structure in which stress-applying portions are arranged at positions facing each other by 0 °, and a part of side edges of the plurality of polarization-maintaining fibers that are opposed to each other are fused. , The light having two polarization planes orthogonal to each other is made incident from one incident side arm formed by extending the fusion-bonded portion in the axial direction, and one of the two arms of the outgoing side arms is polarized respectively. In a fiber fusion stretched polarization beam splitter that can separate and extract the light with the wavefront and the other polarization plane, the branching ratio does not change periodically on the shorter wavelength side than the wavelength of the light to be beam-split. A fiber fusion-spreading type polarization beam splitter comprising:
【請求項3】 円形断面形状を持つクラッド内におい
て、コアを挟んで180°対向する位置に応力付与部が
配置された断面構造を持つ複数本の偏波面保存ファイバ
によって構成され、複数本の偏波面保存ファイバの互に
対向する側縁の一部を加熱して融着させ、その溶着部分
を軸線方向に延伸させて形成したファイバ融着延伸型偏
波ビームスプリッタの製造方法において、 上記複数本の偏波面保存ファイバの双方に均等に張力を
与えた状態で加熱温度を光ファイバの完全融解温度より
低い温度で加熱し、半融解状態で延伸を実行して内部応
力を高め、波長依存性の低い光ファイバ融着延伸型偏波
ビームスプリッタを得ることを特徴とする光ファイバ融
着延伸型偏波ビームスプリッタの製造方法。
3. A polarization-maintaining fiber having a cross-sectional structure in which a stress-applying portion is arranged at a position facing each other by 180 ° with a core sandwiched in a clad having a circular cross-sectional shape. In the method for producing a fiber fusion-stretched polarization beam splitter formed by heating and fusing part of the side edges of the wavefront preserving fiber which face each other, and stretching the fusion-bonded part in the axial direction, While maintaining uniform tension on both polarization-maintaining fibers, the heating temperature is lower than the complete melting temperature of the optical fiber, and stretching is performed in the semi-molten state to increase the internal stress and increase the wavelength dependence. A method for manufacturing an optical fiber fusion-stretched polarization beam splitter, characterized in that a low optical fiber fusion-stretched polarization beam splitter is obtained.
【請求項4】 請求項3記載の光ファイバ融着延伸型偏
波ビームスプリッタの製造方法において、複数本の偏波
面保存ファイバの一つの端部からY偏波光を入射し、複
数本の偏波面保存ファイバの他方の端部のそれぞれに分
岐比測定器を接続し、上記延伸の開始から入射したファ
イバ以外のファイバの端部から入射した偏波光の100
%近くの出射を観測する初回において、上記延伸を停止
させることを特徴とするファイバ融着延伸型偏波ビーム
スプリッタの製造方法。
4. The method for manufacturing an optical fiber fusion-stretched polarization beam splitter according to claim 3, wherein Y-polarized light is made incident from one end of a plurality of polarization-maintaining fibers, and a plurality of polarization planes are input. A branching ratio measuring device is connected to each of the other ends of the storage fibers, and the polarization light 100 incident from the ends of the fibers other than the fiber incident from the start of the stretching is 100
%, The above-mentioned stretching is stopped at the first time of observing the emission, and a method for manufacturing a fiber fusion-stretched polarization beam splitter.
JP30359494A 1994-12-07 1994-12-07 Fiber fusion stretching type polarization beam splitter Pending JPH08160246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30359494A JPH08160246A (en) 1994-12-07 1994-12-07 Fiber fusion stretching type polarization beam splitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30359494A JPH08160246A (en) 1994-12-07 1994-12-07 Fiber fusion stretching type polarization beam splitter

Publications (1)

Publication Number Publication Date
JPH08160246A true JPH08160246A (en) 1996-06-21

Family

ID=17922886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30359494A Pending JPH08160246A (en) 1994-12-07 1994-12-07 Fiber fusion stretching type polarization beam splitter

Country Status (1)

Country Link
JP (1) JPH08160246A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100786617B1 (en) * 1999-05-31 2007-12-21 가부시키가이샤후지쿠라 Method of manufacturing polarization-maintaining optical fiber coupler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100786617B1 (en) * 1999-05-31 2007-12-21 가부시키가이샤후지쿠라 Method of manufacturing polarization-maintaining optical fiber coupler

Similar Documents

Publication Publication Date Title
EP1285294B1 (en) Optical waveguide lens and method of fabrication
JPH0659154A (en) Production of polarization coupler and polarization coupler
JPH02167506A (en) Coupling without dependence on wavelength
JPH08262259A (en) Polarization-insensitive wavelength multiple 2-by-2 fiber coupler and its manufacture
KR100274273B1 (en) Optical fiber coupler and its manufacturing method
JPH055815A (en) Production of optical fiber coupler
JPS62253105A (en) Single mode optical fiber coupler and manufacture thereof
JPH08160246A (en) Fiber fusion stretching type polarization beam splitter
JPH0363609A (en) Wide-band optical fiber coupler and its manufacture
JP2958060B2 (en) Fusion splicing method of optical waveguide and optical fiber
US20030026535A1 (en) Optical fiber collimators and their manufacture
JP2004279759A (en) Optical fiber coupler, its manufacturing method and apparatus
JP2001051150A (en) Manufacture of polarization retaining optical fiber coupler
CA2386068A1 (en) Method for producing an optical coupler for extracting a signal from a polarization maintaining optical fibre, and corresponding coupler
US20100086263A1 (en) Method of Splicing Microstructured Optical Fibers
JP2004347946A (en) Manufacture device and manufacture method of optical fiber coupler
JP2003262756A (en) Method for manufacturing welding type optical fiber coupler
JPH05196834A (en) Process and apparatus for production of optical fiber coupler
JP2931610B2 (en) Manufacturing method of optical fiber coupler
JPH03160405A (en) Production of welded coupler
JPH0618743A (en) Optical branch coupler
JPH06308348A (en) Optical fiber coupler of wide band and its production
JPH03160406A (en) Fusion splicing method of quartz glass waveguide and optical fiber
JPH04328505A (en) Production of optical coupler
JPS63294505A (en) Method for connecting optical fibers

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010918