JPH08138773A - Electrode portion structure of printed wiring board - Google Patents

Electrode portion structure of printed wiring board

Info

Publication number
JPH08138773A
JPH08138773A JP6269271A JP26927194A JPH08138773A JP H08138773 A JPH08138773 A JP H08138773A JP 6269271 A JP6269271 A JP 6269271A JP 26927194 A JP26927194 A JP 26927194A JP H08138773 A JPH08138773 A JP H08138773A
Authority
JP
Japan
Prior art keywords
wiring board
electrodes
electrode
conductive film
anisotropic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6269271A
Other languages
Japanese (ja)
Inventor
Kyota Hizuka
恭太 肥塚
Hiroshi Wada
啓 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP6269271A priority Critical patent/JPH08138773A/en
Publication of JPH08138773A publication Critical patent/JPH08138773A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Abstract

PURPOSE: To achieve stable formation of insulating layers on electrode surfaces other than the conducting parts between the electrodes and conductive particles by forming on the electrode surfaces the insulating layers which, when an anisotropic conductive film is heated and pressed, are broken by the conductive particles of the anisotropic conductive film and achieve conduction between the conductive particles and the electrodes. CONSTITUTION: An anisotropic conductive film 7 is placed between a glass substrate 1 on which is formed an electrode 2 covered with an insulating layer 5 and a flexible printed board 3 on which is formed an electrode 4 covered with an insulating layer 6, and is heated and pressed. Then the adhesive layer 7a of the film 7 pressed flows and conductive particles 7b between the electrodes 2, 4 are pressed by the electrodes 2, 4 and allowed to penetrate through the insulating layers 5, 6 to make contact with the electrodes 2, 4. Therefore, even if the adhesive layer 7a has absorbed moisture and condensation forms on the layer 7a, leakage currents to the electrodes 2, 4 are shut off at the layers 5, 6 other than the contact region. Therefore, initial insulation resistance can be enhanced, and good insulation reliability can be secured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、印刷配線板の電極部構
造に係り、詳しくは、印刷配線板と他の印刷配線板若し
くは他の電子部品とを接続するための電極部構造に適用
することができ、特に、如何なる接続ピッチ及び異方性
導電膜においても、初期の絶縁抵抗を高くすることがで
き、かつ良好な絶縁信頼性を確保することができる印刷
配線板の電極部構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode portion structure of a printed wiring board, and more specifically, it is applied to an electrode portion structure for connecting the printed wiring board to another printed wiring board or another electronic component. In particular, the present invention relates to an electrode portion structure of a printed wiring board that can increase the initial insulation resistance and can secure good insulation reliability regardless of the connection pitch and the anisotropic conductive film.

【0002】[0002]

【従来の技術】近年、フルカラー、大型LCDの普及に
伴い、TABに代表されるフレキシブルプリント基板の
実装が多く用いられている。通常、ガラス基板とフレキ
シブルプリント基板の接続は、ガラス基板とフレキシブ
ルプリント基板の間に、異方性導電膜と呼ばれる絶縁性
接着剤中に導電粒子を分散させたフィルムを介在させ、
ボンディングツールを用い加熱加圧して接続される。以
下、図面を用いて説明する。
2. Description of the Related Art In recent years, with the spread of full-color, large-sized LCDs, mounting of flexible printed circuit boards represented by TAB is widely used. Usually, a glass substrate and a flexible printed circuit board are connected to each other by interposing a film in which conductive particles are dispersed in an insulating adhesive called an anisotropic conductive film between the glass substrate and the flexible printed circuit board,
It is connected by heating and pressurizing using a bonding tool. Hereinafter, description will be given with reference to the drawings.

【0003】図9は従来の一般的なガラス基板とフレキ
シブルプリント基板の接続装置の構造を示す断面図、図
10は図9に示す異方性導電膜の加熱加圧中の動きを示
す断面図、図11は図9に示す接続部の構造を示す断面
図である。従来、ガラス基板とフレキシブルプリント基
板の接続装置においては、ステージ101上に置かれた
ガラス基板102の電極103上に接着剤層104a中
に導電粒子104bが分散された異方性導電膜104を
配置し、異方性導電膜104上にフレキシブルプリント
基板105を、ガラス基板102の電極103とフレキ
シブルプリント基板105の電極106が対向するよう
に配置した後、ボンディングツール107で加熱加圧を
行う。
FIG. 9 is a sectional view showing the structure of a conventional connecting device for a general glass substrate and a flexible printed circuit board, and FIG. 10 is a sectional view showing the movement of the anisotropic conductive film shown in FIG. 9 during heating and pressing. 11 is a sectional view showing the structure of the connecting portion shown in FIG. Conventionally, in a device for connecting a glass substrate and a flexible printed circuit board, an anisotropic conductive film 104 in which conductive particles 104b are dispersed in an adhesive layer 104a is arranged on an electrode 103 of a glass substrate 102 placed on a stage 101. Then, after arranging the flexible printed circuit board 105 on the anisotropic conductive film 104 so that the electrode 103 of the glass substrate 102 and the electrode 106 of the flexible printed circuit board 105 face each other, heating and pressing are performed by the bonding tool 107.

【0004】この時、加熱加圧された異方性導電膜10
4の接着剤層104aは、図10に示す如く、ガラス基
板102及びフレキシブルプリント基板105の各々の
電極103,106間に流れ、接着剤層104a中に分
散された導電粒子104bは、図11に示す如く、電極
103,106間で圧接され、加熱加圧終了後硬化した
接着剤層104aにより保持される。
At this time, the anisotropic conductive film 10 heated and pressed is used.
As shown in FIG. 10, the adhesive layer 104a of No. 4 flows between the electrodes 103 and 106 of the glass substrate 102 and the flexible printed board 105, and the conductive particles 104b dispersed in the adhesive layer 104a are shown in FIG. As shown in the figure, the electrodes 103 and 106 are pressed against each other and held by the adhesive layer 104a which is cured after heating and pressurization.

【0005】[0005]

【発明が解決しようとする課題】上記したような従来の
印刷配線板の電極部構造では、異方性導電膜104中の
導電粒子104bが隣接する電極103,106間でシ
ョートが生じ難い密度で分散され、接着剤層104aが
接続した後、隣接する電極103,106間の絶縁材の
役割を果たしているが、微細な接続にしたり、異方性導
電膜104径を大きくしたりする程、電極103,10
6と電極103,106の距離、電極103,106と
導電粒子104bの距離、導電粒子104b同士の距離
が小さくなるため、絶縁抵抗が低下して、絶縁信頼性が
著しく低下してしまうという問題があった。
In the conventional electrode portion structure of the printed wiring board as described above, the conductive particles 104b in the anisotropic conductive film 104 have a density such that a short circuit is unlikely to occur between the adjacent electrodes 103 and 106. After being dispersed and the adhesive layer 104a is connected, it plays a role of an insulating material between the adjacent electrodes 103 and 106. However, as the connection becomes finer or the diameter of the anisotropic conductive film 104 becomes larger, 103,10
6, the distance between the electrodes 103 and 106, the distance between the electrodes 103 and 106 and the conductive particles 104b, and the distance between the conductive particles 104b are small, so that the insulation resistance is reduced and the insulation reliability is significantly reduced. there were.

【0006】また、上記したような従来の印刷配線板の
電極部構造では、接着剤層104aが吸湿し易いため、
接続した後に吸湿して多くの自由イオンが生じ、このよ
うに自由イオンが多く生じると、接着剤層104aの絶
縁効果が低下し、電極103,106及び導電粒子10
4b共に金属部が全面に露出していることもあって、隣
接する電極103と電極103間及び隣接する電極10
6と電極106間の接着剤層104aを通って電流が流
れてしまい、絶縁信頼性が著しく低下してしまうという
問題があった。
Further, in the conventional electrode portion structure of the printed wiring board as described above, since the adhesive layer 104a easily absorbs moisture,
After connecting, moisture is absorbed to generate many free ions. When many free ions are generated in this manner, the insulating effect of the adhesive layer 104a is reduced, and the electrodes 103 and 106 and the conductive particles 10 are reduced.
Since the metal portion is exposed on the entire surface of both 4b, adjacent electrodes 103 and between adjacent electrodes 103 and adjacent electrodes 10
6 flows through the adhesive layer 104a between the electrode 6 and the electrode 106, and there is a problem that the insulation reliability is significantly reduced.

【0007】そこで、本発明は、如何なる接続ピッチ及
び異方性導電膜においても、初期の絶縁抵抗を高くする
ことができ、かつ良好な絶縁信頼性を確保することがで
きる印刷配線板の電極部構造を提供することを目的とし
ている。
Therefore, according to the present invention, the electrode portion of a printed wiring board which can increase the initial insulation resistance and can secure good insulation reliability in any connection pitch and anisotropic conductive film. It is intended to provide a structure.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明は、
第1の配線基板と該第1の配線基板と対向する第2の配
線基板若しくは他の電子部品とを異方性導電膜により接
続してなる印刷配線板の電極部構造において、該第1の
配線基板と該第1の配線基板と対向する該第2の配線基
板若しくは該他の電子部品のうち、少なくとも何れか一
方に形成された電極表面に、加熱加圧する際に該異方性
導電膜中の導電粒子により破壊され、該導電粒子と該電
極を導通させる絶縁層を形成してなることを特徴とする
ものである。
According to the first aspect of the present invention,
In the electrode portion structure of a printed wiring board, which is formed by connecting a first wiring board and a second wiring board or another electronic component facing the first wiring board with an anisotropic conductive film, The anisotropic conductive film when heating and pressing the electrode surface formed on at least one of the second wiring board and the other electronic component facing the wiring board and the first wiring board It is characterized in that it is formed of an insulating layer which is destroyed by the conductive particles therein and electrically connects the conductive particles and the electrode.

【0009】請求項2記載の発明は、上記請求項1記載
の発明において、前記絶縁層が形成された電極間の基材
上に絶縁層を形成してなることを特徴とするものであ
る。請求項3記載の発明は、上記請求項1,2記載の発
明において、前記異方性導電膜中の前記導電粒子表面に
絶縁層を形成してなることを特徴とするものである。
A second aspect of the invention is characterized in that, in the first aspect of the invention, an insulating layer is formed on a base material between the electrodes on which the insulating layer is formed. A third aspect of the present invention is characterized in that, in the first and second aspects of the present invention, an insulating layer is formed on the surface of the conductive particles in the anisotropic conductive film.

【0010】請求項4記載の発明は、上記請求項1乃至
3記載の発明において、前記絶縁層は、無機材料からな
ることを特徴とするものである。請求項5記載の発明
は、上記請求項1乃至4記載の発明において、前記第1
の配線基板と前記第2の配線基板、又は前記第1の配線
基板と前記他の電子部品に形成した前記絶縁層の膜厚合
計は、前記異方性導電膜中の粒子径より小さくしてなる
ことを特徴とするものである。
According to a fourth aspect of the present invention, in the above-described first to third aspects, the insulating layer is made of an inorganic material. The invention according to claim 5 is the same as the invention according to any one of claims 1 to 4, wherein:
The total thickness of the insulating layers formed on the wiring board and the second wiring board, or on the first wiring board and the other electronic component is smaller than the particle diameter in the anisotropic conductive film. It is characterized by becoming.

【0011】[0011]

【作用】請求項1記載の発明では、第1の配線基板と第
1の配線基板と対向する第2の配線基板若しくは他の電
子部品のうち、少なくとも何れか一方に形成された電極
表面に、加熱加圧する際に異方性導電膜中の導電粒子に
より破壊され、導電粒子と電極を導通させる絶縁層を形
成してなるように構成する。
According to the first aspect of the present invention, the electrode surface formed on at least one of the first wiring board and the second wiring board facing the first wiring board or other electronic component, An insulating layer which is destroyed by the conductive particles in the anisotropic conductive film during heating and pressurization and electrically connects the conductive particles and the electrode is formed.

【0012】このため、電極表面に加熱加圧する際に、
異方性導電膜の導電粒子により破壊され導電粒子と電極
を導通させる絶縁層を形成することにより、電極と導電
粒子の導通部以外の電極表面に安定した絶縁層を形成し
て構成することができる。従って、如何なる接続ピッ
チ、異方性導電膜においても、特に、対向する電極間に
電流がリークするのを生じ難くすることができる等、初
期の絶縁抵抗を高くすることができ、かつ良好な絶縁信
頼性を確保することができる。
Therefore, when heating and pressing the electrode surface,
By forming an insulating layer that is broken by the conductive particles of the anisotropic conductive film and electrically connects the conductive particles and the electrode, a stable insulating layer may be formed on the electrode surface other than the conductive portion between the electrode and the conductive particles. it can. Therefore, in any connection pitch and anisotropic conductive film, it is possible to increase the initial insulation resistance, such as making it difficult for current to leak between opposing electrodes, and to obtain good insulation. The reliability can be secured.

【0013】請求項2記載の発明では、絶縁層が形成さ
れた電極間の基材上に絶縁層を形成してなるように構成
する。このため、絶縁層が形成された電極間の基材上に
も絶縁層を形成することにより、電極と導電粒子の導通
部以外の電極表面だけでなく電極間の基材上にも安定し
た絶縁層を形成して構成することができるので、特に、
同一の基材上に形成された電極間の基材に電流がリーク
するのを生じ難くすることができる等、如何なる接続ピ
ッチにおいても初期の接続信頼性を高くすることがで
き、かつ絶縁信頼性の高い接続を得ることができる。
According to the second aspect of the invention, the insulating layer is formed on the base material between the electrodes on which the insulating layer is formed. Therefore, by forming the insulating layer on the base material between the electrodes on which the insulating layer is formed, stable insulation is achieved not only on the electrode surface other than the conductive portion between the electrodes and the conductive particles but also on the base material between the electrodes. Since it can be formed by forming a layer,
It is possible to make it difficult for current to leak to the base material between the electrodes formed on the same base material, and thus to improve the initial connection reliability at any connection pitch, and to improve the insulation reliability. You can get a high connection.

【0014】請求項3記載の発明では、異方性導電膜中
の導電粒子表面にも絶縁層を形成してなるように構成す
る。このため、異方性導電膜中の導電粒子表面にも絶縁
層を形成することにより、電極側だけでなく導電粒子側
にも安定した絶縁層を形成して構成することができるの
で、特に、導電粒子を通って電流がリークするのを生じ
難くすることができる等、如何なる接続ピッチにおいて
も初期の接続信頼性を高くすることができ、かつ絶縁信
頼性の高い接続を得ることができる。
According to the third aspect of the invention, an insulating layer is formed also on the surface of the conductive particles in the anisotropic conductive film. Therefore, by forming an insulating layer on the surface of the conductive particles in the anisotropic conductive film, a stable insulating layer can be formed not only on the electrode side but also on the conductive particle side. It is possible to make it difficult for current to leak through the conductive particles, so that the initial connection reliability can be increased at any connection pitch, and a connection with high insulation reliability can be obtained.

【0015】請求項4記載の発明では、絶縁層を無機材
料からなるように構成する。このため、絶縁層を無機材
料から構成することにより、電極と導電粒子の導通部以
外の電極表面等に吸湿性が特に低く絶縁性の点で更に安
定した絶縁層を形成して構成することができるので、如
何なる接続ピッチにおいても初期の接続信頼性を更に高
くすることができ、かつ更に絶縁信頼性の高い接続を得
ることができる。
According to a fourth aspect of the invention, the insulating layer is made of an inorganic material. Therefore, by forming the insulating layer from an inorganic material, it is possible to form a more stable insulating layer having a low hygroscopic property and an insulating property on the electrode surface other than the conductive portion of the electrode and the conductive particles. Therefore, the initial connection reliability can be further increased at any connection pitch, and the connection with higher insulation reliability can be obtained.

【0016】請求項5記載の発明では、第1の配線基板
と第2の配線基板、又は第1の基板と他の電子部品に形
成した絶縁層の膜厚合計を、異方性導電膜中の粒子径よ
り小さくしてなるように構成する。このため、第1の配
線基板と第2の配線基板、又は第1の配線基板と他の電
子部品に形成した絶縁層の膜厚合計を、異方性導電膜中
の粒子径よりも小さくすることにより、電極と導電粒子
を安定した接触にすることができるので、更に高い接続
信頼性を得ることができる。
According to the fifth aspect of the invention, the total thickness of the insulating layers formed on the first wiring board and the second wiring board, or on the first board and the other electronic component is the anisotropic conductive film. Is smaller than the particle diameter of. Therefore, the total thickness of the insulating layers formed on the first wiring board and the second wiring board, or on the first wiring board and the other electronic component is made smaller than the particle diameter in the anisotropic conductive film. As a result, the electrodes and the conductive particles can be brought into stable contact with each other, so that higher connection reliability can be obtained.

【0017】[0017]

【実施例】以下、本発明の実施例を図面を参照して説明
する。 (実施例1)図1は請求項1の発明に係る一実施例の印
刷配線板の電極部構造の接続前の構造を示す断面図、図
2は図1に示す印刷配線板の電極部構造における接続装
置の構造を示す断面図、図3は図1に示す印刷配線板の
電極部構造の接続後の構造を示す断面図である。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a sectional view showing a structure before connection of an electrode portion structure of a printed wiring board according to an embodiment of the present invention, and FIG. 2 is an electrode portion structure of the printed wiring board shown in FIG. FIG. 3 is a cross-sectional view showing the structure of the connection device in FIG. 3, and FIG. 3 is a cross-sectional view showing the structure after connection of the electrode portion structure of the printed wiring board shown in FIG.

【0018】図1に示す如く、ガラス基板1上に形成さ
れた電極2表面とフレキシブルプリント基板3上に形成
された電極4表面には、各々絶縁層5,6が形成されて
いる。この電極2,4表面に形成された絶縁層5,6
は、電極部の接続時の加熱で変化しない熱硬化性樹脂か
ら構成してもよいし、加熱で柔らかくなる熱可塑性樹脂
から構成してもよい。異方性導電膜7は、接着剤層7a
中に導電粒子7bが分散され形成されている。
As shown in FIG. 1, insulating layers 5 and 6 are formed on the surface of the electrode 2 formed on the glass substrate 1 and the surface of the electrode 4 formed on the flexible printed board 3, respectively. Insulating layers 5 and 6 formed on the surfaces of the electrodes 2 and 4
May be made of a thermosetting resin that does not change by heating when connecting the electrode portions, or may be made of a thermoplastic resin that becomes soft when heated. The anisotropic conductive film 7 has an adhesive layer 7a.
Conductive particles 7b are dispersed and formed therein.

【0019】図2に示す如く、ステージ11上に置かれ
たガラス基板1上に異方性導電膜7を配置し、この異方
性導電膜7上にフレキシブルプリント基板3を、ガラス
基板1上に形成された電極2とフレキシブルプリント基
板3上に形成された電極4が対向するように配置し、ボ
ンディングツール12で加熱加圧を行う。この時、ボン
ディングツール12により押圧された異方性導電膜7の
接着剤層7aを構成する接着剤は、流動し、ガラス基板
1上に形成された電極2とフレキシブルプリント基板3
上に形成された電極4の間に位置した異方性導電膜7の
導電粒子7bは、電極2,4で圧接され、絶縁層5,6
を貫通して電極2,4に接触することにより、電極2,
4間を導通させる(図3)。
As shown in FIG. 2, the anisotropic conductive film 7 is arranged on the glass substrate 1 placed on the stage 11, and the flexible printed circuit board 3 is mounted on the anisotropic conductive film 7. The electrodes 2 formed on the flexible printed circuit board 3 and the electrodes 2 formed on the flexible printed circuit board 3 are arranged so as to face each other, and heating and pressing are performed by the bonding tool 12. At this time, the adhesive constituting the adhesive layer 7a of the anisotropic conductive film 7 pressed by the bonding tool 12 flows and the electrodes 2 and the flexible printed circuit board 3 formed on the glass substrate 1 flow.
The conductive particles 7b of the anisotropic conductive film 7 located between the electrodes 4 formed above are pressed against the electrodes 2 and 4 to form the insulating layers 5 and 6.
By penetrating the electrode 2 and contacting the electrodes 2 and 4,
4 are electrically connected (Fig. 3).

【0020】異方性導電膜7中に含まれる導電粒子7b
は、電極部を圧接した時に破壊され難く、しかも導電性
に優れた粒子であることを考慮すると、半田、Ni等を
用いた硬度の高い金属粒子から構成することが好まし
い。このように、本実施例では、ガラス基板1上に形成
した電極2とフレキシブルプリント基板3上に形成した
電極4間を異方性導電膜7の導電粒子7bにより接続し
た後、導電粒子7bが接触している領域以外の電極2,
4表面を安定した絶縁層5,6により覆うように構成し
ている。
Conductive particles 7b contained in the anisotropic conductive film 7
Considering that they are particles that are not easily broken when the electrode part is pressed and have excellent conductivity, it is preferable to be composed of metal particles having high hardness using solder, Ni, or the like. As described above, in this embodiment, after the electrodes 2 formed on the glass substrate 1 and the electrodes 4 formed on the flexible printed circuit board 3 are connected by the conductive particles 7b of the anisotropic conductive film 7, the conductive particles 7b are Electrodes other than the contact area 2,
4 is covered with stable insulating layers 5 and 6.

【0021】このため、仮に接着剤層7aを構成する接
着剤が吸湿し、接着剤層7aに結露等が生じて絶縁抵抗
低下の原因となる自由イオンが多くなっても、導電粒子
7bと電極2,4が接触している領域以外の電極2,4
表面を覆っている絶縁層5,6により電極2,4へのリ
ーク電流を遮断することができる。従って、ガラス基板
1とフレキシブルプリント基板3を異方性導電膜7を介
して加熱加圧して接続する場合、対向する電極2,4間
に電流がリークするのを生じ難くすることができる等、
如何なる接続ピッチ及び異方性導電膜においても、初期
の絶縁抵抗を高くすることができ、かつ良好な絶縁信頼
性を確保することができる。 (実施例2)次に、図4は請求項2の発明に係る一実施
例の印刷配線板の電極部構造の接続前の構造を示す断面
図、図5は図4に示す印刷配線板の電極部構造における
接続装置の構造を示す断面図である。
Therefore, even if the adhesive constituting the adhesive layer 7a absorbs moisture and dew condensation occurs on the adhesive layer 7a, and the number of free ions causing a decrease in insulation resistance increases, the conductive particles 7b and the electrodes are prevented. Electrodes 2,4 other than the area where 2,4 are in contact
The insulating layers 5 and 6 covering the surface can block the leak current to the electrodes 2 and 4. Therefore, when the glass substrate 1 and the flexible printed circuit board 3 are heated and pressed through the anisotropic conductive film 7 to be connected to each other, it is possible to prevent current from leaking between the electrodes 2 and 4 facing each other.
In any connection pitch and anisotropic conductive film, the initial insulation resistance can be increased and good insulation reliability can be ensured. (Embodiment 2) Next, FIG. 4 is a sectional view showing a structure before connection of an electrode portion structure of a printed wiring board of an embodiment according to the invention of claim 2, and FIG. 5 is a sectional view of the printed wiring board shown in FIG. It is sectional drawing which shows the structure of the connection device in an electrode part structure.

【0022】図4に示す如く、上部に電極2が形成され
たガラス基板1表面全体と上部に電極4が形成されたフ
レキシブルプリント基板3の表面全体には、各々絶縁層
5,6が形成されている。このガラス基板1とフレキシ
ブルプリント基板3表面に形成された絶縁層5,6は、
電極部の接続時の加熱で変化しない熱硬化性樹脂から構
成してもよいし、加熱で柔らかくなる熱可塑性樹脂から
構成してもよい。異方性導電膜7は、接着剤層7a中に
導電粒子7bが分散され形成されている。
As shown in FIG. 4, insulating layers 5 and 6 are formed on the entire surface of the glass substrate 1 on which the electrodes 2 are formed and on the entire surface of the flexible printed circuit board 3 on which the electrodes 4 are formed. ing. The insulating layers 5 and 6 formed on the surfaces of the glass substrate 1 and the flexible printed circuit board 3 are
It may be made of a thermosetting resin that does not change by heating when connecting the electrode portions, or may be made of a thermoplastic resin that becomes soft when heated. The anisotropic conductive film 7 is formed by dispersing conductive particles 7b in the adhesive layer 7a.

【0023】図5に示す如く、ステージ11上に電極2
側の表面全体を覆うように絶縁層5が形成されたガラス
基板1を配置し、このガラス基板1上に異方性導電膜7
を配置し、この異方性導電膜7上に電極4側の表面全体
を覆うように絶縁層6が形成されたフレキシブルプリン
ト基板3を、ガラス基板1上に形成された電極2とフレ
キシブルプリント基板3上に形成された電極4が対向す
るように配置し、ボンディングツール12で加熱加圧を
行う。
As shown in FIG. 5, the electrode 2 is placed on the stage 11.
The glass substrate 1 on which the insulating layer 5 is formed is arranged so as to cover the entire surface on the side, and the anisotropic conductive film 7 is formed on the glass substrate 1.
And the flexible printed circuit board 3 having the insulating layer 6 formed on the anisotropic conductive film 7 so as to cover the entire surface of the electrode 4 side, the electrode 2 formed on the glass substrate 1 and the flexible printed circuit board 3. The electrodes 4 formed on the surface 3 are arranged so as to face each other, and heating and pressing are performed by the bonding tool 12.

【0024】この時、ボンディングツール12により押
圧された異方性導電膜7の接着剤層7aを構成する接着
剤は、流動し、ガラス基板1上に形成された電極2とフ
レキシブルプリント基板3上に形成された電極4の間に
位置した異方性導電膜7の導電粒子7bは、電極2,4
で圧接され、絶縁層5,6を貫通して電極2,4に接触
することにより、電極2,4間を導通させる(図4)。
At this time, the adhesive forming the adhesive layer 7a of the anisotropic conductive film 7 pressed by the bonding tool 12 flows and the electrodes 2 formed on the glass substrate 1 and the flexible printed circuit board 3 are formed. The conductive particles 7b of the anisotropic conductive film 7 located between the electrodes 4 formed on the
The electrodes 2 and 4 are pressure-contacted with each other and penetrate the insulating layers 5 and 6 to come into contact with the electrodes 2 and 4, so that the electrodes 2 and 4 are electrically connected (FIG. 4).

【0025】異方性導電膜7中に含まれる導電粒子7b
は、電極部を圧接した時に破壊され難く、しかも導電性
に優れた粒子であることを考慮すると、半田、Ni等を
用いた硬度の高い金属粒子から構成することが好まし
い。このように、本実施例では、ガラス基板1上に形成
した電極2とフレキシブルプリント基板3上に形成した
電極4間を異方性導電膜7の導電粒子7bにより接続し
た後、導電粒子7bが接触している領域以外の電極2,
4表面を安定した絶縁層5,6により覆うと同時に、電
極2,4が形成されていない領域のガラス基板1とフレ
キシブルプリント基板3の表面も安定した絶縁層5,6
により覆うように構成している。
Conductive particles 7b contained in the anisotropic conductive film 7
Considering that they are particles that are not easily broken when the electrode part is pressed and have excellent conductivity, it is preferable to be composed of metal particles having high hardness using solder, Ni, or the like. As described above, in this embodiment, after the electrodes 2 formed on the glass substrate 1 and the electrodes 4 formed on the flexible printed circuit board 3 are connected by the conductive particles 7b of the anisotropic conductive film 7, the conductive particles 7b are Electrodes other than the contact area 2,
At the same time that the surfaces of the glass substrate 1 and the flexible printed circuit board 3 where the electrodes 2 and 4 are not formed are also covered with the stable insulating layers 5 and 6, the insulating layers 5 and 6 are also stable.
It is configured to be covered by.

【0026】このため、仮に接着剤層7aを構成する接
着剤が吸湿し、接着剤層7aに結露等が生じて絶縁抵抗
低下の原因となる自由イオンが多くなっても、導電粒子
7bが接触している領域以外の電極2,4表面と、電極
2,4が形成されていない領域のガラス基板1とフレキ
シブルプリント基板3の表面とを絶縁層5,6により覆
ってリーク電流を遮断することができる。
For this reason, even if the adhesive constituting the adhesive layer 7a absorbs moisture and dew condensation occurs on the adhesive layer 7a and the number of free ions causing a decrease in insulation resistance increases, the conductive particles 7b come into contact with each other. Insulating layers 5 and 6 to cover the surfaces of the electrodes 2 and 4 other than the regions where the electrodes 2 and 4 are formed and the surfaces of the glass substrate 1 and the flexible printed circuit board 3 where the electrodes 2 and 4 are not formed to block the leak current. You can

【0027】従って、ガラス基板1とフレキシブルプリ
ント基板3を異方性導電膜7を介して加熱加圧して電極
部を接続する場合、対向する電極2,4間や同一の基板
1,3上に形成された電極2,4間に電流がリークする
のを生じ難くすることができる等、如何なる接続ピッチ
及び異方性導電膜においても、初期の絶縁抵抗を高くす
ることができ、かつ良好な絶縁信頼性を確保することが
できる。
Therefore, when the glass substrate 1 and the flexible printed circuit board 3 are heated and pressed through the anisotropic conductive film 7 to connect the electrode portions, the electrodes 2 and 4 facing each other or on the same substrate 1 and 3 are connected. It is possible to make it difficult for current to leak between the formed electrodes 2 and 4, so that the initial insulation resistance can be increased and good insulation can be obtained in any connection pitch and anisotropic conductive film. The reliability can be secured.

【0028】なお、上記各実施例では、表面には何も形
成していない表面が露出された導電粒子7bを単に接着
剤層7a中に分散した異方性導電膜7を用いて構成する
場合について説明したが、本発明はこれのみに限定され
るものではなく、例えば図6,7に示す如く、金属粒子
または金属被覆をした樹脂粒子等の導電粒子7bの表面
に絶縁層7cを形成して構成してもよい。
In each of the above embodiments, the case where the anisotropic conductive film 7 in which the conductive particles 7b whose surface is not formed is exposed is simply dispersed in the adhesive layer 7a is used. However, the present invention is not limited to this. For example, as shown in FIGS. 6 and 7, the insulating layer 7c is formed on the surface of the conductive particles 7b such as metal particles or resin particles coated with metal. You may comprise.

【0029】この場合も、実施例1,2と同様にステー
ジ11上に置かれたガラス基板1上に異方性導電膜7を
配置し、この異方性導電膜7上にフレキシブルプリント
基板3を、ガラス基板1上に形成された電極2とフレキ
シブルプリント基板3上に形成された電極4が対向する
ように配置し、ボンディングツール12で加熱加圧を行
う。
Also in this case, as in Examples 1 and 2, the anisotropic conductive film 7 is arranged on the glass substrate 1 placed on the stage 11, and the flexible printed board 3 is placed on the anisotropic conductive film 7. Are arranged so that the electrodes 2 formed on the glass substrate 1 and the electrodes 4 formed on the flexible printed circuit board 3 face each other, and heating and pressing are performed by the bonding tool 12.

【0030】この時、電極2,4間で圧接された導電粒
子7bは、電極2,4表面に形成した絶縁層5,6を貫
通するとともに、導電粒子7b表面に形成した絶縁層7
cが破れて電極2,4に接触することにより、対向する
電極2,4を導通させる。この場合、電極2,4間を導
電粒子7bにより接続した後、ガラス基板1の電極2表
面とフレキシブルプリント基板3の電極4表面のみなら
ず、導電粒子7b表面を、各々導通している部分以外全
てを安定した絶縁層5,6,7cで覆うように構成して
いるため、導電粒子7bを通ってリーク電流が流れるの
を生じ難くすることができる。
At this time, the conductive particles 7b pressed between the electrodes 2 and 4 penetrate the insulating layers 5 and 6 formed on the surfaces of the electrodes 2 and 4 and the insulating layer 7 formed on the surface of the conductive particles 7b.
When c is broken and contacts the electrodes 2 and 4, the electrodes 2 and 4 facing each other are made conductive. In this case, after the electrodes 2 and 4 are connected by the conductive particles 7b, not only the surface of the electrode 2 of the glass substrate 1 and the surface of the electrode 4 of the flexible printed circuit board 3 but also the surface of the conductive particles 7b other than the portions which are respectively conductive. Since all are covered with the stable insulating layers 5, 6, and 7c, it is possible to prevent the leakage current from flowing through the conductive particles 7b.

【0031】このため、接着剤層7aを構成する接着剤
に結露等が生じて自由イオンが多くなっても、ガラス基
板1とフレキシブルプリント基板3を異方性導電膜7を
介して加熱加圧して接触する場合、電極2,4表面だけ
でなく導電粒子7b表面に電流がリークするのを生じ難
くすることができるので、如何なる接続ピッチ及び異方
性導電膜においても、初期の絶縁抵抗を高くすることが
でき、かつ良好な絶縁信頼性を確保することができる。
Therefore, even if dew condensation or the like occurs in the adhesive forming the adhesive layer 7a and the number of free ions increases, the glass substrate 1 and the flexible printed board 3 are heated and pressed through the anisotropic conductive film 7. When contacting with each other, it is possible to prevent current from leaking not only to the surfaces of the electrodes 2 and 4 but also to the surface of the conductive particles 7b, so that the initial insulation resistance is high at any connection pitch and anisotropic conductive film. It is possible to secure good insulation reliability.

【0032】次に、上記各実施例において、絶縁層5,
6,7cは、特に吸湿性を低減させて絶縁性を向上させ
ることを考慮すると、無機系材料で形成することが好ま
しい。この無機系材料は、例えばSiO2 ,Al2 3
等の絶縁性を有し、かつ薄膜化できる材料であれば何れ
であってもよい。次に、上記各実施例においては、図8
に示す如く、ガラス基板1上に形成した電極2表面とフ
レキシブルプリント基板3上に形成した電極4表面の絶
縁層5,6の膜厚を異なるように構成するとともに、そ
の絶縁層5,6の膜厚の合計を異方性導電膜7中の導電
粒子7b径よりも小さくなるように構成することが好ま
しい。この場合、電極2,4と導電粒子7bを安定した
接触にすることができるため、更に高い接続信頼性を得
ることができる。
Next, in each of the above embodiments, the insulating layer 5,
Considering that hygroscopicity is reduced and insulation is improved, 6 and 7c are preferably formed of an inorganic material. This inorganic material is, for example, SiO 2 , Al 2 O 3
Any material having an insulating property and capable of forming a thin film may be used. Next, in each of the above embodiments, FIG.
As shown in FIG. 2, the insulating layers 5 and 6 on the surface of the electrode 2 formed on the glass substrate 1 and the surface of the electrode 4 formed on the flexible printed circuit board 3 are configured to have different film thicknesses, and the insulating layers 5 and 6 have different thicknesses. It is preferable that the total thickness is smaller than the diameter of the conductive particles 7b in the anisotropic conductive film 7. In this case, the electrodes 2, 4 and the conductive particles 7b can be brought into stable contact with each other, so that higher connection reliability can be obtained.

【0033】上記各実施例では、基板にガラス基板1と
フレキシブルプリント基板3を用いて構成する場合につ
いて説明したが、本発明はこれのみに限定されるもので
はなく、例えばガラス基板1側を通常の銅張積層板に
し、フレキシブルプリント基板3側を電子部品にして構
成してもよく、この場合も、ガラス基板1とフレキシブ
ルプリント基板3を用いた場合と同様の効果を得ること
ができる。
In each of the above embodiments, the case where the glass substrate 1 and the flexible printed circuit board 3 are used as the substrate has been described, but the present invention is not limited to this. For example, the glass substrate 1 side is usually used. The flexible printed circuit board 3 side may be used as an electronic component, and in this case, the same effect as in the case of using the glass substrate 1 and the flexible printed circuit board 3 can be obtained.

【0034】[0034]

【発明の効果】本発明によれば、如何なる接続ピッチ及
び異方性導電膜においても、初期の絶縁抵抗が高く、か
つ良好な絶縁信頼性を確保することができるという効果
がある。
According to the present invention, there is an effect that the initial insulation resistance is high and good insulation reliability can be secured in any connection pitch and anisotropic conductive film.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明に係る一実施例の印刷配線板の
電極部構造の接続前の構造を示す断面図である。
FIG. 1 is a cross-sectional view showing a structure before connection of an electrode portion structure of a printed wiring board according to an embodiment of the present invention.

【図2】図1に示す印刷配線板の電極部構造における接
続装置の構造を示す断面図である。
FIG. 2 is a cross-sectional view showing a structure of a connection device in the electrode portion structure of the printed wiring board shown in FIG.

【図3】図1に示す印刷配線板の電極部構造の接続後の
構造を示す断面図である。
FIG. 3 is a cross-sectional view showing a structure after connection of the electrode portion structure of the printed wiring board shown in FIG.

【図4】請求項2の発明に係る一実施例の印刷配線板の
電極部構造の接続後の構造を示す断面図である。
FIG. 4 is a cross-sectional view showing a structure after connection of an electrode part structure of a printed wiring board according to an embodiment of the present invention.

【図5】図4に示す印刷配線板の電極部構造における接
続装置の構造を示す断面図である。
5 is a cross-sectional view showing the structure of a connecting device in the electrode portion structure of the printed wiring board shown in FIG.

【図6】本発明に適用できる印刷配線板の電極部構造の
接続後の構造を示す断面図である。
FIG. 6 is a cross-sectional view showing a structure after connection of an electrode portion structure of a printed wiring board applicable to the present invention.

【図7】図6に示す印刷配線板の電極部構造における接
続装置の構造を示す断面図である。
7 is a cross-sectional view showing the structure of a connection device in the electrode portion structure of the printed wiring board shown in FIG.

【図8】本発明に適用できる印刷配線板の電極部構造の
接続後の構造を示す断面図である。
FIG. 8 is a cross-sectional view showing a structure after connection of an electrode portion structure of a printed wiring board applicable to the present invention.

【図9】従来のガラス基板とフレキシブルプリント基板
の接続装置の構造を示す断面図である。
FIG. 9 is a cross-sectional view showing the structure of a conventional connecting device for a glass substrate and a flexible printed circuit board.

【図10】図9に示す異方性導電膜の加熱加圧中の動き
を示す断面図である。
10 is a cross-sectional view showing the movement of the anisotropic conductive film shown in FIG. 9 during heating and pressing.

【図11】図9に示す接続部の構造を示す断面図であ
る。
FIG. 11 is a cross-sectional view showing the structure of the connection portion shown in FIG.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2,4 電極 3 フレキシブルプリント基板 5,6,7c 絶縁層 7 異方性導電膜 7a 接着剤層 7b 導電粒子 11 ステージ 12 ボンディングツール 1 glass substrate 2,4 electrode 3 flexible printed board 5,6,7c insulating layer 7 anisotropic conductive film 7a adhesive layer 7b conductive particles 11 stage 12 bonding tool

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】第1の配線基板と該第1の配線基板と対向
する第2の配線基板若しくは他の電子部品とを異方性導
電膜により接続してなる印刷配線板の電極部構造におい
て、該第1の配線基板と該第1の配線基板と対向する該
第2の配線基板若しくは該他の電子部品のうち、少なく
とも何れか一方に形成された電極表面に、加熱加圧する
際に該異方性導電膜中の導電粒子により破壊され、該導
電粒子と該電極を導通させる絶縁層を形成してなること
を特徴とする印刷配線板の電極部構造。
1. An electrode portion structure of a printed wiring board, comprising an anisotropic conductive film connecting a first wiring board and a second wiring board or another electronic component facing the first wiring board. When the surface of the electrode formed on at least one of the first wiring board and the second wiring board facing the first wiring board or the other electronic component is heated and pressed, An electrode part structure of a printed wiring board, comprising an insulating layer formed by being broken by conductive particles in an anisotropic conductive film to electrically connect the conductive particles to the electrode.
【請求項2】前記絶縁層が形成された電極間の基材上に
絶縁層を形成してなることを特徴とする請求項1記載の
印刷配線板の電極部構造。
2. The electrode part structure of a printed wiring board according to claim 1, wherein an insulating layer is formed on a base material between the electrodes on which the insulating layer is formed.
【請求項3】前記異方性導電膜中の前記導電粒子表面に
絶縁層を形成してなることを特徴とする請求項1,2記
載の印刷配線板の電極部構造。
3. The electrode part structure of a printed wiring board according to claim 1, wherein an insulating layer is formed on the surface of the conductive particles in the anisotropic conductive film.
【請求項4】前記絶縁層は、無機材料からなることを特
徴とする請求項1乃至3記載の印刷配線板の電極部構
造。
4. The electrode part structure of a printed wiring board according to claim 1, wherein the insulating layer is made of an inorganic material.
【請求項5】前記第1の配線基板と前記第2の配線基
板、又は前記第1の配線基板と前記他の電子部品に形成
した前記絶縁層の膜厚合計は、前記異方性導電膜中の粒
子径より小さくしてなることを特徴とする請求項1乃至
4記載の印刷配線板の電極部構造。
5. The anisotropic conductive film is the total film thickness of the insulating layers formed on the first wiring board and the second wiring board, or on the first wiring board and the other electronic component. The electrode part structure of a printed wiring board according to claim 1, wherein the electrode part structure is smaller than the inner particle size.
JP6269271A 1994-11-02 1994-11-02 Electrode portion structure of printed wiring board Pending JPH08138773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6269271A JPH08138773A (en) 1994-11-02 1994-11-02 Electrode portion structure of printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6269271A JPH08138773A (en) 1994-11-02 1994-11-02 Electrode portion structure of printed wiring board

Publications (1)

Publication Number Publication Date
JPH08138773A true JPH08138773A (en) 1996-05-31

Family

ID=17470033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6269271A Pending JPH08138773A (en) 1994-11-02 1994-11-02 Electrode portion structure of printed wiring board

Country Status (1)

Country Link
JP (1) JPH08138773A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165659A (en) * 2003-11-07 2004-06-10 Hitachi Chem Co Ltd Method of connecting electrodes and connecting structure of electrodes obtained by the same
JP2006339163A (en) * 2006-06-08 2006-12-14 Hitachi Chem Co Ltd Connection method of electrode
KR100716809B1 (en) * 2005-02-28 2007-05-09 삼성전기주식회사 A PCB using the ACF and manufacturing method thereof
US7452217B2 (en) 2006-06-22 2008-11-18 Sankyo Kasei Co., Ltd. Connecting member for surface mounting circuit
US8205327B2 (en) 2005-11-21 2012-06-26 Panasonic Corporation Method for manufacturing circuit board on which electronic component is mounted
JP2012212864A (en) * 2011-03-18 2012-11-01 Sekisui Chem Co Ltd Manufacturing method of connection structure and connection structure
US20130199824A1 (en) * 2012-02-08 2013-08-08 Jin-Suk Lee Microelectronics device including anisotropic conductive layer and method of forming the same
JP2016139827A (en) * 2016-04-19 2016-08-04 デクセリアルズ株式会社 Bonded body
CN109616457A (en) * 2014-02-03 2019-04-12 迪睿合株式会社 Connector

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165659A (en) * 2003-11-07 2004-06-10 Hitachi Chem Co Ltd Method of connecting electrodes and connecting structure of electrodes obtained by the same
KR100716809B1 (en) * 2005-02-28 2007-05-09 삼성전기주식회사 A PCB using the ACF and manufacturing method thereof
US8205327B2 (en) 2005-11-21 2012-06-26 Panasonic Corporation Method for manufacturing circuit board on which electronic component is mounted
JP2006339163A (en) * 2006-06-08 2006-12-14 Hitachi Chem Co Ltd Connection method of electrode
US7452217B2 (en) 2006-06-22 2008-11-18 Sankyo Kasei Co., Ltd. Connecting member for surface mounting circuit
JP2012212864A (en) * 2011-03-18 2012-11-01 Sekisui Chem Co Ltd Manufacturing method of connection structure and connection structure
US20130199824A1 (en) * 2012-02-08 2013-08-08 Jin-Suk Lee Microelectronics device including anisotropic conductive layer and method of forming the same
CN103247588A (en) * 2012-02-08 2013-08-14 三星显示有限公司 Microelectronics device including anisotropic conductive layer and method of forming thereof
CN109616457A (en) * 2014-02-03 2019-04-12 迪睿合株式会社 Connector
CN109616457B (en) * 2014-02-03 2023-06-06 迪睿合株式会社 Connector body
JP2016139827A (en) * 2016-04-19 2016-08-04 デクセリアルズ株式会社 Bonded body

Similar Documents

Publication Publication Date Title
JP2769491B2 (en) Electrical equipment
JPS6333320B2 (en)
JPH05500733A (en) Printed wiring board composite structure
JPH08138773A (en) Electrode portion structure of printed wiring board
JPH08148839A (en) Hybrid integrated circuit device
JPH1116949A (en) Acf-bonding structure
JP2000277649A (en) Semiconductor and manufacture of the same
JPS6127089Y2 (en)
JP3743716B2 (en) Flexible wiring board and semiconductor element mounting method
JPH0628121B2 (en) Anisotropic conductive film
JP3225800B2 (en) Semiconductor device
JPH1154876A (en) Connection structure and connection method for board terminal
JPH10125725A (en) Semiconductor device and manufacturing method thereof
JPH05327152A (en) Wiring substrate and manufacutring method thereof
JPH10261852A (en) Heat-sealed connector and flexible wiring board
JP2001223452A (en) Circuit board
JP3964319B2 (en) Semiconductor device
JP3974212B2 (en) Semiconductor chip having anisotropic conductive film, mounting method thereof, and mounting structure
JPH0618909A (en) Flexible circuit board with electric conductive anisotropic film
JP2995244B2 (en) Anisotropic conductive adhesive
JP3448369B2 (en) Hybrid integrated circuit device
JPH05235498A (en) Printed circuit board having protruding electrode and bonding method therefor
JP3604777B2 (en) Wiring board, mounting wiring board and mounting circuit device
JP2000332157A (en) Electronic part mounting member
JP3369751B2 (en) Hybrid integrated circuit device and method of manufacturing the same