JPH08141846A - Inter-electrode space control device - Google Patents

Inter-electrode space control device

Info

Publication number
JPH08141846A
JPH08141846A JP30986794A JP30986794A JPH08141846A JP H08141846 A JPH08141846 A JP H08141846A JP 30986794 A JP30986794 A JP 30986794A JP 30986794 A JP30986794 A JP 30986794A JP H08141846 A JPH08141846 A JP H08141846A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
workpiece
machining
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30986794A
Other languages
Japanese (ja)
Inventor
Masaru Honma
大 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toki Corp
Original Assignee
Toki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toki Corp filed Critical Toki Corp
Priority to JP30986794A priority Critical patent/JPH08141846A/en
Publication of JPH08141846A publication Critical patent/JPH08141846A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To precisely control a space between consumed electrodes with extremely simple structure without using a moving device of high accuracy or complicated, advanced feedback control mechanism. CONSTITUTION: An inter-electrode space control device is provided with an energizing means 6 for energizing in the direction of reducing a space between electrodes 1, 2, and a shape memory alloy 5 with shape recovery force acting in the direction of enlarging the space at the time of being heated, and it is so constituted that a current flows to the alloy 5 according to a current flowing between the electrodes 1, 2. When the current flows between the electrodes 1, 2, the current flows also to the alloy 5, so that the alloy 5 is heated to generate shape recovery force, thus enlarging the space between the electrodes. When the space is enlarged to the fixed value or more, the current ceases to flow between the electrodes 1, 2 and to the alloy 5, so that the alloy 5 is cooled to lose shape recovery force, and the space is reduced by the energizing means 6. With the repetition of this action, the space is adjusted autonomously and precisely.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、放電加工装置、電解加
工装置等において、消耗する電極(被加工物等を含む)
間の間隔を制御する電極間の間隔制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode (including a workpiece) that is consumed in an electric discharge machine, an electrolytic machine, or the like.
The present invention relates to a device for controlling a gap between electrodes that controls a gap between the electrodes.

【0002】[0002]

【従来の技術】放電加工装置においては、被加工物およ
び電極が消耗するにつれて、被加工物と電極との間の間
隔を高精度に調整する必要がある。
2. Description of the Related Art In an electric discharge machining apparatus, it is necessary to adjust a distance between a work piece and an electrode with high precision as the work piece and the electrode are consumed.

【0003】[0003]

【発明が解決しようとする課題】このため、従来は高精
度の移動装置および複雑高度なフィードバック制御機構
を用いて被加工物と電極との間の間隔を制御する必要が
あったので、装置の製造コストが非常に高くなってい
た。
Therefore, conventionally, it was necessary to control the distance between the workpiece and the electrode by using a highly accurate moving device and a complicated advanced feedback control mechanism. The manufacturing cost was very high.

【0004】本発明は、このような事情に鑑みてなされ
たもので、本発明の目的の一つは、放電加工装置等にお
いて、高精度の移動装置や複雑高度なフィードバック制
御機構を用いることなく、極めて簡単な構造で、消耗す
る電極(被加工物等を含む)間の間隔を精密に制御する
ことができ、装置の製造コストを非常に安くすることが
できるとともに、装置を非常に小型化することもできる
電極間の間隔制御装置を提供することにある。
The present invention has been made in view of the above circumstances, and one of the objects of the present invention is to use an electric discharge machine or the like without using a highly accurate moving device or a complicated advanced feedback control mechanism. , With an extremely simple structure, it is possible to precisely control the interval between the consumable electrodes (including the work piece etc.), which makes it possible to reduce the manufacturing cost of the device very much and to make the device very compact. Another object of the present invention is to provide a device for controlling the gap between the electrodes.

【0005】本発明の他の目的は以下の説明から明らか
になろう。
Other objects of the invention will be apparent from the following description.

【0006】[0006]

【課題を解決するための手段】本発明による電極間の間
隔制御装置は、互いの間の間隔を可変とされて互いに対
向される第一の電極および第二の電極を備え、これらの
電極間で放電が生じるかまたはこれらの電極間に電流が
流されることにより、少なくとも前記電極のうちの一方
が消耗して行く装置において、両電極間の間隔を制御す
る電極間の間隔制御装置であって、前記第一の電極また
は(および)前記第二の電極を両電極間の間隔が小さく
なる方向に付勢する付勢手段と、一定温度区間まで加熱
されると、前記第一の電極または(および)前記第二の
電極に、両電極間の間隔が大きくなる方向に形状回復力
を作用することとなるように、前記第一の電極または
(および)前記第二の電極に機械的に連係されるととも
に、前記電極間に流れる電流に応じて電流を流される形
状記憶合金とを有してなるものである。
A device for controlling a gap between electrodes according to the present invention comprises a first electrode and a second electrode which are opposed to each other with a variable gap between the electrodes. In a device in which at least one of the electrodes is consumed due to discharge occurring in the device or a current flowing between these electrodes, a device for controlling the interval between the electrodes is provided. , (1) biasing means for biasing the first electrode or / and the second electrode in a direction in which the distance between the two electrodes becomes smaller, and the first electrode or ( And) mechanically linked to the first electrode or / and the second electrode so that a shape recovery force acts on the second electrode in a direction in which the distance between the two electrodes increases. And the flow between the electrodes Is made of a shape memory alloy current flows in response to that current.

【0007】前記付勢手段としては、バネ、別の形状記
憶合金、磁力や重力によって電極を付勢する手段等を用
いることができる(なお、重力によって電極を付勢する
場合は、電極自体や電極と一体化されて錘の機能を果た
す部材等が付勢手段となる)。
As the urging means, a spring, another shape memory alloy, a means for urging the electrode by magnetic force or gravity, or the like can be used (when the electrode is urged by gravity, the electrode itself or A member that functions as a weight that is integrated with the electrode serves as a biasing means).

【0008】前記第一の電極を被加工物とすれば、本装
置は放電加工装置や電解加工装置等の電気的加工装置に
適用できる。
If the first electrode is a work piece, this apparatus can be applied to an electric machining apparatus such as an electric discharge machining apparatus or an electrolytic machining apparatus.

【0009】[0009]

【作用】本発明においては、最初、第一の電極と第二の
電極とが互いに接触した状態となっているとすると、両
電極間に電圧が印加されると、両電極間に電流が流れる
ので、形状記憶合金にも電流が流れる。すると、形状記
憶合金がジュール熱により一定温度区間まで加熱され、
形状記憶合金が形状回復力を発生し、この形状回復力が
両電極間の間隔を大きくする方向に作用するので、両電
極間の間隔が広がる。このため、前記両電極間に印加さ
れる電圧がある程度大きい場合は、両電極間に放電が生
じ、第一の電極または(および)第二の電極が消耗す
る。両電極間の間隔が一定以上大きくなると、両電極間
の放電が停止し、形状記憶合金に対する通電も停止され
るので、形状記憶合金が冷却し、形状回復力が小さくな
るか、消失し、付勢手段により電極間の間隔が小さくさ
れる。したがって、再び両電極間に放電が生じ、以下、
前記同様の動作が繰り返し行われることにより、両電極
間の間隔が自律的に精密に調整される。このため、例え
ば、第一の電極を被加工物とすれば、この被加工物を放
電加工することができる。
In the present invention, assuming that the first electrode and the second electrode are in contact with each other at first, when a voltage is applied between both electrodes, a current flows between both electrodes. Therefore, an electric current also flows through the shape memory alloy. Then, the shape memory alloy is heated to a certain temperature range by Joule heat,
The shape memory alloy generates a shape recovery force, and this shape recovery force acts in the direction of increasing the distance between the electrodes, so that the distance between the electrodes is widened. Therefore, when the voltage applied between both electrodes is large to some extent, a discharge occurs between both electrodes, and the first electrode and / or the second electrode is consumed. When the distance between both electrodes becomes larger than a certain amount, the discharge between both electrodes is stopped and the power supply to the shape memory alloy is also stopped, so the shape memory alloy cools and the shape recovery force decreases or disappears. The spacing between the electrodes is reduced by the biasing means. Therefore, discharge again occurs between both electrodes, and
By repeating the same operation as described above, the interval between both electrodes is autonomously and precisely adjusted. Therefore, for example, if the first electrode is a workpiece, the workpiece can be electric discharge machined.

【0010】また、例えば、第一の電極を被加工物と
し、この被加工物と第二の電極との間に電解液となる液
体を介在させ、被加工物と加工電極との間にある程度小
さい電圧(直流またはデューティー比の小さいパルス電
圧が好ましい)を印加すると、電解液を介して被加工物
と加工電極との間に電流が流れるので、被加工物が電解
される。そして、形状記憶合金の作用により、前記同様
にして被加工物と加工電極との間の間隔が自律的に精密
に調整されながら、被加工物が電解加工されて行く。
Further, for example, the first electrode is a work piece, and a liquid serving as an electrolytic solution is interposed between the work piece and the second electrode, and the work piece and the work electrode are to some extent. When a small voltage (a direct current or a pulse voltage with a small duty ratio is applied) is applied, a current flows between the work piece and the working electrode through the electrolytic solution, so that the work piece is electrolyzed. Then, by the action of the shape memory alloy, the workpiece is electrolytically machined while the interval between the workpiece and the machining electrode is autonomously and precisely adjusted in the same manner as described above.

【0011】[0011]

【実施例】以下、本発明を図面に示す実施例に基づいて
説明する。図1は本発明の第一実施例を示し、本発明を
放電加工装置兼電解加工装置に適用した実施例である。
本実施例においては、第一の電極が被加工物1、第二の
電極が加工電極(工具)2とされ、被加工物1は加工テ
ーブル3上にセットされる。前記加工テーブル3の上方
には、電極支持材4が設けられており、この電極支持材
4は図示しない粗送り装置により上下方向に移動できる
ようになっている。前記電極支持材4にはTi−Ni合
金からなる線状の形状記憶合金5の上端部が取り付けら
れており、この形状記憶合金5の下端部に加工電極2が
取り付けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on the embodiments shown in the drawings. FIG. 1 shows a first embodiment of the present invention, which is an embodiment in which the present invention is applied to an electric discharge machining apparatus / electrolytic machining apparatus.
In this embodiment, the first electrode is the work piece 1 and the second electrode is the work electrode (tool) 2, and the work piece 1 is set on the working table 3. An electrode support member 4 is provided above the processing table 3, and the electrode support member 4 can be moved in the vertical direction by a coarse feed device (not shown). An upper end of a linear shape memory alloy 5 made of a Ti—Ni alloy is attached to the electrode support member 4, and a machining electrode 2 is attached to a lower end of the shape memory alloy 5.

【0012】前記電極支持材4と加工電極2との間には
圧縮コイルバネからなる付勢手段6が取り付けられてお
り、この付勢手段6は加工電極2を下方、言い換えれば
被加工物1と加工電極2との間の間隔が小さくなる方向
に付勢している。これにより、形状記憶合金5は、一定
温度区間より低温の状態では付勢手段6のバネ力によっ
て記憶している長さに比し伸び変形を受けているが、一
定温度区間まで加熱されると、前記記憶している長さに
戻ろうとして収縮する形状回復力を発生し、この形状回
復力は加工電極2に上方、言い換えれば被加工物1と加
工電極2との間の間隔を大きくする方向に作用するよう
になっている。
A biasing means 6 composed of a compression coil spring is attached between the electrode supporting member 4 and the machining electrode 2, and the biasing means 6 moves the machining electrode 2 downward, in other words, the workpiece 1. The bias is applied in a direction in which the distance between the processing electrode 2 and the processing electrode 2 decreases. As a result, the shape memory alloy 5 is stretched and deformed by the spring force of the urging means 6 in a state of a temperature lower than the constant temperature section, but is heated to the constant temperature section. A shape recovery force that shrinks to return to the stored length is generated, and this shape recovery force increases above the machining electrode 2, in other words, increases the distance between the workpiece 1 and the machining electrode 2. It is designed to work in any direction.

【0013】前記形状記憶合金5の上端側は電源7の一
方の極に、前記電源7の他方の極は被加工物1にそれぞ
れ電気的に接続されている。前記電源7から被加工物1
と加工電極2との間に印加する電圧は、直流電圧でも、
交流電圧でも、パルス電圧でもよいが、後に説明する理
由により、パルス電圧が好ましい。
The upper end of the shape memory alloy 5 is electrically connected to one pole of the power source 7, and the other pole of the power source 7 is electrically connected to the workpiece 1. Work piece 1 from the power supply 7
The voltage applied between the machining electrode 2 and the machining electrode 2 is a DC voltage,
The AC voltage or the pulse voltage may be used, but the pulse voltage is preferable for the reason described later.

【0014】前記被加工物1と加工電極2との間には
水、油等の加工液8が充填される。この加工液8は電気
を通すものであっても、電気絶縁性のものであってもよ
い。また、本実施例では加工液8を収容する加工槽を特
に設けていないが、被加工物1および加工電極2を加工
槽に収容し、この加工槽内に加工液8を満たすことによ
り被加工物1と加工電極2との間に加工液8が介在され
るようにしてもよい。また、被加工物1と加工電極2と
の間にポンプにより加工液8を供給するようにしてもよ
い。また、本発明においては、加工液を用いることな
く、放電加工を行うことも可能である。
A machining liquid 8 such as water or oil is filled between the workpiece 1 and the machining electrode 2. The working fluid 8 may be one that conducts electricity or one that is electrically insulating. Further, in the present embodiment, a machining tank for containing the machining liquid 8 is not provided, but the workpiece 1 and the machining electrode 2 are accommodated in the machining tank, and the machining liquid 8 is filled in the machining tank to process the workpiece. The machining liquid 8 may be interposed between the object 1 and the machining electrode 2. Further, the machining liquid 8 may be supplied between the workpiece 1 and the machining electrode 2 by a pump. Further, in the present invention, it is possible to perform electric discharge machining without using a machining liquid.

【0015】次に、本実施例の作動を説明する。最初、
被加工物1と加工電極2とが互いに接触されている状態
において、この両者間にある程度以上大きい電圧が電源
7から印加されると、被加工物1と加工電極2との間お
よび形状記憶合金5に電流が流れる。すると、形状記憶
合金5がジュール熱により一定温度区間まで加熱され、
形状回復力を発生してこの形状回復力が被加工物1と加
工電極2との間の間隔を大きくする方向に作用するの
で、被加工物1と加工電極2との間の間隔が広がる。こ
のため、被加工物1と加工電極2との間に放電が生じ、
被加工物1が放電加工される(このとき、加工電極2の
方も消耗する)。被加工物1と加工電極2との間の間隔
が一定以上大きくなると、両者間の放電が停止し、形状
記憶合金5に対する通電も停止されるので、形状記憶合
金5が冷却し、形状回復力が小さくなるか、消失し、付
勢手段6のバネ力により被加工物1と加工電極2との間
の間隔が小さくされる。したがって、再び被加工物1と
加工電極2との間に放電が生じる。以下、前記同様の動
作が繰り返し行われることにより、被加工物1と加工電
極2との間の間隔が自律的に調整されながら、被加工物
1が放電加工されて行く。このような被加工物1と加工
電極2との間の間隔の自律的な調整作用は、原子オーダ
ーの大きさで行われるものと思われ、極めて精密であ
る。
Next, the operation of this embodiment will be described. the first,
In the state where the workpiece 1 and the machining electrode 2 are in contact with each other, when a voltage larger than a certain level is applied between them, the workpiece 7 and the machining electrode 2 have a space between them and the shape memory alloy. Current flows through 5. Then, the shape memory alloy 5 is heated to a certain temperature range by Joule heat,
Since a shape recovery force is generated and this shape recovery force acts in the direction of increasing the gap between the workpiece 1 and the machining electrode 2, the gap between the workpiece 1 and the machining electrode 2 is widened. Therefore, an electric discharge is generated between the workpiece 1 and the machining electrode 2,
The workpiece 1 is subjected to electric discharge machining (at this time, the machining electrode 2 is also consumed). When the distance between the work piece 1 and the machining electrode 2 becomes larger than a certain value, the discharge between the two is stopped and the energization of the shape memory alloy 5 is stopped, so that the shape memory alloy 5 cools and the shape recovery force. Becomes smaller or disappears, and the spring force of the biasing means 6 reduces the gap between the workpiece 1 and the machining electrode 2. Therefore, electric discharge is again generated between the workpiece 1 and the machining electrode 2. Hereinafter, the same operation as described above is repeatedly performed, so that the workpiece 1 is subjected to electric discharge machining while the interval between the workpiece 1 and the machining electrode 2 is autonomously adjusted. Such an autonomous adjusting action of the distance between the workpiece 1 and the processing electrode 2 is considered to be performed in the atomic order, and is extremely precise.

【0016】なお、加工電極2の大きな移動は前記粗送
り装置によって行うことができるが、形状記憶合金5に
よる加工電極2の運動可能な範囲が非常に大きいので、
前記粗送り装置にはフィードバック機構や精密な送り機
構は不要である。また、前記粗送り装置は設けず、電極
支持材4を手動で動かすことも可能である。
A large movement of the machining electrode 2 can be performed by the rough feed device, but the movable range of the machining electrode 2 by the shape memory alloy 5 is very large.
No feedback mechanism or precise feed mechanism is required in the coarse feed device. Further, it is also possible to manually move the electrode support member 4 without providing the rough feed device.

【0017】このように本発明によれば、高精度の移動
装置や複雑高度なフィードバック制御機構を用いること
なく、放電加工装置を構成できるので、放電加工装置の
製造コストを非常に安価にすることができるとともに、
装置を非常に小型化することができ、従来では全く考え
られられなかった手持ちペン形の放電加工装置も実現可
能である。
As described above, according to the present invention, since the electric discharge machining apparatus can be constructed without using a highly precise moving device or a complicated and sophisticated feedback control mechanism, the manufacturing cost of the electric discharge machining apparatus can be made very low. As well as
The device can be made extremely small, and a hand-held pen-type electric discharge machining device, which has never been considered before, can be realized.

【0018】なお、電磁形のアクチュエータの場合、動
き出すはじめの力は小さい。しかるに、本発明における
ような形状記憶合金のアクチュエータの場合、変形を受
けた形状記憶合金が加熱されて形状回復しようとして動
き出すはじめの位置で最大の力を発生し、変形が回復す
るに従い形状回復力は次第に減少するという優れた特性
を有する。しかも、形状記憶合金のアクチュエータの場
合、慣性が非常に小さい。これらのことも、前述の被加
工物1と加工電極2との間の間隔の自律的な調整作用に
極めて有利に作用し、加工液8なしに空中で被加工物1
と加工電極2との間に連続的に放電を発生させ、被加工
物1を放電加工することも可能である。
In the case of an electromagnetic actuator, the force at the beginning of movement is small. However, in the case of the shape memory alloy actuator as in the present invention, the deformed shape memory alloy is heated to generate the maximum force at the first position where the shape memory alloy starts to move to recover the shape, and the shape recovery force is increased as the deformation is recovered. Has the excellent property of gradually decreasing. Moreover, the inertia of the shape memory alloy actuator is very small. These facts also have an extremely advantageous effect on the above-described autonomous adjustment action of the distance between the workpiece 1 and the machining electrode 2, and the workpiece 1 in the air without the machining liquid 8
It is also possible to continuously generate electric discharge between the machining electrode 2 and the machining electrode 2 to perform electric discharge machining of the workpiece 1.

【0019】また、前記のように電源7から被加工物1
と加工電極2との間に印加する電圧は、直流電圧でも、
交流電圧でも、パルス電圧電圧でもよいが、パルス電圧
の場合が最も加工状態が安定しており、加工状態の調整
も簡単である。パルス電圧にすると、分極も起こりにく
く、長時間の通電も安定した状態を保つことができる。
パルス周波数は、通常、加工電極2の固有振動数を十分
超えた周波数のものがよい。パルス周波数が低いと振動
が生じる場合がある。パルスの電圧とデューティー比を
変えることで加工条件を変えることができる。
Further, as described above, the power source 7 is connected to the workpiece 1
The voltage applied between the machining electrode 2 and the machining electrode 2 is a DC voltage,
The AC voltage or the pulse voltage may be used, but the pulse voltage is the most stable processing state, and the processing state can be easily adjusted. When a pulse voltage is used, polarization is less likely to occur and a stable state can be maintained even for long-term energization.
The pulse frequency is usually a frequency sufficiently higher than the natural frequency of the machining electrode 2. Vibration may occur when the pulse frequency is low. The processing conditions can be changed by changing the pulse voltage and the duty ratio.

【0020】また、形状記憶合金5を水冷したり、ファ
ンにより強制空冷したり、ヒートシンクを使用すれば、
形状記憶合金5の応答速度を上げ、放電加工速度を速く
することができる。
If the shape memory alloy 5 is water-cooled, forcedly cooled by a fan, or a heat sink is used,
It is possible to increase the response speed of the shape memory alloy 5 and increase the electric discharge machining speed.

【0021】本装置はまた、次のようにして電解加工装
置としても使用できる。この場合は、加工液8として電
解液として作用する液体を用いる。このような液体とし
ては、一般的に電解加工に用いられているものは勿論、
それ以外のものも用いることができ、例えば水道水も、
塩素等を含有していることにより事実上の電解液として
使用できる。そして、水道水のような液体は、前記のよ
うに放電加工を行う場合と電解加工を行う場合との両方
に共通して使用することが可能である。
The present apparatus can also be used as an electrolytic processing apparatus as follows. In this case, a liquid that acts as an electrolytic solution is used as the working liquid 8. As such a liquid, of course, a liquid that is generally used for electrolytic processing,
Other than that, for example, tap water,
Since it contains chlorine and the like, it can be practically used as an electrolytic solution. Then, a liquid such as tap water can be commonly used for both the electric discharge machining and the electrolytic machining as described above.

【0022】このように電解加工装置として使用する場
合、被加工物1と加工電極2との間に印加する電圧を完
全な直流またはデューティー比の大きいパルスとすると
ともに、電圧をある程度小さくする。すると、加工液8
(電解液)を介して被加工物1と加工電極2との間に電
流が流れることにより、被加工物1の表面が電解される
とともに、形状記憶合金5にも電流が流れる。このた
め、形状記憶合金5がジュール熱により一定温度区間ま
で加熱され、形状記憶合金5が形状回復力を発生して、
この形状回復力が被加工物1と加工電極2との間の間隔
を大きくする方向に作用するので、被加工物1と加工電
極2との間の間隔が広がる。これにより、被加工物1と
加工電極2との間に流れる電流、ひいては形状記憶合金
5に流れる電流が小さくなるので、形状記憶合金5の温
度が低下し、形状回復力が小さくなるか、消失し、付勢
手段6のバネ力により被加工物1と加工電極2との間の
間隔が小さくされる。したがって、再び被加工物1と加
工電極2との間に流れる電流、ひいては形状記憶合金5
に流れる電流が大きくなる。以下、前記同様の動作が繰
り返し行われることにより、被加工物1と加工電極2と
の間の間隔が自律的に精密に調整されながら、被加工物
1が電解加工されて行く。
When used as an electrolytic processing apparatus as described above, the voltage applied between the workpiece 1 and the processing electrode 2 is a complete DC or a pulse with a large duty ratio, and the voltage is reduced to some extent. Then, the working fluid 8
When a current flows between the workpiece 1 and the machining electrode 2 via the (electrolytic solution), the surface of the workpiece 1 is electrolyzed and a current also flows through the shape memory alloy 5. Therefore, the shape memory alloy 5 is heated to a certain temperature range by Joule heat, and the shape memory alloy 5 generates a shape recovery force,
Since this shape recovery force acts in the direction of increasing the gap between the workpiece 1 and the machining electrode 2, the gap between the workpiece 1 and the machining electrode 2 is widened. As a result, the current flowing between the work piece 1 and the machining electrode 2, and hence the current flowing through the shape memory alloy 5, is reduced, so that the temperature of the shape memory alloy 5 is reduced and the shape recovery force is reduced or disappears. However, the spring force of the biasing means 6 reduces the distance between the workpiece 1 and the machining electrode 2. Therefore, the current flowing between the workpiece 1 and the machining electrode 2 again, and thus the shape memory alloy 5
The current flowing through it increases. Thereafter, the same operation as described above is repeatedly performed, and the workpiece 1 is electrolytically machined while the interval between the workpiece 1 and the machining electrode 2 is autonomously and precisely adjusted.

【0023】このように本装置によれば、同一装置によ
り放電加工と電解加工との両方を行うこともできる。放
電加工時は、断続的に大きなエネルギが加工部に加わる
ため、加工表面が比較的に荒くなるが、上述のようにし
て電解加工(電解研磨)状態とすれば、加工表面を極め
て滑らかに仕上げることができる。図2はこのような放
電加工状態と電解加工状態との印加パルスの例を示した
ものである(図2においては、縦軸に電圧または電流、
横軸に時間をとっている)。
As described above, according to this apparatus, it is possible to perform both electric discharge machining and electrolytic machining with the same apparatus. During electrical discharge machining, a large amount of energy is intermittently applied to the machined part, so the machined surface becomes relatively rough, but if the electrolytic machining (electrolytic polishing) state is set as described above, the machined surface is finished extremely smooth. be able to. FIG. 2 shows an example of applied pulses in such an electric discharge machining state and an electrolytic machining state (in FIG. 2, the vertical axis represents voltage or current,
Time is taken on the horizontal axis).

【0024】図3は、一時的な大電流を補うことができ
るようにするため、抵抗9、コイル10およびコンデン
サ11を用いて電圧印加回路をRLC回路としたもので
ある。他の構成は前記第一実施例と同様である。勿論、
電圧印加回路をRL回路やRC回路としてもよい。
FIG. 3 shows an RLC circuit as a voltage application circuit using a resistor 9, a coil 10 and a capacitor 11 in order to make up for a temporary large current. The other structure is the same as that of the first embodiment. Of course,
The voltage application circuit may be an RL circuit or an RC circuit.

【0025】図4は本発明の第三実施例を示し、放電加
工に大電流が必要で、その電流をそのまま形状記憶合金
5に流すと、形状記憶合金5が過熱されたり、焼損して
しまう場合の例である。この実施例では、シャント抵抗
12を形状記憶合金5に対し並列に接続し、被加工物1
と加工電極2との間に流れる電流の一部のみが形状記憶
合金5に流れるようにしている。他の構成は前記第一実
施例と同様である。
FIG. 4 shows a third embodiment of the present invention. A large electric current is required for electric discharge machining, and if the electric current is passed through the shape memory alloy 5 as it is, the shape memory alloy 5 is overheated or burned out. This is an example of the case. In this embodiment, the shunt resistor 12 is connected in parallel to the shape memory alloy 5, and the workpiece 1
Only part of the current flowing between the machining electrode 2 and the machining electrode 2 is made to flow to the shape memory alloy 5. The other structure is the same as that of the first embodiment.

【0026】図5は本発明の第四実施例を示し、前記第
三実施例の場合とは逆に、放電電流を形状記憶合金5を
動作させるための電流に比し小さくする必要がある場合
の例である。この実施例では、電源7の一方の極は形状
記憶合金5の上端側に接続されるとともに抵抗13を介
して加工電極2に接続されている。電源7の他方の極は
被加工物1に接続されるとともにスイッチング手段14
を介して加工電極2に接続されている。前記スイッチン
グ手段14の制御端子は加工電極2に接続されており、
この制御端子の電圧が上昇(または低下)すると、スイ
ッチング手段14がオンするようになっている。他の構
成は前記第一実施例と同様である。
FIG. 5 shows a fourth embodiment of the present invention. In contrast to the case of the third embodiment, when the discharge current needs to be smaller than the current for operating the shape memory alloy 5. Is an example of. In this embodiment, one pole of the power supply 7 is connected to the upper end side of the shape memory alloy 5 and is also connected to the processing electrode 2 via the resistor 13. The other pole of the power supply 7 is connected to the workpiece 1 and the switching means 14
It is connected to the processing electrode 2 via. The control terminal of the switching means 14 is connected to the processing electrode 2,
When the voltage of this control terminal rises (or falls), the switching means 14 is turned on. The other structure is the same as that of the first embodiment.

【0027】本実施例では、電源7−被加工物1−加工
電極2−抵抗13の経路(または逆の経路)で電流が流
れると、加工電極2、ひいてはスイッチング手段14の
制御端子の電圧が上昇(または低下)し、スイッチング
手段14がオンし、形状記憶合金5にも電流が流れる。
これにより、前記各実施例と同様に放電加工および電解
加工を行うことができ、しかも被加工物1と加工電極2
との間に流れる電流を形状記憶合金5に流れる電流に比
し小さくすることができる。なお、スイッチング手段1
4に増幅機能を持たせてもよい。
In this embodiment, when a current flows through the path of the power source 7-workpiece 1-processing electrode 2-resistor 13 (or the reverse path), the voltage of the processing electrode 2, and thus the control terminal of the switching means 14, is changed. The temperature rises (or decreases), the switching means 14 turns on, and a current also flows in the shape memory alloy 5.
As a result, it is possible to perform electric discharge machining and electrolytic machining in the same manner as in the above-mentioned respective embodiments, and moreover, the work piece 1 and the machining electrode 2 are processed.
The electric current flowing between and can be made smaller than the electric current flowing in the shape memory alloy 5. The switching means 1
4 may have an amplification function.

【0028】前記各実施例は、本発明を縦方向の所謂型
掘り方式の放電加工装置(兼電解加工装置)に適用した
例であるが、本発明は他の種の放電加工装置にも適用で
きるものである。図6は本発明の第五実施例を示し、本
発明をワイヤカット放電加工装置に適用した例である。
Although each of the above-described embodiments is an example in which the present invention is applied to a so-called die-cutting type electric discharge machining device (also an electrolytic machining device) in the vertical direction, the present invention is also applied to other kinds of electric discharge machining devices. It is possible. FIG. 6 shows a fifth embodiment of the present invention, which is an example in which the present invention is applied to a wire cut electric discharge machine.

【0029】本実施例においては、第一の電極が被加工
物1、第二の電極がワイヤ電極15とされる。被加工物
1は図示しない加工テーブル上にセットされる。前記加
工テーブルの側方には、ワイヤ支持材16が設けられて
おり、このワイヤ支持材16は図示しない粗送り装置に
より水平方向に移動できるようになっている。前記ワイ
ヤ支持材16には上下二段のプーリー支持材17がそれ
ぞれ水平方向に移動可能に支持されており、これらのプ
ーリー支持材17にはプーリー18がそれぞれ回転可能
に支持されている。
In this embodiment, the first electrode is the work piece 1 and the second electrode is the wire electrode 15. The workpiece 1 is set on a processing table (not shown). A wire support member 16 is provided on the side of the processing table, and the wire support member 16 can be moved in the horizontal direction by a coarse feed device (not shown). Two upper and lower pulley support members 17 are horizontally movably supported on the wire support member 16, and pulleys 18 are rotatably supported on the pulley support members 17.

【0030】前記ワイヤ支持材16とプーリー支持材1
7との間には、Ti−Ni合金からなる線状の形状記憶
合金5が渡されている。また、前記ワイヤ支持材16と
プーリー支持材17との間には圧縮コイルバネからなる
付勢手段6が介装されており、この付勢手段6はプーリ
ー支持材17をワイヤ支持材16から離間する方向(図
の左方)、言い換えればワイヤ電極15と被加工物1と
の間の間隔が小さくなる方向に付勢している。これによ
り、形状記憶合金5は、一定温度区間より低温の状態で
は付勢手段6の付勢力(バネ力)によって記憶している
長さに比し伸び変形を受けているが、一定温度区間まで
加熱されると、前記記憶している長さに戻ろうとして収
縮する形状回復力を発生し、この形状回復力はプーリー
支持材17をワイヤ支持材16に近付ける方向(図の右
方)、言い換えればワイヤ電極15と被加工物1との間
の間隔を大きくする方向に作用する。
The wire supporting member 16 and the pulley supporting member 1
A linear shape memory alloy 5 made of a Ti—Ni alloy is passed between 7 and 7. An urging means 6 composed of a compression coil spring is interposed between the wire supporting member 16 and the pulley supporting member 17, and the urging means 6 separates the pulley supporting member 17 from the wire supporting member 16. The direction (the left side of the drawing), in other words, the direction in which the distance between the wire electrode 15 and the workpiece 1 becomes smaller, is urged. As a result, the shape memory alloy 5 is stretched and deformed as compared with the stored length by the urging force (spring force) of the urging means 6 in a state where the temperature is lower than the constant temperature section, but up to the constant temperature section. When heated, a shape-recovering force is generated that shrinks in an attempt to return to the memorized length, and this shape-recovering force is in the direction of bringing the pulley supporting member 17 closer to the wire supporting member 16 (right side of the drawing), in other words, For example, it acts in the direction of increasing the distance between the wire electrode 15 and the workpiece 1.

【0031】ワイヤ電極15は図示しない送り出しリー
ルから2つのプーリー18を経由して図示しない巻き取
りリールへ張力を掛けた状態で送り出されて行くように
なっている。ワイヤ電極15と被加工物1との間に電圧
を印加する回路は前記各実施例の場合と同様とされる。
また、本実施例においても、適当な手段により適当な加
工液8がワイヤ電極15と被加工物1との間に供給でき
るようになっているものとする。
The wire electrode 15 is fed from a feed reel (not shown) via two pulleys 18 to a take-up reel (not shown) under tension. The circuit for applying a voltage between the wire electrode 15 and the workpiece 1 is the same as that in each of the above embodiments.
Also in this embodiment, it is assumed that a suitable working liquid 8 can be supplied between the wire electrode 15 and the workpiece 1 by a suitable means.

【0032】本実施例においては、ワイヤ電極15と被
加工物1との間に電圧が印加されることにより、前記実
施例と同様にして放電加工が行われる。1aは被工作物
の既加工部分、1bは未加工部分を示している。被加工
物1に対する加工部を湾曲させるには、前記加工テーブ
ルに対してワイヤ支持材16をその移動軌跡がカーブを
描くようにして移動させればよい。
In this embodiment, a voltage is applied between the wire electrode 15 and the workpiece 1 to perform electric discharge machining in the same manner as in the above embodiments. Reference numeral 1a indicates a processed portion of the workpiece, and 1b indicates an unprocessed portion. In order to bend the processing portion for the work piece 1, the wire support member 16 may be moved with respect to the processing table so that the movement trajectory of the wire support material 16 draws a curve.

【0033】なお、本実施例では、ワイヤ電極15が形
状記憶合金5により一方向にのみ駆動されるようになっ
ているので、その駆動方向と直角方向にワイヤ支持材1
6を移動方向させることは不可能であるが、例えば形状
記憶合金および付勢手段を2組設け、2組の形状記憶合
金がワイヤ電極15をそれぞれ互いに直交する方向
(X,Y方向)に駆動するようにすれば、ワイヤ支持材
16の移動方向の制限がなくなり、通常のワイヤ放電加
工装置と同様の動作を行わせることができる。
In this embodiment, since the wire electrode 15 is driven by the shape memory alloy 5 in only one direction, the wire support member 1 is driven in the direction perpendicular to the driving direction.
Although it is impossible to move 6 in the moving direction, for example, two sets of shape memory alloy and biasing means are provided, and the two sets of shape memory alloy drive the wire electrodes 15 in directions (X, Y directions) orthogonal to each other. By doing so, there is no restriction on the moving direction of the wire support member 16, and the same operation as a normal wire electric discharge machine can be performed.

【0034】また、前記各実施例では電極2,15の方
を形状記憶合金5により駆動しているが、加工テーブル
3を介して被加工物1の方を形状記憶合金5により駆動
してもよい。
Although the electrodes 2 and 15 are driven by the shape memory alloy 5 in each of the above-described embodiments, the workpiece 1 may be driven by the shape memory alloy 5 via the machining table 3. Good.

【0035】また、前記各実施例においては、形状記憶
合金を付勢する付勢手段6としてバネを用いているが、
本発明においては、付勢手段として、別の形状記憶合
金、磁力や重力によって電極を付勢する手段等の、バネ
以外の手段も用いることができる。
In each of the above embodiments, the spring is used as the biasing means 6 for biasing the shape memory alloy.
In the present invention, as the biasing means, another shape memory alloy, a means for biasing the electrode by magnetic force or gravity, or the like other than the spring can be used.

【0036】また、前記各実施例においては、線状の形
状記憶合金の伸び変形からの形状回復力を利用して電極
間の間隔(被加工物と電極との間の間隔)を変えている
が、本発明においては線状以外の形状の形状記憶合金を
用いたり、伸び変形以外の変形からの形状記憶合金の形
状回復力を利用して電極間の間隔を変えるようにしても
よい。
Further, in each of the above-described embodiments, the space between the electrodes (the space between the workpiece and the electrode) is changed by utilizing the shape recovery force from the elongation deformation of the linear shape memory alloy. However, in the present invention, a shape memory alloy having a shape other than the linear shape may be used, or the space between the electrodes may be changed by utilizing the shape recovery force of the shape memory alloy from deformation other than elongation deformation.

【0037】また、前記各実施例においては、形状記憶
合金5としてTi−Ni合金を用いているが、本発明に
おいてはTi−Ni合金以外の形状記憶合金を用いるこ
とも可能である。
Further, in each of the above-mentioned embodiments, the Ti-Ni alloy is used as the shape memory alloy 5, but it is also possible to use a shape memory alloy other than the Ti-Ni alloy in the present invention.

【0038】また、前記各実施例においては、形状記憶
合金5および付勢手段6がそれぞれ一方の電極のみを駆
動するようになっているが、形状記憶合金および(また
は)付勢手段が両方の電極を共に駆動することにより両
電極間の間隔を変化させるような構成としてもよい。
Further, in each of the above-mentioned embodiments, the shape memory alloy 5 and the biasing means 6 drive only one electrode respectively, but both the shape memory alloy and / or the biasing means act. The electrodes may be driven together to change the distance between the electrodes.

【0039】さらに、前記各実施例は本発明を放電加工
装置または電解加工装置に適用した例であるが、本発明
は放電加工装置や電解加工装置以外の、放電や電流によ
り電極が消耗する装置、例えばアーク溶接装置、アーク
放電による照明装置、放電よる発火装置、放電を利用し
て化学反応を生じさせる装置、STM(スキャンニング
・トンネル・エフェクト・マイクログラフィ)等の装置
にも適用できるものである。
Further, although each of the above-mentioned embodiments is an example in which the present invention is applied to an electric discharge machining apparatus or an electrolytic machining apparatus, the present invention is an apparatus other than an electric discharge machining apparatus or an electrolytic machining apparatus, in which electrodes are consumed by electric discharge or current. It can also be applied to devices such as arc welding devices, lighting devices by arc discharge, ignition devices by discharge, devices that cause a chemical reaction by using discharge, STM (scanning tunnel effect micrography), etc. is there.

【0040】[0040]

【発明の効果】以上のように、本発明は、高精度の移動
装置や複雑高度なフィードバック制御機構を用いること
なく、極めて簡単な構造で、消耗する電極間の間隔を精
密に制御することができ、装置の製造コストを非常に安
くすることができるとともに、装置を非常に小型化する
こともできる等の優れた効果を得られるものである。
As described above, according to the present invention, it is possible to precisely control the interval between consumable electrodes with an extremely simple structure without using a highly precise moving device or a complicated and sophisticated feedback control mechanism. Therefore, the manufacturing cost of the device can be made very low, and the device can be made extremely small.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例を示す断面図である。FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】前記実施例において被加工物(第一の電極)と
加工電極(第二の電極)との間に印加されるパルスの例
を示している。
FIG. 2 shows an example of a pulse applied between a workpiece (first electrode) and a machining electrode (second electrode) in the above-mentioned embodiment.

【図3】本発明の第二実施例を示す断面図である。FIG. 3 is a sectional view showing a second embodiment of the present invention.

【図4】本発明の第三実施例を示す断面図である。FIG. 4 is a sectional view showing a third embodiment of the present invention.

【図5】本発明の第四実施例を示す断面図である。FIG. 5 is a sectional view showing a fourth embodiment of the present invention.

【図6】本発明の第五実施例を示す断面図である。FIG. 6 is a sectional view showing a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 被加工物(第一の電極) 2 加工電極(第二の電極) 6 付勢手段 8 加工液 1 Workpiece (first electrode) 2 Processing electrode (second electrode) 6 Energizing means 8 Processing liquid

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 互いの間の間隔を可変とされて互いに対
向される第一の電極および第二の電極を備え、これらの
電極間で放電が生じるかまたはこれらの電極間に電流が
流されることにより、少なくとも前記電極のうちの一方
が消耗して行く装置において、両電極間の間隔を制御す
る電極間の間隔制御装置であって、 前記第一の電極または(および)前記第二の電極を両電
極間の間隔が小さくなる方向に付勢する付勢手段と、一
定温度区間まで加熱されると、前記第一の電極または
(および)前記第二の電極に、両電極間の間隔が大きく
なる方向に形状回復力を作用することとなるように、前
記第一の電極または(および)前記第二の電極に機械的
に連係されるとともに、前記電極間に流れる電流に応じ
て電流を流される形状記憶合金とを有してなる電極間の
間隔制御装置。
1. A first electrode and a second electrode, which are opposed to each other with a variable distance between them, are provided, and a discharge is generated between these electrodes or a current is passed between these electrodes. As a result, in at least one of the electrodes, the gap control device for controlling the gap between the electrodes in a device in which at least one of the electrodes is consumed, the first electrode or / and the second electrode. When heated to a constant temperature section and a biasing means that biases the electrode in a direction in which the distance between both electrodes becomes smaller, the first electrode or (and) the second electrode causes It is mechanically linked to the first electrode and / or the second electrode so as to exert a shape recovery force in the increasing direction, and a current is applied depending on the current flowing between the electrodes. With flowed shape memory alloy Interval control device between the made electrode.
【請求項2】 前記第一の電極は被加工物であり、この
被加工物と前記第二の電極の間に放電が生じることによ
り、前記被加工物が放電加工される請求項1記載の電極
間の間隔制御装置。
2. The work piece according to claim 1, wherein the first electrode is a work piece, and an electric discharge is generated between the work piece and the second electrode to cause the work piece to be electric discharge machined. Device for controlling the gap between electrodes.
【請求項3】 前記第一の電極は被加工物であり、この
被加工物と前記第二の電極との間に電解液が介在され、
この電解液を介して前記被加工物と前記第二の電極の間
に電流が流されることにより、前記被加工物が電解加工
される請求項1記載の電極間の間隔制御装置。
3. The first electrode is a workpiece, and an electrolytic solution is interposed between the workpiece and the second electrode,
The device for controlling the gap between electrodes according to claim 1, wherein an electric current is passed between the workpiece and the second electrode via the electrolytic solution to electrolytically process the workpiece.
JP30986794A 1994-11-18 1994-11-18 Inter-electrode space control device Pending JPH08141846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30986794A JPH08141846A (en) 1994-11-18 1994-11-18 Inter-electrode space control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30986794A JPH08141846A (en) 1994-11-18 1994-11-18 Inter-electrode space control device

Publications (1)

Publication Number Publication Date
JPH08141846A true JPH08141846A (en) 1996-06-04

Family

ID=17998259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30986794A Pending JPH08141846A (en) 1994-11-18 1994-11-18 Inter-electrode space control device

Country Status (1)

Country Link
JP (1) JPH08141846A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110184692A (en) * 2018-02-23 2019-08-30 特吕茨施勒有限及两合公司 Adjusted in spinning preparation machine the workplace between cylinder and at least one operated adjacent element away from device and method
CN110842307A (en) * 2019-11-22 2020-02-28 合肥工业大学 Electrochemical machining tool for complex inner wall structure with poor accessibility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110184692A (en) * 2018-02-23 2019-08-30 特吕茨施勒有限及两合公司 Adjusted in spinning preparation machine the workplace between cylinder and at least one operated adjacent element away from device and method
CN110842307A (en) * 2019-11-22 2020-02-28 合肥工业大学 Electrochemical machining tool for complex inner wall structure with poor accessibility

Similar Documents

Publication Publication Date Title
US4205213A (en) Method of and apparatus for electrical discharge machining with a vibrating wire electrode
EP1384547A3 (en) Method and apparatus for controlling a power source for short circuit arc welding
JP2015205347A (en) Method for controlling welding process and welding device for carrying out welding process
JP5072234B2 (en) Rack bar induction hardening equipment
JP2008542027A (en) Cold metal transfer welding method and welding equipment
JPS6116571B2 (en)
US4766286A (en) Arc length control for plasma welding
WO1995022426A1 (en) Power supply system for an electric discharge machine
JPH08141846A (en) Inter-electrode space control device
US6140600A (en) Electric discharge machining apparatus
JPWO2015033537A1 (en) Indirect spot welding equipment
US4441005A (en) EDM Pulse generator with a variable output inductor for producing pulse with gradually rising edges
US1712114A (en) Process of and apparatus for electric-arc welding
GB2050224A (en) Electroerosion machining with travelling wire electrode vibrated by two vibrators located one on each side of the workpiece
JP4537688B2 (en) Multi-station EDM with reduced production interruption
US2129899A (en) Electrically actuated tool
JPS5851019A (en) Wire cut electric discharge machining device
JP2696388B2 (en) Power supply unit for electric discharge machining
US2744991A (en) Method of and apparatus for adjusting the spark gap length in metalworking apparatus by which metal may be removed or eroded by sparking
CN217071046U (en) Wire electrode tightness regulator for linear cutting
JP2649387B2 (en) Power supply unit for electric discharge machining
JPH08257911A (en) Electric current adjusting device for electrolytic dressing
JP2004106135A (en) Micro shape machining method and its device
JP4335048B2 (en) Electric discharge machine
Casanueva et al. Electrical discharge machining experiences with a resonant power supply

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040511

A02 Decision of refusal

Effective date: 20040803

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

A521 Written amendment

Effective date: 20040917

Free format text: JAPANESE INTERMEDIATE CODE: A821

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20041029

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20050204

Free format text: JAPANESE INTERMEDIATE CODE: A912