JPH08138670A - Non-aqueous solvent secondary battery - Google Patents

Non-aqueous solvent secondary battery

Info

Publication number
JPH08138670A
JPH08138670A JP27751394A JP27751394A JPH08138670A JP H08138670 A JPH08138670 A JP H08138670A JP 27751394 A JP27751394 A JP 27751394A JP 27751394 A JP27751394 A JP 27751394A JP H08138670 A JPH08138670 A JP H08138670A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
linio
surface
negative electrode
linio2
element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27751394A
Other languages
Japanese (ja)
Other versions
JP3195175B2 (en )
Inventor
Masafumi Fujiwara
Takahisa Osaki
Shuji Yamada
隆久 大崎
修司 山田
雅史 藤原
Original Assignee
Toshiba Corp
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation
    • Y02E60/122Lithium-ion batteries

Abstract

PURPOSE: To improve charging and discharging cycle characteristic by making LiNiO2 powder, which is a main component of a positive active material, contain one element selected from a prescribed metal group on at least the surface and coating the surface of the powder with the element layer with higher concentration. CONSTITUTION: A negative electrode contains a compound which can absorb and desorb lithium ion and a positive electrode contains a positive active material consisting of mainly LiNiO2 . The LiNiO2 powder bears at least one element selected from groups of alkali metals except Li, alkaline earth metals, transition metals except Ni, group III, IV, V elements, and chalcogen elements on at least the surface. The surface of the LiNiO2 is coated with a layer with higher concentration than that of the inner side. An insulating body 2 is put in the bottom part of a bottom-having container 1, an electrode unit 3 produced by laminating a negative electrode 4, a separator 5, and a negative electrode 6 in this order and is so stored in the container 1 as to position the negative electrode 6 outside of the stripe pattern. By using the LiNiO2 , the stability of the crystal structure can be improved and ion exchange reaction can be suppressed.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、非水溶媒二次電池に関し、特に正極活物質を改良した非水溶媒二次電池に係わるものである。 The present invention relates to a relates to a non-aqueous solvent secondary battery, in which according to the particular non-aqueous solvent secondary battery having improved cathode active material.

【0002】 [0002]

【従来の技術】近年、負極活物質としてリチウム、リチウム合金またはリチウムイオンを吸蔵・放出する化合物を用いたリチウム電池は、高エネルギ―密度電池として注目されている。 In recent years, lithium batteries using lithium, a compound capable of absorbing and releasing lithium alloy or lithium ions as a negative electrode active material, a high energy - has attracted attention as a density batteries. 中でも、正極活物質として二酸化マンガン(MnO 2 )、フッ化炭素[(CF) n ]、塩化チオニル(SOCl 2 )等を用いた一次電池は既に電卓、 Among them, manganese dioxide (MnO 2) as the positive electrode active material, carbon fluoride [(CF) n], a primary battery using thionyl chloride (SOCl 2) or the like is already calculator,
時計の電源やメモリのバックアップ電池として多用されている。 It has been widely used as a power supply and backup battery of the memory of the watch.

【0003】更に、近年、VTR、通信機器、パーソナルコンピュータ等の各種の電子機器の小形、軽量化に伴い、それらの電源として高エネルギ―密度の二次電池の要求が高まり、リチウムを負極活物質とする非水溶媒二次電池の研究が活発に行われている。 [0003] Further, in recent years, VTR, communication devices, compact various electronic devices such as personal computers, with the lighter, high energy as their power source - increasing demand for a secondary battery density, the negative electrode active material of lithium a study of the non-aqueous solvent secondary battery and is being actively carried out.

【0004】非水溶媒二次電池は、負極にリチウム、リチウム合金またはリチウムイオンを吸蔵・放出する化合物を用い、電解液としてプロピレンカーボネート(P [0004] non-aqueous solvent secondary battery using lithium, a lithium alloy or lithium ions absorbing and releasing compound in the negative electrode, propylene carbonate as an electrolyte (P
C)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジメチルカーボネート(DEC)、 C), ethylene carbonate (EC), dimethyl carbonate (DMC), dimethyl carbonate (DEC),
1,2−ジメトキシエタン(DME)、γ−ブチロラクトン(γ−BL)、テトラヒドロフラン(THF)、2 1,2-dimethoxyethane (DME), .gamma.-butyrolactone (γ-BL), tetrahydrofuran (THF), 2
−メチルテトラヒドロフラン(2−MeTHF)などの非水溶媒中にLiClO 4 、LiBF 4 、LiAsF - LiClO 4, LiBF 4 in a non-aqueous solvent such as methyl tetrahydrofuran (2-MeTHF), LiAsF
6 、LiPF 6 、LiCF 3 SO 3 、LiAlCl 4等のリチウム塩(電解質)を溶解したものから構成されている。 And a 6, LiPF 6, LiCF 3 SO 3, LiAlCl lithium salt (electrolyte) such as 4 obtained by dissolving a. 正極としては、層状化合物のインターカレーション、またはドーピング現象を利用した活物質が注目されている。 As the positive electrode active material using the intercalation or doping phenomenon, of layered compound has been attracting attention.

【0005】前記層状化合物のインターカレーションを利用した例としては、カルコゲナイド化合物が比較的優れた充放電サイクル特性を有している。 [0005] As an example of utilizing the intercalation of the layered compound, a chalcogenide compound has a relatively high charge-discharge cycle characteristics. しかしながら、 However,
カルコゲナイド化合物は、起電力が低く、リチウム金属を負極として用いた場合でも実用的な放電電圧はせいぜい2V前後であり、非水溶媒二次電池の特徴の一つである高起電力という点を満足するものではなかった。 Chalcogenide compound, the electromotive force is low, practical discharge voltage even when using lithium metal as the negative electrode is at most 2V longitudinal, satisfy that high electromotive force which is one of the features of the non-aqueous solvent secondary battery It was not intended to.

【0006】一方、同様な層状構造を有するV 25 On the other hand, V 2 O 5 having a similar layered structure,
613 、LiCoO 2 、LiNiO 2またはドーピング現象を利用したLiMnO 4などの金属酸化物系化合物は高起電力という特徴を有する点で注目されている。 V 6 O 13, LiCoO 2, LiNiO 2 or metal oxide compounds such as LiMnO 4 using doping phenomenon has attracted attention in that it has a characteristic of high electromotive force.
特に、LiCoO 2 、LiNiO 2からなる正極は4V In particular, the positive electrode made of LiCoO 2, LiNiO 2 is 4V
程度の起電力を有し、しかも理論的エネルギー密度が正極活物質あたりほぼ1000Wh/kgという大きな値を有する。 It has a degree of the electromotive force, yet theoretical energy density has a large value of approximately 1000 Wh / kg per positive electrode active material.

【0007】しかしながら、前述した金属酸化物系化合物は充放電反応により結晶構造が変化し、体積膨脹および収縮を伴う。 However, the metal oxide-based compounds described above crystal structure is changed by charge and discharge reactions, involving volumetric expansion and contraction. このため、充放電サイクルが進に伴って活物質同士の導電性または活物質と電極基板との導電性が低下する。 Therefore, the conductivity of the conductive or active material and the electrode substrate between the active material with the charging and discharging cycle advances is reduced. その結果、分極が増大し、十分な充放電容量が得られなくなる。 As a result, the polarization increases, sufficient charge and discharge capacity can not be obtained. また、結晶構造の崩壊が起こり、 In addition, it occurs collapse of the crystal structure,
それに伴って反応界面での抵抗が増加し、充放電反応の可逆性が低下する。 The resistance at the reaction interface increases accordingly, reversibility of charge and discharge reactions decreases. さらに、前述した金属酸化物系化合物は水と穏やかに反応し、化合物中のリチウムイオンとプロトンとの間で置換が起こり、充放電容量が減少し、 Furthermore, the metal oxide-based compounds described above are gently react with water, occurs substituted between lithium ions and protons in the compound, the charge-discharge capacity is decreased,
結果的には保存特性が低下するという問題があった。 Consequently there has been a problem that the storage characteristics decreases.

【0008】 [0008]

【発明が解決しようとする課題】本発明の目的は、エネルギー密度が大きく、充放電サイクル特性および保存特性の優れた非水溶媒二次電池を提供しようとするものである。 OBJECTS OF THE INVENTION It is an object of the present invention, high energy density, it is intended to provide an excellent non-aqueous solvent secondary battery charge-discharge cycle characteristics and the storage characteristics.

【0009】 [0009]

【課題を解決するための手段】本発明に係わる非水溶媒二次電池は、リチウムもしくはリチウム合金からなるか、またはリチウムイオンを吸蔵・放出する化合物を含む負極と、LiNiO 2を主体とする正極活物質を含む正極と、非水溶媒に電解質を溶解した電解液とを備えた非水溶媒二次電池において、前記LiNiO 2粉末は、 Non-aqueous solvent secondary battery according to the present invention SUMMARY OF THE INVENTION may be a negative electrode containing a lithium or lithium alloy, or a compound capable of absorbing and releasing lithium ions, mainly of LiNiO 2 positive a positive electrode including an active material, in a non-aqueous solvent secondary battery comprising an electrolytic solution obtained by dissolving an electrolyte in a non-aqueous solvent, the LiNiO 2 powder,
少なくとも表面にLi以外のアルカリ金属、アルカリ土類金属、Ni以外の遷移金属、III 族元素、IV族元素、 Alkali metals other than Li at least on the surface, the alkaline earth metals, transition metals other than Ni, III group elements, IV group elements,
V族元素およびカルコゲンの群から選ばれる少なくとも1つの元素を含み、かつ表面が内部に比べて前記元素濃度の高い層で覆われていることを特徴とするものである。 It includes at least one element selected from the group consisting of V group elements and a chalcogen, and the surface is characterized in that it is covered with a layer high above element concentration than the interior. このような前記元素濃度の高い層で表面が覆われたLiNiO 2粉末は結晶構造の安定性が著しく改善されるため、前記LiNiO 2粉末を主体とする正極活物質を含む正極を備えた非水溶媒二次電池はサイクル特性および保存特性が向上される。 Since such LiNiO 2 powder whose surface is covered with a high layer of the element concentration is significantly improved stability of the crystal structure, a non-aqueous having a positive electrode containing a positive electrode active material composed mainly of the LiNiO 2 powder the solvent secondary battery cycle characteristics and the storage characteristics are improved.

【0010】以下、本発明に係わる非水溶媒二次電池(例えば円筒形非水溶媒二次電池)を図1を参照して詳細に説明する。 [0010] Hereinafter, a non-aqueous solvent secondary battery according to the present invention (e.g., a cylindrical non-aqueous solvent secondary battery) with reference to FIG. 1 will be described in detail. 例えばステンレスからなる有底円筒状の容器1は、底部に絶縁体2が配置されている。 For example bottomed cylindrical container 1 made of stainless steel, the insulator 2 is disposed at the bottom. 電極群3 Electrode group 3
は、前記容器1内に収納されている。 It is housed in the container 1. 前記電極群3は、 The electrode group 3,
正極4、セパレ―タ5及び負極6をこの順序で積層した帯状物を前記負極6が外側に位置するように渦巻き状に巻回した構造になっている。 The positive electrode 4, separator - the swath formed by laminating a motor 5 and a negative electrode 6 in this order negative electrode 6 is in the winding turn structure spirally so as to be positioned outside. 前記セパレ―タ5は、例えば不織布、ポリプロピレン多孔質フィルムから形成される。 The separator - motor 5, for example a nonwoven fabric is formed from a porous polypropylene film.

【0011】前記容器1内には、電解液が収容されている。 [0011] The said container 1, the electrolyte is housed. 中央部が開口された絶縁紙7は、前記容器1内の前記電極群3の上方に載置されている。 Central part insulating paper 7 having an opening is placed above the electrode group 3 in the container 1. 絶縁封口板8は、 Insulating sealing plate 8,
前記容器1の上部開口部に配置され、かつ前記上部開口部付近を内側にかしめ加工することにより前記封口板8 Wherein arranged in the upper opening of the container 1, and the sealing plate by caulking the vicinity of the upper opening inwardly 8
は前記容器1に液密に固定されている。 It is fixed in a liquid tight manner to the container 1. 正極端子9は、 The positive terminal 9,
前記絶縁封口板8の中央には嵌合されている。 It is fitted in the center of the insulating sealing plate 8. 正極リ― Seikyokuri -
ド10の一端は、前記正極4に、他端は前記正極端子9 One end of the de 10 to the positive electrode 4, the other end the positive terminal 9
にそれぞれ接続されている。 They are respectively connected to. 前記負極6は、図示しない負極リ―ドを介して負極端子である前記容器1に接続されている。 The negative electrode 6, negative Gollum not shown - is connected to the container 1 is a negative terminal via the de.

【0012】次に、前記正極4、前記負極6および電解液を具体的に説明する。 [0012] Next, the positive electrode 4, specifically described the negative electrode 6 and the electrolyte. a)正極4 前記正極4は、正極活物質に導電剤および結着剤を適当な溶媒に懸濁し、この懸濁物を集電体に塗布、乾燥して薄板状にすることにより作製される。 a) The positive electrode 4 The positive electrode 4, a conductive agent and a binder in the positive electrode active material is suspended in an appropriate solvent, coating the suspension on the current collector is manufactured by drying to a thin plate . また、前記正極活物質を導電剤および結着剤と共に成形したペレット、または前記正極活物質を導電剤および結着剤と共に混練、 Further, the positive active pellet material was molded with a conductive agent and a binder, or the positive active material and kneaded with a conductive agent and a binder, and,
シート化したシートを前記集電体に貼着することにより前記正極4を作製する。 Preparing the positive electrode 4 by adhering the sheeted sheets on the current collector.

【0013】前記導電剤としては、例えばアセチレンブラック、カーボンブラック、黒鉛等を挙げることができる。 [0013] Examples of the conductive agent include acetylene black, carbon black, and graphite. 前記結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVD Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVD
E)、エチレン−プロピレン−ジエン共重合体(EPD E), an ethylene - propylene - diene copolymer (EPD
M)、スチレン−ブタジエンゴム(SBR)等を用いることができる。 M), styrene - can be used butadiene rubber (SBR) and the like. 前記正極活物質、導電剤および結着剤の配合割合は、正極活物質80〜95重量%、導電剤3〜 The mixing ratio of the positive electrode active material, a conductive agent and a binder is the positive electrode active material 80 to 95% by weight, the conductive agent 3
20重量%、結着剤2〜7重量%の範囲にすることが好ましい。 20 wt%, is preferably in the range of the binder 2 to 7 wt%.

【0014】前記集電体としては、例えばアルミニウム箔、ステンレス箔、ニッケル箔等を用いることができる。 [0014] As the current collector, it is possible to use, for example aluminum foil, stainless steel foil, a nickel foil or the like. 前記正極活物質は、少なくとも表面にLi以外のアルカリ金属、アルカリ土類金属、Ni以外の遷移金属、 The positive active material is an alkali metal other than Li at least on the surface, the alkaline earth metals, transition metals other than Ni,
III 族元素、IV族元素、V族元素およびカルコゲンの群から選ばれる少なくとも1つの元素を含み、かつ表面が内部に比べて前記元素濃度の高い層(以下、高濃度層と称す)で覆われたLiNiO 2粉末を主体とする。 III group element, IV group element comprises at least one element selected from the group consisting of V group elements and a chalcogen, and high surface of the element concentration than the inner layer (hereinafter, a high concentration layer hereinafter) is covered with mainly of LiNiO 2 powder.

【0015】前記高濃度層で覆われたLiNiO 2粉末は、平均径が2〜20μmであることが好ましい。 [0015] LiNiO 2 powder covered with the high concentration layer preferably has an average diameter of 2 to 20 [mu] m. 前記高濃度層で覆われたLiNiO 2粉末は、水酸化ニッケル[Ni(OH) 2 ]、炭酸ニッケル(NiCO 3 )、 The high concentration layer LiNiO 2 powder covered with the nickel hydroxide [Ni (OH) 2], nickel carbonate (NiCO 3),
硝酸ニッケル[Ni(NO 32 ]などのニッケル化合物と水酸化リチウム(LiOH、酸化リチウム(Li 2 Nickel nitrate [Ni (NO 3) 2] Lithium hydroxide nickel compounds such as (LiOH, lithium oxide (Li 2
O)、炭酸リチウム(Li 2 CO 3 )、硝酸リチウムL O), lithium carbonate (Li 2 CO 3), lithium nitrate L
iNO 3またはハロゲン化リチウムなどのリチウム塩との混合物に、Li以外のアルカリ金属、アルカリ土類金属、Ni以外の遷移金属、III 族元素、IV族元素、V族元素およびカルコゲンの群から選ばれる少なくとも1つの元素を含む化合物(以下、異種元素化合物と称す)のうちの少なくとも一つを混合した後、少なくとも二段階の加熱状態を履歴させるか、またはLiNiO 2粉末と前記異種元素化合物のうち少なくとも一つを混合した後、加熱させるか、いずれかにより反応させることにより製造される。 To a mixture of iNO 3 or lithium salt such as lithium halide, selected from the group consisting of alkali metals other than Li, alkaline earth metals, transition metals other than Ni, III group elements, IV group elements, from the group of V group element and a chalcogen compounds containing at least one element (hereinafter, referred to as foreign element compound) was mixed at least one of, or to the history of the heated state of at least two stages, or LiNiO 2 powder and among the dissimilar elements and compounds in after mixing one or heats, it is prepared by reacting either. 前記混合物と前記異種元素化合物との混合に際し、これらの物質を硝酸、酢酸、硫酸のような酸、またはアンモニウム水溶液、水酸化リチウム水溶液などのアルカリ溶液或いはメタノール、エタノール、アセトンのような有機溶媒に溶解した後、攪拌、混合してもよい。 Upon mixing of the foreign element compound and the mixture nitric these substances, acetic acid, acids such as sulfuric acid or aqueous ammonium, alkali solution or methanol, such as aqueous lithium hydroxide, ethanol, an organic solvent such as acetone after dissolution, stirring may be mixed. 前記二段階の加熱状態を履歴させる場合には、 In case of history heating state of the secondary stage,
1段目の加熱を酸素を含む雰囲気中、100〜700℃ In an atmosphere containing oxygen to heat the first stage, 100 to 700 ° C.
で、2段目の加熱を同雰囲気中、300〜950℃で行うことが好ましい。 In, in the same atmosphere the heating of the second stage is preferably carried out at 300-950 ° C.. また、LiNiO 2粉末と前記異種元素化合物のうち少なくとも一つを混合した後の加熱は、酸素を含む雰囲気中で100〜700℃で行うことが好ましい。 The heating after mixing at least one of LiNiO 2 powder and the different element compound is preferably performed at 100 to 700 ° C. in an atmosphere containing oxygen.

【0016】前記異種元素化合物は、その元素の特徴により次に挙げる効果をもたらす。 [0016] The different element compound, resulting in listed below effect by the characteristics of the element. (1)LiNiO 2結晶構造中に固溶または置換して充放電反応に伴う結晶構造変化を抑制し、結晶構造の崩壊を抑制する。 (1) LiNiO 2 as a solid solution or replaced in the crystal structure to inhibit crystal structure change associated with charge and discharge reaction, suppresses disintegration of the crystal structure.

【0017】(2)LiNiO 2粉末表面に純粋なLi [0017] (2) LiNiO pure in 2 powder surface Li
NiO 2と異なる化合物を形成し、粉末表面で起こり得る水との反応や電解液の分解を抑制する。 Forming a NiO 2 different compounds, inhibit the decomposition of the reaction and an electrolyte with possible water powder surface. 前記(1)の効果が主に期待できる異種元素としては、Li以外のアルカリ金属、アルカリ土類金属、Ni以外の遷移金属、 (1) As the different element that effect can be mainly expected, alkali metals other than Li, alkaline earth metals, transition metals other than Ni,
III 族元素、IV族元素が挙げられる。 III group element, and a group IV element. これらの元素は、 These elements,
リチウムイオンの3bサイト、ニッケルイオンの3aサイトである六配位サイトまたは空位である四配位サイトに高圧・高温加熱などの特殊な処理を施さずに比較的容易に置換または固溶させることができる。 3b sites of lithium ions is possible to relatively easily replaced or solid solution without being subjected to special processing, such as high pressure and high temperature heating in the four-coordinate sites are hexacoordination site or vacancies which is 3a site nickel ions it can. ただし、3b However, 3b
サイトに置換された場合には、必然的に充放電可能なリチウムイオンの量が減少する。 When substituted the site, the amount of inevitably rechargeable lithium ion decreases. したがって、アルカリ金属、アルカリ土類金属をLiNiO 2の前記原料に添加する場合にはリチウムイオンの全体量に対して10重量%以下、より好ましくは5重量%以下にすることが望ましい。 Therefore, an alkali metal, 10 wt% or less based on the total amount of lithium ions in the case of adding the alkaline earth metal to the material of LiNiO 2, it is desirable that more preferably 5 wt% or less. また、結晶構造中に置換または固溶させるイオン半径が、置換される元素のイオン半径(リチウムイオン=0.076nm、ニッケルイオン=0.056nm) The ion radii to substitute or solid solution in the crystal structure is, the ionic radius of an element to be replaced (lithium ion = 0.076 nm, a nickel ion = 0.056nm)
の2倍以下であることが好ましく、特にpauling の電気陰性度の値(リチウム=1.0、ニッケル=1.8)に近似することが望ましい。 Is preferably 2 times or less, particularly electronegativity value of Pauling (lithium = 1.0, nickel = 1.8) it is desirable to approximate the. 異種元素のイオン半径とpaul Ion radius and paul of different element
ing の電気陰性度の値との関係を下記表1、表2に示す。 The relationship between the value of the electronegativity of ing Table 1, are shown in Table 2.

【0018】 [0018]

【表1】 [Table 1]

【0019】 [0019]

【表2】 [Table 2]

【0020】また、前記(2)の効果が主に期待できる異種元素としては、Ni以外の遷移金属、III 族元素、 Further, examples of the different element that effect can be mainly expected (2), a transition metal other than Ni, III group element,
IV族元素、V族元素、カルコゲンが挙げられる。 Group IV elements, V group elements, and chalcogen. 遷移金属、III 族元素、IV族元素をLiNiO 2の前記原料に添加する場合には、LiNiO 2粉末表面の形状に影響を及ぼし、粉末の表面積が変化する。 Transition metals, III group element, when the addition of Group IV element in the material of LiNiO 2 affects the shape of LiNiO 2 powder surface, the surface area of the powder is changed. また、V族元素、 In addition, V-group elements,
カルコゲンは酸素との置換によりリチウムイオンとプロトンとのイオン交換反応を抑制することができる。 Chalcogen can inhibit the ion-exchange reaction between the lithium ions and protons by substitution with oxygen.

【0021】したがって、LiNiO 2粉末表面に異種元素の高濃度層が形成されることにより、結晶構造の安定性が著しく改善されるため、前記LiNiO 2粉末を主体とする正極活物質を含む正極を備えた非水溶媒二次電池はサイクル特性および保存特性が向上される。 [0021] Accordingly, by the high concentration layer of the dissimilar elements are formed in LiNiO 2 powder surface, the stability of the crystal structure is remarkably improved, a positive electrode including a positive active material composed mainly of the LiNiO 2 powder comprising a non-aqueous solvent secondary battery cycle characteristics and the storage characteristics are improved. ただし、異種元素の高濃度層は少なくとも前記(1)または(2)で示した効果を奏し、異種元素による置換または固溶、もしくは析出のうち少なくともいずれかの形態をとることが必要である。 However, the high concentration layer of the different elements exhibit the effects shown in at least the (1) or (2), a substituted or dissolved by a different element, or it is necessary to take at least one form of precipitation.

【0022】以上のことから、異種元素化合物は前記表1および表2に挙げられる元素を少なくとも1種含むものが好ましい。 [0022] From the above, foreign element compound which contains at least one kind of element mentioned in Table 1 and Table 2 are preferred. 特に、前記添加元素はその電気陰性度をE M 、酸素の電気陰性度をE Oとした時、E OとE MのΔEの値がpauling の電気陰性度値を用いると、0.5 In particular, the additive element E M their electronegativity, when the electronegativity of oxygen was set to E O, the value of ΔE of E O and E M are used electronegativity value of Pauling, 0.5
≦ΔE≦2.8で表されるものが合成の簡便さと前述した効果を達成する観点から好ましい。 ≦ Delta] E ≦ 2.8 at those represented from the viewpoint of achieving simplicity and above the effect of the synthesis. このような添加元素としては、アルカリ金属ではNa、アルカリ土類金属ではMg、遷移金属ではMn、Fe、Co、Zn、III Such additional element, Na is an alkali metal, Mg is an alkaline earth metal, Mn is a transition metal, Fe, Co, Zn, III
族元素ではB、Al、Ga、IV族元素ではSi、Ge、 The group elements B, Al, Ga, Si in Group IV element, Ge,
Sn、V族元素ではP、カルコゲンではSが選ばれる。 Sn, the group V elements P, S is selected in the chalcogen.
これらの元素は、1種または2種以上の形態で用いられる。 These elements are used in one or more forms.

【0023】前記異種元素化合物としては、ホウ酸(H [0023] Examples of the foreign element compound, boric acid (H
3 BO 3 )、ホウ酸リチウム(Li 247 )、酸化ホウ素(B 23 )、テトラヒドリドホウ酸リチウム(LiBH 4 )などのホウ酸化合物;水酸化アルミニウム[Al(OH) 3 ]、酸化アルミニウム(Al 2 3 BO 3), lithium borate (Li 2 B 4 O 7) , boron oxide (B 2 O 3), boric acid compounds such as tetra-hydride lithium borate (LiBH 4); aluminum hydroxide [Al (OH) 3 ], aluminum oxide (Al 2 O
3 )、硝酸アルミニウム[Al(NO 33 ]、リン酸アルミニウム(AlPO 4 )、テトラヒドリドアルミン酸リチウム(LiAlH 4 )、トリアェニルアルミニウム[Al(C 653 ]、ジフェニルアルミニウムヒドリド[AlH(C 652 ]、フェニルアルミニウムジヒドリド(AlH 265 )、トリエチルアルミニウム[Al(C 253 ]などのアルミニウム化合物;一ケイ化三ホウ素(B 3 Si)、一ケイ化六ホウ素(B 6 Si)、ケイ酸(H 4 SiO 4 )、酸化水素化ケイ素[(Si 24 (OH) 2 ]、ケイ酸リチウム(L 3), aluminum nitrate [Al (NO 3) 3], aluminum phosphate (AlPO 4), lithium tetra-hydride door Rumin acid (LiAlH 4), thoria E sulfonyl aluminum [Al (C 6 H 5) 3], diphenyl aluminum hydride [ AlH (C 6 H 5) 2 ], phenyl aluminum dihydride (AlH 2 C 6 H 5) , aluminum compounds such as triethylaluminum [Al (C 2 H 5) 3]; monosilicate of boron (B 3 Si) one silicide six boron (B 6 Si), silicic acid (H 4 SiO 4), oxide silicon hydride [(Si 2 O 4 (OH ) 2], lithium silicate (L
4 SiO 4 )、臭化ケイ素(Si 2 Br 5 )などのケイ素化合物;四酸化二リン(P 24 )、五酸化二リン(P 25 )、リン酸(H 3 PO 4 )、次亜リン酸(H i 4 SiO 4), a silicon compound such as silicon tetrabromide (Si 2 Br 5); tetroxide phosphorus (P 2 O 4), phosphorus pentoxide (P 2 O 5), phosphoric acid (H 3 PO 4) , hypophosphorous acid (H
PH 22 )、ピロリン酸(H 427 )、リン酸水素にアンモニウム[(NH 42 HPO 4 ]、リン酸リチウム(Li 3 PO 4 )、リン酸二水素リチウム(Li PH 2 O 2), pyrophosphoric acid (H 4 P 2 O 7) , ammonium hydrogen phosphate [(NH 4) 2 HPO 4 ], lithium phosphate (Li 3 PO 4), lithium dihydrogen phosphate (Li
2 PO 4 )、リン酸亜鉛[Zn 4 (PO 42・4H 2 H 2 PO 4), zinc phosphate [Zn 4 (PO 4) 2 · 4H 2
O]、リン酸コバルト[Co 3 (PO 42・8H 2 O], cobalt phosphate [Co 3 (PO 4) 2 · 8H 2
O]、リン酸鉄(FePO 4・2H 2 O)、リン酸二水素亜鉛[Zn(H 2 PO 42・2H 2 O]、リン酸二水素マンガン[Mn(H 2 PO 42・2H 2 O]、リン酸マンガン[Mn 3 (PO 42 ]などのリン化合物;硫化アルミニウム(Al 23 )、硫化アンモニウム[(NH 42 S]、二硫化マンガン(MnS 2 )、 O], iron phosphate (FePO 4 · 2H 2 O) , dihydrogen phosphate, zinc [Zn (H 2 PO 4) 2 · 2H 2 O], dihydrogen phosphate, manganese [Mn (H 2 PO 4) 2 · 2H 2 O], a phosphorus compound such as manganese phosphate [Mn 3 (PO 4) 2 ]; aluminum sulfide (Al 2 S 3), ammonium sulfide [(NH 4) 2 S] , disulfide manganese (MnS 2),
二硫化鉄(FeS 2 )、硫化コバルト(CoS)、硫化リチウム(Li 2 S)、硫酸マンガン[MnSO 4 ,M Iron disulfide (FeS 2), cobalt sulfide (CoS), lithium (Li 2 S) sulfide, manganese sulfate [MnSO 4, M
2 (SO 43 ]、硫酸リチウム(Li 2 SO 4・H n 2 (SO 4) 3] , lithium sulfate (Li 2 SO 4 · H
2 O)などの硫黄化合物;水酸化亜鉛[Zn(OH) 2 O) sulfur compounds, such as zinc hydroxide [Zn (OH)
2 ]、水酸化コバルト[Co(OH) 2 ]、水酸化ガリウム[Ga 23・xH 2 O]、水酸化鉄[Fe(O 2], cobalt hydroxide [Co (OH) 2], gallium hydroxide [Ga 2 O 3 · xH 2 O], iron hydroxide [Fe (O
H) 3 ]、水酸化マンガン[Mn(OH) 2 ]などの水酸化物;窒化亜鉛(Zn 32 )、窒化鉄(Fe 2 N) H) 3], the hydroxide, such as manganese hydroxide [Mn (OH) 2]; zinc nitride (Zn 3 N 2), iron nitride (Fe 2 N)
などの窒化物;ドデカカルボニル鉄(Fe 3 CO 12 )、 Nitrides such as; dodecacarbonyl iron (Fe 3 CO 12),
トリカルボニルニッケル{[Co(CO3 ) 34 }、 Tricarbonyl nickel {[Co (CO3) 3] 4},
ペンタカルボニルマンガン{[Mn(CO) 52 }などのカルボニル錯体;酸化鉄(Fe 23 )、酸化マンガン(MnO 2・H 2 O)、三酸化硫黄(SO 3 )などの酸化物;硝酸亜鉛[Zn(NO 32 ]、硝酸ガリウム[Zn(NO 32 ]、硝酸コバルト[Co(NO Carbonyl complexes such as pentacarbonyl manganese {[Mn (CO) 5] 2}; Iron oxide (Fe 2 O 3), manganese oxide (MnO 2 · H 2 O) , oxides such as sulfur trioxide (SO 3); zinc nitrate [Zn (NO 3) 2] , gallium nitrate [Zn (NO 3) 2] , cobalt nitrate [Co (NO
32 ]、硝酸鉄[Ga(NO 33 ]、硝酸マンガン[Mn(NO 32 ]などの硝酸塩;から選ばれる少なくとも一つを挙げることができる。 3) 2], iron nitrate [Ga (NO 3) 3], nitrate, such as manganese nitrate [Mn (NO 3) 2]; can include at least one selected from the.

【0024】前記LiNiO 2粉末を表面から深さ方向に添加した異種元素の濃度は、XPS、オージェ電子分光法などにより測定することが可能である。 [0024] The concentration of the added heterogeneous element in the depth direction from the LiNiO 2 powder surface can be measured XPS, due Auger electron spectroscopy. 前記粉末表面から1.0μm程度の深さまでの部分で添加した元素の濃度がニッケル元素に対して5%以上、より好ましくは10%以上であることが望ましい。 The concentration of the element added in portions from the powder surface to 1.0μm a depth of about 5% or more nickel, and more preferably 10% or more. 前記LiNiO 2 It said LiNiO 2
粉末の表面から深さ方向に亘る添加元素のニッケル原子に対する比率を後述する実施例において具体的な特性図として示す。 The ratio of the additive elements over the depth direction from the surface of the powder to the nickel atom shown as a specific characteristic diagram in the examples described below.

【0025】前記LiNiO 2粉末は、添加する異種元素、化合物の種類、添加する量、合成条件(加熱温度、 [0025] The LiNiO 2 powder, different element to be added, the type of compound, the amount to be added, the synthesis conditions (heating temperature,
時間、雰囲気等)の違いにより異種元素がリチウムイオンの3bサイト、ニッケルイオンの3aサイトである六配位サイトまたは空位である四配位サイトに置換可能であることは既に述べた。 Time, it is already mentioned different element by the difference in the atmosphere, etc.) can be substituted in the 3b sites, four-coordinated sites are hexacoordination site or vacancies is the 3a sites nickel ions of lithium ions. 異種元素の置換によりLiNi LiNi by substitution of a different element
2 (α−NaFeO 2構造)の単位体積は収縮または膨脹する。 Unit volume of O 2 (α-NaFeO 2 structure) contracts or expands. 図2は、添加したホウ素元素と格子定数の変化との関係を示す特性図である。 Figure 2 is a characteristic diagram showing the relationship between the change of the added boron element and lattice constant. この図2から添加元素(例えばホウ素)の濃度に比例してa軸長さは0.28 In proportion to the concentration a-axis length of the added element from FIG. 2 (e.g., boron) is 0.28
5〜0.291nm、c軸長さは1.412〜1.42 5~0.291nm, c-axis length is 1.412 to 1.42
8nmの範囲で変化することがわかる。 It can be seen that the change in the range of 8nm. 格子定数と結晶中のリチウムイオンの拡散のし易さとの間には密接な関係があり、格子が広げられることによってリチウムイオンの拡散が容易になることが予想される。 There is a close relationship between the lattice constant and the diffusion ease of lithium ions in the crystal, the diffusion of lithium ions are expected to be facilitated by the lattice is expanded. ただし、置換された元素の量、サイトによっては反応抵抗を増加させ、十分な充放電容量が得られなくなる場合がある。 However, the amount of substituted elements to increase the reaction resistance some sites, a sufficient charge-discharge capacity can not be obtained. したがって、前記LiNiO 2粉末は添加異種元素の濃度がニッケル原子100に対して1〜10、添加異種元素による化合物からなる高濃度層の厚さは結晶構造の安定性、反応抵抗の低減化を考慮して0.1〜1.0μm、 Therefore, the LiNiO 2 powder is added to 10 concentrations against nickel atoms 100 of the different element, the thickness of the high concentration layer made of a compound by addition different element consideration of stability, reduction of the reaction resistance of the crystal structure to 0.1~1.0μm,
より好ましくは0.1〜0.5μmにすることが好ましい。 It is more preferred that the 0.1 to 0.5 [mu] m. また、リチウムイオンの拡散のし易さと結晶構造の安定性、反応抵抗の低減化を考慮して前記格子定数はa Moreover, the stability of the diffusion ease and crystal structure of the lithium ion, the lattice constant in consideration of reduction of the reaction resistance is a
軸長さを0.286〜0.289nm、c軸長さを1. 0.286~0.289nm the axial length, the c axis length 1.
410〜1.423nmの範囲にすることが好ましい。 It is preferably in the range of 410~1.423Nm.

【0026】前記高濃度層で覆われたLiNiO 2粉末表面の比表面積を測定すると、添加された異種元素の量の増大に従って比表面積が増加した後、減少するという極大値をとる。 [0026] Measurement of the specific surface area of the high concentration layer covered with LiNiO 2 powder surface, after the specific surface area is increased with increasing amount of added different element, takes a maximum value of decreases. このように比表面積は、前記LiNiO Thus the specific surface area, the LiNiO
2粉末の高濃度層の形成状態の目安になる。 2 powder becomes a measure of the state of formation of the high concentration layer. 前記高濃度層で覆われたLiNiO 2粉末は、比表面積が0.5〜 LiNiO 2 powder covered with the high concentration layer has a specific surface area of 0.5
2m 2 /gであることが好ましい。 It is preferably 2m 2 / g. 前記比表面積を0. 0 the specific surface area.
5m 2 /g未満にすると、反応面積の減少により充放電効率が低下する恐れがある。 If less than 5 m 2 / g, the charge-discharge efficiency may be decreased due to a decrease in reaction area. 一方、前記比表面積が2m Meanwhile, the specific surface area of ​​2m
2 /gを越えると電解液の分解反応が起き易くなり、充放電容量が減少する恐れがある。 2 / g and exceeds tends to occur a decomposition reaction of the electrolytic solution, the charge and discharge capacity tends to be reduced. さらに、前記LiNi In addition, the LiNi
2粉末表面において局所的な過充電反応や過放電反応が起こり易くなり、結晶構造の崩壊を招く恐れがある。 O in 2 powder surface is likely to occur locally overcharge reactions or over-discharging reaction, which may lead to collapse of the crystal structure.

【0027】b)負極6 前記負極6は、リチウムもしくはリチウム合金からなるか、またはリチウムイオンを吸蔵・放出する化合物を含む。 [0027] b) a negative electrode 6 The negative electrode 6 includes a lithium or lithium alloy, or a compound capable of absorbing and releasing lithium ions.

【0028】前記リチウム合金としては、例えばLiA [0028] The lithium alloy is, for example LiA
l、LiPb、LiSn、LiBi等を挙げることができる。 l, mention may be made of LiPb, LiSn, the LiBi like. 前記リチウムイオンを吸蔵・放出する化合物としては、例えばリチウムイオンをドープしたポリアセタール、ポリアセチレン、ポリピロールなどの導電性高分子、リチウムイオンをドープした有機物焼結体からなる炭素材等を挙げることができる。 As the compound of the lithium ion absorbing and releasing may include, for example, doped with lithium ions polyacetal, polyacetylene, conductive polymers such as polypyrrole, carbon material or the like made of lithium ions doped organics sintered body.

【0029】前記炭素質物質は、その原料および焼成法により特性が相当異なる。 [0029] The carbonaceous material characteristics differ considerably due to the raw material and the firing method. 例えば、黒鉛炭素、黒鉛結晶部と非結晶部が混在したような炭素、結晶層の積層に規則性のない乱層構造をとる炭素材などを挙げることができる。 For example, mention may be made of graphite carbon, carbon such as graphite crystal portion and an amorphous portion are mixed, and carbon material to take turbostratic no regularity in the laminated crystal layer.

【0030】前記炭素材を含む負極は、具体的には次のような方法により作製される。 The negative electrode containing the carbon material is specifically prepared by the following method. 前記炭素材に結着剤を適当な溶媒に懸濁し、この懸濁物を集電体に塗布、乾燥して薄板状にすることにより前記正極を作製する。 A binder were suspended in an appropriate solvent in the carbonaceous material, coating the suspension on the current collector, to prepare the positive electrode by drying to a thin plate. また、 Also,
前記炭素材を結着剤と共に成形したペレット、または前記炭素材を結着剤と共に混練、シート化したシートを前記集電体に貼着して前記負極を作製する。 By sticking kneaded together with a binder and molding pellets or the carbon material, together with a binder to the carbonaceous material, the sheet of the sheet to the current collector to produce the negative electrode.

【0031】前記結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDE)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)、 [0031] Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), ethylene - propylene - diene copolymer (EPDM), styrene - butadiene rubber (SBR),
カルボキシメチルセルロース(CMC)等を用いることができる。 Or the like can be used carboxymethyl cellulose (CMC).

【0032】前記炭素材および結着剤の配合割合は、炭素材90〜98重量%、結着剤2〜10重量%の範囲にすることが好ましい。 The mixing ratio of the carbonaceous material and the binder is preferably in the range of the carbon material 90 to 98 wt%, binder 2-10% by weight. 特に、前記炭素材は負極6を作製した状態で5〜20mg/cm 2の範囲することが好ましい。 In particular, the carbon material is preferably a range of 5 to 20 mg / cm 2 in a state of forming the anode 6.

【0033】前記集電体としては、例えば銅箔、アルミニウム箔、ステンレス箔、ニッケル箔等を用いることができる。 [0033] As the current collector, for example a copper foil, aluminum foil, stainless steel foil, can be used nickel foil. c)電解液 前記電解液は非水溶媒に電解質を溶解した組成を有する。 c) the electrolytic solution said electrolytic solution has a composition obtained by dissolving an electrolyte in a nonaqueous solvent.

【0034】前記非水溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジメチルカーボネート、テトラヒドロフラン、 [0034] As the non-aqueous solvent, such as propylene carbonate, ethylene carbonate, dimethyl carbonate, dimethyl carbonate, tetrahydrofuran,
2−メチルテトラヒドロフラン、γ−ブチロラクトン、 2-methyltetrahydrofuran, .gamma.-butyrolactone,
1,2−ジメトキシエタン、ジエトキシエタン、1,3 1,2-dimethoxyethane, diethoxyethane, 1,3
−ジオキソラン、1,3−ジメトキシプロパンから選ばれる1種または2種以上の混合物を挙げることができる。 - it can be exemplified dioxolane, 1,3-dimethoxy one selected from propane or a mixture of two or more thereof.

【0035】前記電解質としては、例えばホウフッ化リチウム(LiBF 4 )、六フッ化リン酸リチウム(Li [0035] As the electrolyte, for example lithium tetrafluoroborate (LiBF 4), lithium hexafluoro phosphate (Li
PF 6 )、過塩素酸リチウム(LiClO 4 )、六フッ化砒素リチウム(LiAsF 6 )、トリフルオロメタスルホン酸リチウム(LiCF 3 SO 3 )、四塩化アルミニウムリチウム(LiAlCl 4 )から選ばれる1種または2種以上のリチウム塩を挙げることができる。 PF 6), lithium perchlorate (LiClO 4), lithium hexafluoroarsenate (LiAsF 6), lithium trifluoro meth sulfonate (LiCF 3 SO 3), 1 kind or selected from aluminum tetrachloride lithium (LiAlCl 4) two or more kinds of lithium salt can be mentioned. 前記電解質の前記非水溶媒に対する溶解量は、0.5〜1. Dissolution amount in the nonaqueous solvent of the electrolyte is 0.5 to 1.
5モル/lにすることが好ましい。 It is preferable that the 5 mole / l.

【0036】以上説明した本発明によれば、少なくとも表面にLi以外のアルカリ金属、アルカリ土類金属、N According to the present invention described above, alkali metals other than Li at least on the surface, an alkaline earth metal, N
i以外の遷移金属、III 族元素、IV族元素、V族元素およびカルコゲンの群から選ばれる少なくとも1つの元素を含み、かつ表面が内部に比べて前記元素濃度の高い層(高濃度層)で覆われているLiNiO 2粉末を正極活物質として用いることにより、充放電反応に伴う結晶構造の崩壊を抑制し、保存時の水との反応を抑制できため、エネルギー密度が大きく、充放電サイクル特性、保存性の優れた非水溶媒二次電池を得ることができる。 Transition metal other than i, III group elements, IV group element comprises at least one element selected from the group consisting of V group elements and a chalcogen, and surface with a layer high above element concentration than the interior (high-concentration layer) the use of LiNiO 2 powder covered as the positive electrode active material, to suppress collapse of the crystal structure accompanying the charge and discharge reaction, it is possible to suppress the reaction with water during storage, large energy density, charge-discharge cycle characteristics , it is possible to obtain an excellent non-aqueous solvent secondary battery conservation.

【0037】すなわち、前記高濃度層でLiNiO 2粉末を覆うことによって、LiNiO 2粉末の結晶構造の安定性が図られるため、充放電反応に伴う結晶構造の崩壊を抑制し、分極の増加を抑え、ひいては電解液の分解反応も抑制できる。 [0037] That is, by covering the LiNiO 2 powder by the high concentration layer, the stability of the crystal structure of LiNiO 2 powder is achieved to suppress the collapse of the crystal structure accompanying the charge and discharge reaction, suppressing an increase in polarization , it can be suppressed decomposition reaction of thus electrolyte. その結果、前記LiNiO 2粉末を正極活物質として含む正極を備えた非水溶媒二次電池の充放電サイクル特性を著しく向上することができる。 As a result, the LiNiO 2 powder significantly can improve the charge-discharge cycle characteristics of the non-aqueous solvent secondary battery comprising a positive electrode containing as a positive electrode active material.

【0038】また、前記高濃度層はLiNiO 2粉末表面と大気中の水分との反応を抑制し、LiNiO 2結晶中のリチウムイオンとプロトンとの置換反応が起こり難くなるため、保存中にLiNiO 2結晶表面のリチウムがプロトンと置換されて高抵抗層が形成されることに伴う充放電容量の低下を解消することができる。 Further, the high concentration layer will suppress the reaction with moisture LiNiO 2 powder surface and in the air, it becomes difficult to occur is the substitution reaction between the lithium ions and protons LiNiO 2 crystal, LiNiO 2 during storage can be lithium crystal surface to eliminate the reduction in the charge-discharge capacity due to the high resistance layer is replaced with protons are formed.

【0039】 [0039]

【実施例】以下、本発明の実施例を前述した図1を参照して詳細に説明する。 EXAMPLES Hereinafter, the embodiments of the present invention with reference to FIG. 1 described above will be described in detail. (実施例1)まず、LiNiO 2粉末とホウ酸リチウム(Li 247 )とをB:Niのモル比が1:20になるように配合し、乳鉢にて十分に混合した後、酸素気流中、420℃あで1時間処理した。 (Example 1) First, the LiNiO 2 powder and lithium borate (Li 2 B 4 O 7) B: the molar ratio of Ni is formulated to be 1:20, after thorough mixing in a mortar, a stream of oxygen was treated 420 ° C. Ade 1 hour. 得られた生成物をオージェ電子分光法により測定した。 The resulting product was measured by Auger electron spectroscopy. その結果、平均粒径10μmの生成物粒子の表面から0.5μmの深さに亘って主にLi 247 、B 23からなるホウ素化合物の層が表面に形成されていることが確認された。 As a result, a layer of predominantly Li 2 B 4 O 7, B 2 O 3 boron compound consisting of over the surface of the product particles having an average particle diameter of 10μm to the depth of 0.5μm is formed on the surface There has been confirmed. L
247は、350〜400℃の温度で再結晶化が起こるため、LiNiO 2粉末表面でホウ素酸化物が形成されたものと予想される。 i 2 B 4 O 7, since re-crystallization occurs at a temperature of 350 to 400 ° C., is expected to boron oxide is formed by LiNiO 2 powder surface. また、前記LiNiO 2粉末の表面から深さ方向に亘る添加元素(ホウ素)のニッケル原子に対する比率を測定したところ、図2の特性線Aに示すように表面ほどホウ素の濃度が高いことがわかった。 The measured ratio of nickel atoms of the additional element (boron) over the depth direction from the LiNiO 2 powder surface, it was found that a high concentration of boron as the surface as shown by a characteristic line A in FIG. 2 . さらに、得られたLiNiO 2粉末のa軸長さ、 Further, the obtained LiNiO 2 powder a-axis length,
c軸長さおよび比表面積を下記表3に示す。 The c-axis length and specific surface area shown in Table 3 below. つづいて、 Subsequently,
前記ホウ素酸化物層で表面が覆われたLiNiO 2粉末91重量%、アセチレンブラック3.5重量%、黒鉛3.5重量%およびエチレン−プロピレン−ジエン共重合体2重量%からなる混合物をトルエンでペースト状にした後、ステンレス箔に塗布し、乾燥、ロールプレスを行って正極を作製した。 LiNiO 2 powder 91 weight% of the surface is covered with the boron oxide layer, acetylene black 3.5 wt%, graphite 3.5% by weight and an ethylene - propylene - a mixture of diene copolymer 2 wt% in toluene after the paste was applied to a stainless steel foil, dried to prepare a positive electrode subjected to roll press.

【0040】また、メソフェーズピッチ系炭素繊維をアルゴンガス雰囲気下で3000℃にて黒鉛化し、さらに2400℃の塩素ガス雰囲気下で熱処理して黒鉛化炭素粉末を調製した。 Further, the mesophase pitch-based carbon fibers were graphitized at 3000 ° C. in an argon gas atmosphere, to prepare a graphitized carbon powder was further heat-treated under a chlorine gas atmosphere at 2400 ° C.. つづいて、前記黒鉛化炭素粉末98重量%およびエチレン−プロピレン−ジエン共重合体2重量%からなる混合物をトルエンでペースト状にした後、 Subsequently, the 98 wt% graphitized carbon powder and an ethylene - After a mixture consisting of diene copolymer 2 wt% to a paste with toluene - propylene
銅箔に塗布し、乾燥、ロールプレスを行って負極を作製した。 Was applied to a copper foil, dried to prepare a negative electrode by performing roll-pressed.

【0041】前記正極、ポリプロピレン性多孔質フィルムからなるセパレ―タおよび前記負極をそれぞれこの順序で積層した後、前記負極が外側に位置するように渦巻き状に巻回して電極群を製造した。 Were prepared data and the negative electrode respectively was laminated in this order, the negative electrode is spirally wound so as to be positioned outside the electrode group - [0041] The positive electrode, separator made of polypropylene porous film.

【0042】さらに、エチレンカーボネートとジエチルカーボネートの混合溶媒(混合体積比率50:50)にLiPF 6を1.0モル/l溶解して電解液を調製した。 [0042] Further, to prepare an electrolyte solution LiPF 6 in a mixed solvent of ethylene carbonate and diethyl carbonate (mixing volume ratio 50:50) was dissolved 1.0 mol / l. 前記各電極群及び前記電解液をステンレス製の有底円筒状容器内にそれぞれ収納して前述した図1に示すの円筒形非水溶媒二次電池を組み立てた。 Said assembly a cylindrical non-aqueous solvent secondary battery indicate the electrode group and the electrolyte in Figure 1 described above is housed respectively in a stainless steel bottomed cylindrical container.

【0043】(実施例2)水酸化ニッケル粉末[Ni [0043] (Example 2) nickel hydroxide powder [Ni
(OH) 2 ]と水酸化リチウム(LiOH)とホウ酸リチウム(Li 247 )とをLi:Ni:Bのモル比が1:1:0.05になるように配合し、乳鉢にて十分に混合した後、酸素気流中、380〜480℃の温度で1時間保持し、700℃の温度で5時間熱処理を行った。 (OH) 2] and lithium hydroxide (LiOH) and lithium borate (Li 2 B 4 O 7) Li: Ni: the molar ratio of B is 1: 1: formulated to be 0.05, mortar after thorough mixing in, in an oxygen stream, and held 1 hour at a temperature of three hundred and eighty to four hundred eighty ° C., was subjected to 5 hours heat treatment at a temperature of 700 ° C.. このような二段階の加熱状態を履歴させることにより平均粒径10μmのホウ素添加LiNiO 2粉末を合成した。 It was synthesized boronizing LiNiO 2 powder having an average particle size of 10μm by history heated state of such two stages. 得られた生成物をオージェ電子分光法により測定した。 The resulting product was measured by Auger electron spectroscopy. その結果、実施例1と同様にLiNiO 2粉末表面においてホウ素濃度が表面から0.5μm以上の内部に比較して高い、厚さ0.1〜0.5μmの高濃度表面層が形成されていることが確認された。 As a result, the boron concentration is higher than the surface on the inside of the above 0.5μm in the same manner as LiNiO 2 powder surface as in Example 1, is a high concentration surface layer of thickness 0.1~0.5μm is formed it has been confirmed. さらに、得られたLiNiO 2粉末のa軸長さ、c軸長さおよび比表面積を下記表3に示す。 Further shows the resulting LiNiO 2 powder a-axis length and c-axis length and specific surface area in the following Table 3.

【0044】得られた高濃度層で表面が覆われたLiN The resulting surface in the high concentration layer is covered LiN
iO 2粉末を正極活物質として用いた以外、実施例1と同様で前述した図1に示す円筒形非水溶媒二次電池を組み立てた。 except for using iO 2 powder as the positive electrode active material, it was assembled similar cylindrical non-aqueous solvent secondary battery shown in FIG. 1 described above in Example 1.

【0045】(実施例3)水酸化ニッケル粉末[Ni [0045] (Example 3) nickel hydroxide powder [Ni
(OH) 2 ]と水酸化リチウム(LiOH)と水酸化アルミニウム[Al(OH) 3 ]とをLi:Ni:Alのモル比が1:1:0.05になるように配合し、乳鉢にて十分に混合した後、酸素気流中、300℃の温度で1 (OH) 2] to lithium hydroxide (LiOH) and aluminum hydroxide [Al (OH) 3] Li : Ni: Al molar ratio of 1: 1: formulated to be 0.05, the mortar after thorough mixing Te, a stream of oxygen, 1 at a temperature of 300 ° C.
時間保持し、700℃の温度で5時間熱処理を行った。 And retention time was subjected to 5 hours heat treatment at a temperature of 700 ° C..
このような二段階の加熱状態を履歴させることにより平均粒径10μmのアルミニウム添加LiNiO 2粉末を合成した。 Was synthesized aluminum added LiNiO 2 powder having an average particle size of 10μm by history heated state of such two stages. 得られた生成物をオージェ電子分光法により測定した。 The resulting product was measured by Auger electron spectroscopy. その結果、LiNiO 2粉末表面においてアルミニウム濃度が表面から0.5μm以上の内部に比較して高い、厚さ0.1〜0.5μmの高濃度層が形成されていることが確認された。 As a result, higher than the surface on the inside of the above 0.5μm aluminum concentration in LiNiO 2 powder surface, it was confirmed that high concentration layer with a thickness of 0.1~0.5μm is formed. また、前記LiNiO 2粉末の表面から深さ方向に亘る添加元素(アルミニウム) Further, the LiNiO 2 added elements from the powder surface of the over the depth direction (aluminum)
のニッケル原子に対する比率を測定したところ、図2の特性線Bに示すように表面ほどアルミニウムの濃度が高いことがわかった。 Measurement of the ratio of nickel atoms was found to have high concentrations of aluminum as the surface as shown by a characteristic line B in FIG. さらに、得られたLiNiO 2粉末のa軸長さ、c軸長さおよび比表面積を下記表3に示す。 Further shows the resulting LiNiO 2 powder a-axis length and c-axis length and specific surface area in the following Table 3.

【0046】得られた高濃度層で表面が覆われたLiN The resulting surface in the high concentration layer is covered LiN
iO 2粉末を正極活物質として用いた以外、実施例1と同様で前述した図1に示す円筒形非水溶媒二次電池を組み立てた。 except for using iO 2 powder as the positive electrode active material, it was assembled similar cylindrical non-aqueous solvent secondary battery shown in FIG. 1 described above in Example 1.

【0047】(実施例4)水酸化ニッケル粉末[Ni [0047] (Example 4) Nickel hydroxide powder [Ni
(OH) 2 ]と水酸化リチウム(LiOH)と臭化ケイ素(Si 2 Br 5 )とをLi:Ni:Siのモル比が1:1:0.05になるように配合し、乳鉢にて十分に混合した後、酸素気流中、240℃の温度で1時間保持し、700℃の温度で5時間熱処理を行った。 (OH) 2] and lithium hydroxide (LiOH) and silicon bromide (Si 2 Br 5) Li: Ni: Si molar ratio of 1: 1: formulated to be 0.05, a mortar after thorough mixing, in an oxygen stream, and held 1 hour at a temperature of 240 ° C., it was subjected to 5 hours heat treatment at a temperature of 700 ° C.. このような二段階の加熱状態を履歴させることにより平均粒径1 The average particle size of 1 by history heated state of such two-step
0μmのケイ素添加LiNiO 2粉末を合成した。 It was synthesized silicon-doped LiNiO 2 powder 0 .mu.m. 得られた生成物をオージェ電子分光法により測定した。 The resulting product was measured by Auger electron spectroscopy. その結果、LiNiO 2粉末表面においてケイ素濃度が表面から0.5μm以上の内部に比較して高い、厚さ0.1 As a result, the silicon concentration in LiNiO 2 powder surface is high compared to the inside from the surface 0.5μm or more, 0.1 thickness
〜0.5μmの高濃度層が形成されていることが確認された。 It was confirmed that a high concentration layer of ~0.5μm is formed. さらに、得られたLiNiO 2粉末のa軸長さ、 Further, the obtained LiNiO 2 powder a-axis length,
c軸長さおよび比表面積を下記表3に示す。 The c-axis length and specific surface area shown in Table 3 below.

【0048】得られた高濃度層で表面が覆われたLiN The resulting surface in the high concentration layer is covered LiN
iO 2粉末を正極活物質として用いた以外、実施例1と同様で前述した図1に示す円筒形非水溶媒二次電池を組み立てた。 except for using iO 2 powder as the positive electrode active material, it was assembled similar cylindrical non-aqueous solvent secondary battery shown in FIG. 1 described above in Example 1.

【0049】(実施例5)水酸化ニッケル粉末[Ni [0049] (Example 5) Nickel hydroxide powder [Ni
(OH) 2 ]と水酸化リチウム(LiOH)とリン酸リチウム(Li 3 PO 4 )とをLi:Ni:Pのモル比が1:1:0.05になるように配合し、乳鉢にて十分に混合した後、酸素気流中、100〜200℃の温度で1 (OH) 2] and lithium hydroxide (LiOH) and lithium phosphate (Li 3 PO 4) Li: Ni: P molar ratio of 1: 1: formulated to be 0.05, a mortar after thorough mixing, a stream of oxygen, 1 at a temperature of 100 to 200 ° C.
時間保持し、700℃の温度で5時間熱処理を行った。 And retention time was subjected to 5 hours heat treatment at a temperature of 700 ° C..
このような二段階の加熱状態を履歴させることにより平均粒径10μmのリン添加LiNiO 2粉末を合成した。 It was synthesized phosphorus-doped LiNiO 2 powder having an average particle size of 10μm by history heated state of such two stages. 得られた生成物をオージェ電子分光法により測定した。 The resulting product was measured by Auger electron spectroscopy. その結果、LiNiO 2粉末表面においてリン濃度が表面から0.5μm以上の内部に比較して高い、厚さ0.1〜0.5μmの高濃度層が形成されていることが確認された。 As a result, the phosphorus concentration is higher than the surface on the inside of the above 0.5μm in LiNiO 2 powder surface, it was confirmed that high concentration layer with a thickness of 0.1~0.5μm is formed. さらに、得られたLiNiO 2粉末のa軸長さ、c軸長さおよび比表面積を下記表3に示す。 Further shows the resulting LiNiO 2 powder a-axis length and c-axis length and specific surface area in the following Table 3.

【0050】得られた高濃度層で表面が覆われたLiN The resulting surface in the high concentration layer is covered LiN
iO 2粉末を正極活物質として用いた以外、実施例1と同様で前述した図1に示す円筒形非水溶媒二次電池を組み立てた。 except for using iO 2 powder as the positive electrode active material, it was assembled similar cylindrical non-aqueous solvent secondary battery shown in FIG. 1 described above in Example 1.

【0051】(実施例6)水酸化ニッケル粉末[Ni [0051] (Example 6) nickel hydroxide powder [Ni
(OH) 2 ]と水酸化リチウム(LiOH)と硫酸リチウム(Li 2 SO 4・H 2 O)とをLi:Ni:Sのモル比が1:1:0.05になるように配合し、乳鉢にて十分に混合した後、酸素気流中、450〜500℃の温度で1時間保持し、700℃の温度で5時間熱処理を行った。 (OH) 2] and lithium hydroxide (LiOH) and lithium sulfate (Li 2 SO 4 · H 2 O) Li: Ni: molar ratio of S is 1: 1: formulated to be 0.05, after thorough mixing in a mortar, in an oxygen stream, and held 1 hour at a temperature of 450 to 500 ° C., was subjected to 5 hours heat treatment at a temperature of 700 ° C.. このような二段階の加熱状態を履歴させることにより平均粒径10μmの硫黄添加LiNiO 2粉末を合成した。 Was synthesized sulfur addition LiNiO 2 powder having an average particle size of 10μm by history heated state of such two stages. 得られた生成物をオージェ電子分光法により測定した。 The resulting product was measured by Auger electron spectroscopy. その結果、LiNiO 2粉末表面において硫黄濃度が表面から0.5μm以上の内部に比較して高い、 As a result, the sulfur concentration is higher than the surface on the inside of the above 0.5μm in LiNiO 2 powder surface,
厚さ0.1〜0.5μmの高濃度層が形成されていることが確認された。 The high concentration layer with a thickness of 0.1~0.5μm is formed was confirmed. さらに、得られたLiNiO 2粉末のa軸長さ、c軸長さおよび比表面積を下記表3に示す。 Further shows the resulting LiNiO 2 powder a-axis length and c-axis length and specific surface area in the following Table 3.

【0052】得られた高濃度層で表面が覆われたLiN [0052] The resulting surface in the high concentration layer is covered LiN
iO 2粉末を正極活物質として用いた以外、実施例1と同様で前述した図1に示す円筒形非水溶媒二次電池を組み立てた。 except for using iO 2 powder as the positive electrode active material, it was assembled similar cylindrical non-aqueous solvent secondary battery shown in FIG. 1 described above in Example 1.

【0053】(実施例7)LiNiO 2粉末と硝酸マンガン[Mn(NO 32 ]とをMn:Niのモル比が1:20になるように配合し、乳鉢にて十分に混合した後、酸素気流中、250〜400℃の温度で1時間熱処理を行った。 [0053] (Example 7) LiNiO 2 powder and manganese nitrate [Mn (NO 3) 2] and Mn: molar ratio of Ni is blended so 1:20, after thorough mixing in a mortar, oxygen stream was conducted for 1 hour heat treatment at a temperature of 250 to 400 ° C.. 得られた生成物をオージェ電子分光法により測定した。 The resulting product was measured by Auger electron spectroscopy. その結果、平均粒径10μmのLiNiO LiNiO of As a result, the average particle size 10μm
2粉末表面においてマンガン濃度が表面から0.5μm 0.5μm manganese concentration from the surface in 2 powder surface
以上の内部に比較して高い、厚さ0.1〜0.5μmの高濃度層が形成されていることが確認された。 Higher than in the interior of the above, it was confirmed that high concentration layer with a thickness of 0.1~0.5μm is formed. さらに、 further,
得られたLiNiO 2粉末のa軸長さ、c軸長さおよび比表面積を下記表3に示す。 The obtained LiNiO 2 powder a-axis length and c-axis length and specific surface area shown in Table 3 below.

【0054】得られた高濃度層で表面が覆われたLiN [0054] The resulting surface in the high concentration layer is covered LiN
iO 2粉末を正極活物質として用いた以外、実施例1と同様で前述した図1に示す円筒形非水溶媒二次電池を組み立てた。 except for using iO 2 powder as the positive electrode active material, it was assembled similar cylindrical non-aqueous solvent secondary battery shown in FIG. 1 described above in Example 1.

【0055】(実施例8)水酸化ニッケル粉末[Ni [0055] (Example 8) nickel hydroxide powder [Ni
(OH) 2 ]と水酸化リチウム(LiOH)と水酸化コバルト[Co(OH) 2 ]とをLi:Ni:Coのモル比が1:1:0.05になるように配合し、乳鉢にて十分に混合した後、酸素気流中、700℃の温度で1時間保持し、800〜900℃の温度で5時間熱処理を行った。 (OH) 2] to lithium hydroxide (LiOH) and cobalt hydroxide [Co (OH) 2] Li : Ni: molar ratio of Co is 1: 1: formulated to be 0.05, the mortar after thorough mixing Te, a stream of oxygen, and held 1 hour at a temperature of 700 ° C., it was subjected to 5 hours heat treatment at a temperature of 800 to 900 ° C.. このような二段階の加熱状態を履歴させることにより平均粒径 μmのコバルト添加LiNiO 2粉末を合成した。 Was synthesized cobalt added LiNiO 2 powder having an average particle size of μm by history heated state of such two stages. 得られた生成物をオージェ電子分光法により測定した。 The resulting product was measured by Auger electron spectroscopy. その結果、LiNiO 2粉末表面においてコバルト濃度が表面から0.5μm以上の内部に比較して高い、厚さ0.1〜0.5μmの高濃度層が形成されていることが確認された。 As a result, the cobalt concentration is higher than the surface on the inside of the above 0.5μm in LiNiO 2 powder surface, it was confirmed that high concentration layer with a thickness of 0.1~0.5μm is formed. さらに、得られたLiNiO 2 In addition, the obtained LiNiO 2
粉末のa軸長さ、c軸長さおよび比表面積を下記表3に示す。 Powder a-axis length and c-axis length and specific surface area shown in Table 3 below.

【0056】得られた高濃度層で表面が覆われたLiN [0056] The resulting surface in the high concentration layer is covered LiN
iO 2粉末を正極活物質として用いた以外、実施例1と同様で前述した図1に示す円筒形非水溶媒二次電池を組み立てた。 except for using iO 2 powder as the positive electrode active material, it was assembled similar cylindrical non-aqueous solvent secondary battery shown in FIG. 1 described above in Example 1.

【0057】(実施例9)水酸化ニッケル粉末[Ni [0057] (Example 9) nickel hydroxide powder [Ni
(OH) 2 ]と水酸化リチウム(LiOH)と水酸化鉄[Fe(OH) 3 ]とをLi:Ni:Feのモル比が1:1:0.05になるように配合し、乳鉢にて十分に混合した後、酸素気流中、500℃の温度で1時間保持し、700℃の温度で5時間熱処理を行った。 (OH) 2] to lithium hydroxide (LiOH) and iron hydroxide [Fe (OH) 3] Li : Ni: the molar ratio of Fe 1: 1: formulated to be 0.05, the mortar after thorough mixing Te, a stream of oxygen, and held 1 hour at a temperature of 500 ° C., it was subjected to 5 hours heat treatment at a temperature of 700 ° C.. このような二段階の加熱状態を履歴させることにより平均粒径1 The average particle size of 1 by history heated state of such two-step
0μmの鉄添加LiNiO 2粉末を合成した。 Was synthesized iron added LiNiO 2 powder 0 .mu.m. 得られた生成物をオージェ電子分光法により測定した。 The resulting product was measured by Auger electron spectroscopy. その結果、LiNiO 2粉末表面において鉄濃度が表面から0.5μm以上の内部に比較して高い、厚さ0.1〜 As a result, the iron concentration in LiNiO 2 powder surface is high compared to the inside from the surface 0.5μm or more, 0.1 thickness
0.5μmの高濃度層が形成されていることが確認された。 It was confirmed that a high concentration layer of 0.5μm is formed. また、前記LiNiO 2粉末の表面から深さ方向に亘る添加元素(鉄)のニッケル原子に対する比率を測定したところ、図2の特性線Cに示すように表面ほど鉄の濃度が高いことがわかった。 Further, the LiNiO 2 where the additive element ranging from powder surface in the depth direction the ratio of nickel atoms (iron) was measured, it was found that high concentrations of iron as the surface as shown by the characteristic line C in FIG. 2 . さらに、得られたLiNi In addition, the obtained LiNi
2粉末のa軸長さ、c軸長さおよび比表面積を下記表3に示す。 O 2 powder a-axis length and c-axis length and specific surface area shown in Table 3 below.

【0058】得られた高濃度層で表面が覆われたLiN [0058] The resulting surface in the high concentration layer is covered LiN
iO 2粉末を正極活物質として用いた以外、実施例1と同様で前述した図1に示す円筒形非水溶媒二次電池を組み立てた。 except for using iO 2 powder as the positive electrode active material, it was assembled similar cylindrical non-aqueous solvent secondary battery shown in FIG. 1 described above in Example 1.

【0059】(実施例10)水酸化ニッケル粉末[Ni [0059] (Example 10) the nickel hydroxide powder [Ni
(OH) 2 ]と水酸化リチウム(LiOH)と水酸化亜鉛[Zn(OH) 2 ]とをLi:Ni:Znのモル比が1:1:0.05になるように配合し、乳鉢にて十分に混合した後、酸素気流中、100〜200℃の温度で1 (OH) 2] to lithium hydroxide (LiOH) and zinc hydroxide [Zn (OH) 2] Li : Ni: the molar ratio of Zn is 1: 1: formulated to be 0.05, the mortar after thorough mixing Te, a stream of oxygen, 1 at a temperature of 100 to 200 ° C.
時間保持し、700℃の温度で5時間熱処理を行った。 And retention time was subjected to 5 hours heat treatment at a temperature of 700 ° C..
このような二段階の加熱状態を履歴させることにより平均粒径10μmの亜鉛添加LiNiO 2粉末を合成した。 Was synthesized zinc added LiNiO 2 powder having an average particle size of 10μm by history heated state of such two stages. 得られた生成物をオージェ電子分光法により測定した。 The resulting product was measured by Auger electron spectroscopy. その結果、LiNiO 2粉末表面において亜鉛濃度が表面から0.5μm以上の内部に比較して高い、厚さ0.1〜0.5μmの高濃度層が形成されていることが確認された。 As a result, the zinc concentration is higher than the surface on the inside of the above 0.5μm in LiNiO 2 powder surface, it was confirmed that high concentration layer with a thickness of 0.1~0.5μm is formed. さらに、得られたLiNiO 2粉末のa軸長さ、c軸長さおよび比表面積を下記表3に示す。 Further shows the resulting LiNiO 2 powder a-axis length and c-axis length and specific surface area in the following Table 3.

【0060】得られた高濃度層で表面が覆われたLiN [0060] The resulting surface in the high concentration layer is covered LiN
iO 2粉末を正極活物質として用いた以外、実施例1と同様で前述した図1に示す円筒形非水溶媒二次電池を組み立てた。 except for using iO 2 powder as the positive electrode active material, it was assembled similar cylindrical non-aqueous solvent secondary battery shown in FIG. 1 described above in Example 1.

【0061】(実施例11)水酸化ニッケル粉末[Ni [0061] (Example 11) the nickel hydroxide powder [Ni
(OH) 2 ]と水酸化リチウム(LiOH)と硫酸ガリウム[Ga 2 (SO 43 ]とをLi:Ni:Gaのモル比が1:1:0.05になるように配合し、乳鉢にて十分に混合した後、酸素気流中、500〜550℃の温度で1時間保持し、700℃の温度で5時間熱処理を行った。 (OH) 2] and lithium hydroxide (LiOH) and gallium sulfate [Ga 2 (SO 4) 3 ] and the molar ratio of Li: Ni: Ga of 1: 1: formulated to be 0.05, mortar after thorough mixing in, in an oxygen stream, and held 1 hour at a temperature of 500-550 ° C., it was subjected to 5 hours heat treatment at a temperature of 700 ° C.. このような二段階の加熱状態を履歴させることにより平均粒径10μmのガリウム添加LiNiO 2粉末を合成した。 Was synthesized with gallium added LiNiO 2 powder having an average particle size of 10μm by history heated state of such two stages. 得られた生成物をオージェ電子分光法により測定した。 The resulting product was measured by Auger electron spectroscopy. その結果、LiNiO 2粉末表面においてガリウム濃度が表面から0.5μm以上の内部に比較して高い、厚さ0.1〜0.5μmの高濃度層が形成されていることが確認された。 As a result, gallium concentration is high as compared to the inside from the surface 0.5μm or more in LiNiO 2 powder surface, it was confirmed that high concentration layer with a thickness of 0.1~0.5μm is formed. さらに、得られたLiNiO In addition, the obtained LiNiO
2粉末のa軸長さ、c軸長さおよび比表面積を下記表3 2 powder a-axis length, the following Table 3 the c-axis length and specific surface area
に示す。 To show.

【0062】得られた高濃度層で表面が覆われたLiN [0062] The resulting surface in the high concentration layer is covered LiN
iO 2粉末を正極活物質として用いた以外、実施例1と同様で前述した図1に示す円筒形非水溶媒二次電池を組み立てた。 except for using iO 2 powder as the positive electrode active material, it was assembled similar cylindrical non-aqueous solvent secondary battery shown in FIG. 1 described above in Example 1.

【0063】(実施例12)水酸化ニッケル粉末[Ni [0063] (Example 12) the nickel hydroxide powder [Ni
(OH) 2 ]と水酸化リチウム(LiOH)とホウ酸リチウム(Li 247 )と水酸化アルミニウム[Al (OH) 2] and lithium (LiOH) and lithium borate hydroxide (Li 2 B 4 O 7) and aluminum hydroxide [Al
(OH) 3 ]とをLiOH:Ni(OH) 2 :Li 2 (OH) 3] and the LiOH: Ni (OH) 2: Li 2 B
47 :Al(OH) 3のモル比が1:1:0.02: 4 O 7: molar ratio of Al (OH) 3 1: 1: 0.02:
0.03になるように配合し、乳鉢にて十分に混合した後、酸素気流中、300〜480℃の温度で1時間保持し、700℃の温度で5時間熱処理を行った。 Formulated to be 0.03, were mixed thoroughly in a mortar, in an oxygen stream, and held 1 hour at a temperature of three hundred to four hundred eighty ° C., it was subjected to 5 hours heat treatment at a temperature of 700 ° C.. このような二段階の加熱状態を履歴させることにより平均粒径1 The average particle size of 1 by history heated state of such two-step
0μmのホウ素・アルミニウム添加LiNiO 2粉末を合成した。 Was synthesized boron-aluminum added LiNiO 2 powder 0 .mu.m. 得られた生成物をオージェ電子分光法により測定した。 The resulting product was measured by Auger electron spectroscopy. その結果、LiNiO 2粉末表面においてホウ素濃度およびアルミニウム濃度が表面から0.5μm 0.5μm result, boron concentration and aluminum concentration from the surface in LiNiO 2 powder surface
以上の内部に比較して高い、厚さ0.1〜0.5μmの高濃度層が形成されていることが確認された。 Higher than in the interior of the above, it was confirmed that high concentration layer with a thickness of 0.1~0.5μm is formed. また、前記LiNiO 2粉末の表面から深さ方向に亘る添加元素(ホウ素およびアルミニウム)のニッケル原子に対する比率を測定したところ、図2の特性線Dに示すように表面ほどホウ素およびアルミニウムの濃度が高いことがわかった。 The measured ratio of nickel atoms of the LiNiO 2 added elements from the powder surface of the over the depth direction (boron and aluminum), a high concentration of boron and aluminum as the surface as shown by the characteristic line D in FIG. 2 I understand. さらに、得られたLiNiO 2粉末のa軸長さ、c軸長さおよび比表面積を下記表3に示す。 Further shows the resulting LiNiO 2 powder a-axis length and c-axis length and specific surface area in the following Table 3.

【0064】得られた高濃度層で表面が覆われたLiN [0064] The resulting surface in the high concentration layer is covered LiN
iO 2粉末を正極活物質として用いた以外、実施例1と同様で前述した図1に示す円筒形非水溶媒二次電池を組み立てた。 except for using iO 2 powder as the positive electrode active material, it was assembled similar cylindrical non-aqueous solvent secondary battery shown in FIG. 1 described above in Example 1.

【0065】(実施例13)水酸化ニッケル粉末[Ni [0065] (Example 13) the nickel hydroxide powder [Ni
(OH) 2 ]と水酸化リチウム(LiOH)と水酸化アルミニウム[Al(OH) 3 ]と水酸化コバルト[Co (OH) 2] and lithium (LiOH) and aluminum hydroxide [Al (OH) 3] and cobalt hydroxide [Co
(OH) 2 ]とをLiOH:Ni(OH) 2 :Al(O (OH) 2] and the LiOH: Ni (OH) 2: Al (O
H) 3 :Co(OH) 2のモル比が1:1:0.02: H) 3: the molar ratio of Co (OH) 2 is 1: 1: 0.02:
0.03になるように配合し、乳鉢にて十分に混合した後、酸素気流中、300℃の温度で1時間保持し、70 Formulated to be 0.03, it was mixed thoroughly in a mortar, in an oxygen stream, and held 1 hour at a temperature of 300 ° C., 70
0℃の温度で5時間熱処理を行った。 5 hours heat treatment was carried out at a temperature of 0 ℃. このような二段階の加熱状態を履歴させることにより平均粒径10μmのアルミニウム・コバルト添加LiNiO 2粉末を合成した。 Was synthesized aluminum-cobalt added LiNiO 2 powder having an average particle size of 10μm by history heated state of such two stages. 得られた生成物をオージェ電子分光法により測定した。 The resulting product was measured by Auger electron spectroscopy. その結果、LiNiO 2粉末表面においてアルミニウム濃度およびコバルト濃度が表面から0.5μm以上の内部に比較して高い、厚さ0.1〜0.5μmの高濃度層が形成されていることが確認された。 As a result, the aluminum concentration, and cobalt concentration is high as compared to the inside from the surface 0.5μm or more in LiNiO 2 powder surface, it was confirmed that high concentration layer with a thickness of 0.1~0.5μm is formed It was. さらに、得られたLiNiO 2粉末のa軸長さ、c軸長さおよび比表面積を下記表3に示す。 Further shows the resulting LiNiO 2 powder a-axis length and c-axis length and specific surface area in the following Table 3.

【0066】得られた高濃度層で表面が覆われたLiN [0066] The resulting surface in the high concentration layer is covered LiN
iO 2粉末を正極活物質として用いた以外、実施例1と同様で前述した図1に示す円筒形非水溶媒二次電池を組み立てた。 except for using iO 2 powder as the positive electrode active material, it was assembled similar cylindrical non-aqueous solvent secondary battery shown in FIG. 1 described above in Example 1.

【0067】(実施例14)水酸化ニッケル粉末[Ni [0067] (Example 14) the nickel hydroxide powder [Ni
(OH) 2 ]と水酸化リチウム(LiOH)と水酸化アルミニウム[Al(OH) 3 ]と水酸化鉄[Fe(O (OH) 2] and lithium hydroxide (LiOH) and aluminum hydroxide [Al (OH) 3] with iron hydroxide [Fe (O
H) 3 ]とをLi:Ni:Al:Feのモル比が1: H) 3] and Li: Ni: Al: molar ratio of Fe 1:
1:0.05になるように配合し、乳鉢にて十分に混合した後、酸素気流中、100〜200℃の温度で1時間保持し、700℃の温度で5時間熱処理を行った。 1: formulated to be 0.05, it was mixed thoroughly in a mortar, in an oxygen stream, and held 1 hour at a temperature of 100 to 200 ° C., was subjected to 5 hours heat treatment at a temperature of 700 ° C.. このような二段階の加熱状態を履歴させることにより平均粒径10μmのアルミニウム・鉄添加LiNiO 2粉末を合成した。 Was synthesized aluminum, iron added LiNiO 2 powder having an average particle size of 10μm by history heated state of such two stages. 得られた生成物をオージェ電子分光法により測定した。 The resulting product was measured by Auger electron spectroscopy. その結果、LiNiO 2粉末表面においてアルミニウム濃度および鉄濃度が表面から0.5μm以上の内部に比較して高い、厚さ0.1〜0.5μmの高濃度層が形成されていることが確認された。 As a result, the aluminum concentration and iron concentration is high as compared to the inside from the surface 0.5μm or more in LiNiO 2 powder surface, it was confirmed that high concentration layer with a thickness of 0.1~0.5μm is formed It was. さらに、得られたLiNiO 2粉末のa軸長さ、c軸長さおよび比表面積を下記表3に示す。 Further shows the resulting LiNiO 2 powder a-axis length and c-axis length and specific surface area in the following Table 3.

【0068】得られた高濃度層で表面が覆われたLiN [0068] The resulting surface in the high concentration layer is covered LiN
iO 2粉末を正極活物質として用いた以外、実施例1と同様で前述した図1に示す円筒形非水溶媒二次電池を組み立てた。 except for using iO 2 powder as the positive electrode active material, it was assembled similar cylindrical non-aqueous solvent secondary battery shown in FIG. 1 described above in Example 1.

【0069】(実施例15)水酸化ニッケル粉末[Ni [0069] (Example 15) the nickel hydroxide powder [Ni
(OH) 2 ]と水酸化リチウム(LiOH・H 2 O)と水酸化アルミニウム[Al(OH) 3 ]と硝酸マンガン[Mn(NO 32 ]とをLi:Ni:Al:Mnのモル比が1:1:0.02:0.03になるように配合し、乳鉢にて十分に混合した後、酸素気流中、300℃ (OH) 2] and lithium hydroxide (LiOH · H 2 O) and aluminum hydroxide [Al (OH) 3] and manganese nitrate [Mn (NO 3) 2] and Li: Ni: Al: molar ratio of Mn There 1: 1: 0.02: formulated to be 0.03, were mixed thoroughly in a mortar, a stream of oxygen, 300 ° C.
の温度で1時間保持し、400〜500℃の温度で1時間保持し、さらに700℃の温度で5時間熱処理を行った。 And held at the temperature for 1 hour, and held for 1 hour at a temperature of 400 to 500 ° C., it was further 5 hours heat treatment at a temperature of 700 ° C.. このような三段階の加熱状態を履歴させることにより平均粒径10μmのアルミニウム・ママンガン添加L Aluminum Mamangan added L having an average particle diameter of 10μm by history heated state of such a three-stage
iNiO 2粉末を合成した。 It was synthesized iNiO 2 powder. 得られた生成物をオージェ電子分光法により測定した。 The resulting product was measured by Auger electron spectroscopy. その結果、LiNiO 2粉末表面においてアルミニウム濃度およびマンガン濃度が表面から0.5μm以上の内部に比較して高い、厚さ0.1〜0.5μmの高濃度層が形成されていることが確認された。 As a result, the aluminum concentration and manganese concentration is high as compared to the inside from the surface 0.5μm or more in LiNiO 2 powder surface, it was confirmed that high concentration layer with a thickness of 0.1~0.5μm is formed It was. さらに、得られたLiNiO 2粉末のa軸長さ、c軸長さおよび比表面積を下記表3に示す。 Further shows the resulting LiNiO 2 powder a-axis length and c-axis length and specific surface area in the following Table 3.

【0070】得られた高濃度層で表面が覆われたLiN [0070] The resulting surface in the high concentration layer is covered LiN
iO 2粉末を正極活物質として用いた以外、実施例1と同様で前述した図1に示す円筒形非水溶媒二次電池を組み立てた。 except for using iO 2 powder as the positive electrode active material, it was assembled similar cylindrical non-aqueous solvent secondary battery shown in FIG. 1 described above in Example 1.

【0071】(実施例16)水酸化ニッケル粉末[Ni [0071] (Example 16) the nickel hydroxide powder [Ni
(OH) 2 ]と水酸化リチウム(LiOH・H 2 O)と水酸化コバルト[Co(OH) 2 ]と水酸化鉄[Fe (OH) 2] and lithium hydroxide (LiOH · H 2 O) and cobalt hydroxide [Co (OH) 2] with iron hydroxide [Fe
(OH) 3 ]とをLi:Ni:Co:Feのモル比が1:1:0.02:0.03になるように配合し、乳鉢にて十分に混合した後、酸素気流中、500℃の温度で1時間保持し、700℃〜900℃の温度で5時間熱処理を行った。 (OH) 3] and the Li: Ni: Co: molar ratio of Fe 1: 1: 0.02: formulated to be 0.03, were mixed thoroughly in a mortar, a stream of oxygen, 500 and held 1 hour at a temperature of ° C., it was subjected to 5 hours heat treatment at a temperature of 700 ° C. to 900 ° C.. このような二段階の加熱状態を履歴させることにより平均粒径10μmの鉄・コバルト添加LiN Such two-stage average particle size 10μm iron-cobalt added LiN By heating state is history
iO 2粉末を合成した。 the iO 2 powder was synthesized. 得られた生成物をオージェ電子分光法により測定した。 The resulting product was measured by Auger electron spectroscopy. その結果、LiNiO 2粉末表面において鉄濃度およびコバルト濃度が表面から0.5 As a result, the iron concentration, and cobalt concentration surface in LiNiO 2 powder surface 0.5
μm以上の内部に比較して高い、厚さ0.1〜0.5μ Higher than in the interior of the above [mu] m, thickness 0.1~0.5μ
mの高濃度層が形成されていることが確認された。 It was confirmed that a high concentration layer of m are formed. さらに、得られたLiNiO 2粉末のa軸長さ、c軸長さおよび比表面積を下記表3に示す。 Further shows the resulting LiNiO 2 powder a-axis length and c-axis length and specific surface area in the following Table 3.

【0072】得られた高濃度層で表面が覆われたLiN [0072] The resulting surface in the high concentration layer is covered LiN
iO 2粉末を正極活物質として用いた以外、実施例1と同様で前述した図1に示す円筒形非水溶媒二次電池を組み立てた。 except for using iO 2 powder as the positive electrode active material, it was assembled similar cylindrical non-aqueous solvent secondary battery shown in FIG. 1 described above in Example 1.

【0073】(実施例17)LiNiO 2粉末水と硝酸マンガン[Mn(NO 32 ]と水酸化コバルト[Co [0073] (Example 17) LiNiO 2 powder water manganese nitrate [Mn (NO 3) 2] and cobalt hydroxide [Co
(OH) 2 ]とをMn:Co:Niのモル比が0.5: And (OH) 2] Mn: Co : the molar ratio of Ni is 0.5:
0.5:20になるように配合し、乳鉢にて十分に混合した後、酸素気流中、250〜500℃の温度で1時間保持し、700〜900℃の温度で5時間熱処理を行った。 0.5: formulated to be 20, after thorough mixing in a mortar, in an oxygen stream, and held 1 hour at a temperature of 250 to 500 ° C., was subjected to 5 hours heat treatment at a temperature of 700 to 900 ° C. . 得られた生成物をオージェ電子分光法により測定した。 The resulting product was measured by Auger electron spectroscopy. その結果、平均粒径10μmのLiNiO 2粉末表面においてマンガン濃度およびコバルト濃度が表面から0.5μm以上の内部に比較して高い、厚さ0.1〜 As a result, higher compared manganese concentration and cobalt concentrations in LiNiO 2 powder surface with an average particle size of 10μm surface inside the above 0.5 [mu] m, 0.1 to thickness
0.5μmの高濃度層が形成されていることが確認された。 It was confirmed that a high concentration layer of 0.5μm is formed. さらに、得られたLiNiO 2粉末のa軸長さ、c Further, the obtained LiNiO 2 powder a-axis length, c
軸長さおよび比表面積を下記表3に示す。 The axis length and specific surface area shown in Table 3 below.

【0074】得られた高濃度層で表面が覆われたLiN [0074] The resulting surface in the high concentration layer is covered LiN
iO 2粉末を正極活物質として用いた以外、実施例1と同様で前述した図1に示す円筒形非水溶媒二次電池を組み立てた。 except for using iO 2 powder as the positive electrode active material, it was assembled similar cylindrical non-aqueous solvent secondary battery shown in FIG. 1 described above in Example 1.

【0075】(実施例18)水酸化ニッケル粉末[Ni [0075] (Example 18) the nickel hydroxide powder [Ni
(OH) 2 ]と水酸化リチウム(LiOH・H 2 O)と水酸化アルミニウム[Al(OH) 3 ]と硝酸マンガン[Mn(NO 32 ]とをLi:Ni:Co:Al:M (OH) 2] and lithium hydroxide (LiOH · H 2 O) and aluminum hydroxide [Al (OH) 3] and manganese nitrate [Mn (NO 3) 2] and Li: Ni: Co: Al: M
nのモル比が1:1:0.02:0.02になるように配合し、乳鉢にて十分に混合した後、酸素気流中、30 n molar ratio of 1: 1: 0.02: formulated to be 0.02, were mixed thoroughly in a mortar, a stream of oxygen, 30
0℃の温度で1時間保持し、700℃〜900℃の温度で5時間熱処理を行った。 And held 1 hour at a temperature of 0 ° C., it was subjected to 5 hours heat treatment at a temperature of 700 ° C. to 900 ° C.. このような二段階の加熱状態を履歴させることにより平均粒径10μmのアルミニウム・マンガン添加LiNiO 2粉末を合成した。 Was synthesized aluminum manganese added LiNiO 2 powder having an average particle size of 10μm by history heated state of such two stages. 得られた生成物をオージェ電子分光法により測定した。 The resulting product was measured by Auger electron spectroscopy. その結果、LiNiO 2粉末表面においてアルミニウム濃度およびマンガン濃度が表面から0.5μm以上の内部に比較して高い、厚さ0.1〜0.5μmの高濃度層が形成されていることが確認された。 As a result, the aluminum concentration and manganese concentration is high as compared to the inside from the surface 0.5μm or more in LiNiO 2 powder surface, it was confirmed that high concentration layer with a thickness of 0.1~0.5μm is formed It was. また、前記LiNiO 2 In addition, the LiNiO 2
粉末の表面から深さ方向に亘る添加元素(アルミニウムおよびマンガン)のニッケル原子に対する比率を測定したところ、図2の特性線Eに示すように表面ほどアルミニウムおよびマンガンの濃度が高いことがわかった。 Measurement of the ratio of nickel atoms of the additional element across the depth direction from the surface of the powder (aluminum and manganese), was found to have high concentrations of aluminum and manganese as the surface as shown by the characteristic line E in FIG. さらに、得られたLiNiO 2粉末のa軸長さ、c軸長さおよび比表面積を下記表3に示す。 Further shows the resulting LiNiO 2 powder a-axis length and c-axis length and specific surface area in the following Table 3.

【0076】得られた高濃度層で表面が覆われたLiN [0076] The resulting surface in the high concentration layer is covered LiN
iO 2粉末を正極活物質として用いた以外、実施例1と同様で前述した図1に示す円筒形非水溶媒二次電池を組み立てた。 except for using iO 2 powder as the positive electrode active material, it was assembled similar cylindrical non-aqueous solvent secondary battery shown in FIG. 1 described above in Example 1.

【0077】(実施例19、20)実施例2、3と同様にして合成したLiNiO 2粉末をそれぞれ空気中、室温で6か月間放置した。 [0077] Each air of LiNiO 2 powder was synthesized in the same manner (Example 19, 20) Example 2 was allowed to stand for 6 months at room temperature. これらのLiNiO 2粉末を正極活物質として用いた以外、実施例1と同様で前述した図1に示す2種の円筒形非水溶媒二次電池を組み立てた。 Except for using these LiNiO 2 powder as the positive electrode active material, it was assembled two cylindrical nonaqueous solvent secondary battery shown in FIG. 1 described above the same as in Example 1.

【0078】(比較例1)水酸化ニッケル粉末[Ni [0078] (Comparative Example 1) Nickel hydroxide powder [Ni
(OH) 2 ]と水酸化リチウム(LiOH)とをLi: (OH) 2] and lithium hydroxide (LiOH) and the Li:
Niのモル比が1:1になるように配合し、乳鉢にて十分に混合した後、酸素気流中、700℃の温度で5時間熱処理を行った。 The molar ratio of Ni is 1: blended at 1, after thorough mixing in a mortar, in an oxygen stream was conducted for 5 hours heat treatment at a temperature of 700 ° C.. 得られた生成物をX線回折法により測定した。 The resulting product was determined by X-ray diffraction method. その結果、LiNiO 2相が形成されていることが確認された。 As a result, it was confirmed that LiNiO 2 phase is formed. さらに、得られたLiNiO 2粉末のa軸長さ、c軸長さおよび比表面積を下記表3に示す。 Further shows the resulting LiNiO 2 powder a-axis length and c-axis length and specific surface area in the following Table 3.

【0079】得られたLiNiO 2粉末を正極活物質として用いた以外、実施例1と同様で前述した図1に示す円筒形非水溶媒二次電池を組み立てた。 [0079] except that LiNiO 2 powder obtained was used as a positive electrode active material, was assembled similar cylindrical non-aqueous solvent secondary battery shown in FIG. 1 described above in Example 1. (比較例2)比較例1と同様にして合成したLiNiO (Comparative Example 2) LiNiO synthesized in the same manner as in Comparative Example 1
2粉末を空気中、室温で6か月間放置した。 2 powder in air, allowed to stand for 6 months at room temperature. このLiN This LiN
iO 2粉末を正極活物質として用いた以外、実施例1と同様で前述した図1に示す円筒形非水溶媒二次電池を組み立てた。 except for using iO 2 powder as the positive electrode active material, it was assembled similar cylindrical non-aqueous solvent secondary battery shown in FIG. 1 described above in Example 1.

【0080】得られた実施例1〜18および比較例1の非水溶媒二次電池について、充電を4.1Vまで定電流400mAで行った後、さらに4.1Vの定電圧でトータル3時間行い、3.0Vまで400mAの電流で放電するまで充電し、3.0Vまで400mAの電流で放電する充放電を繰り返し行い、初期容量に対して80%低下した時のサイクル数を測定した。 [0080] The obtained non-aqueous solvent secondary batteries of Examples 1 to 18 and Comparative Example 1, after a constant current 400mA charged to 4.1V, further total 3 hours conducted at a constant voltage of 4.1V was charged until discharged at a current of 400mA until 3.0 V, repeatedly discharging charging and discharging at 400mA of current to 3.0 V, to measure the number of cycles when the 80% reduction relative to the initial capacity. その結果を下記表3 Table 3 below and the results
に示す。 To show.

【0081】 [0081]

【表3】 [Table 3] 前記表3から明らかなように実施例1〜18の非水溶媒二次電池は、比較例1の二次電池に比べてサイクル特性が優れていることが分かる。 Non-aqueous solvent secondary battery of Table 3 as apparent Examples 1-18, it is seen that excellent cycle characteristics as compared with the secondary batteries of Comparative Example 1.

【0082】又、実施例1〜3、19、20および比較例1、2の非水溶媒二次電池について、充電を4.1V [0082] Also, non-aqueous solvent secondary batteries of Examples 1~3,19,20 and Comparative Examples 1, 2, 4.1 V charging
まで定電流400mAで行った後、さらに4.1Vの定電圧でトータル3時間行い、3.0Vまで400mAの電流で放電するまで充電し、3.0Vまで400mAの電流で放電する充放電を繰り返し行って各電池の各サイクルでの放電容量をそれぞれ測定した。 After a constant current 400mA until further carried out for 3 hours total at a constant voltage of 4.1 V, charged to be discharged at a current of 400mA until 3.0V, repeatedly charged and discharged a discharge is 400mA of current to 3.0V carried by the discharge capacity at each cycle of each battery were measured. その結果を図4 Figure 4 the results
に示す。 To show.

【0083】図4から明らかなように、本発明の非水溶媒二次電池は実施例2、3で合成したLiNiO 2粉末を正極活物質として用いた場合と実施例19、20のように前記各LiNiO 2粉末をそれぞれ空気中、室温で6か月間放置したものを正極活物質として用いた場合でも充放電サイクルの進行に伴う放電容量の低下が抑えられ、良好な充放電サイクル特性を有すると共に高い保存性能を有することがわかる。 [0083] As is apparent from FIG. 4, the non-aqueous solvent secondary battery of the present invention is the as in Example 19 and 20 using LiNiO 2 powder synthesized in Example 2 and 3 as the positive electrode active material in air the LiNiO 2 powder, respectively, decrease in discharge capacity with the progress of charge-discharge cycles even with what was left for 6 months at room temperature as a positive electrode active material is suppressed, which has a good charge-discharge cycle characteristics it can be seen that has a high storage performance. これは、高濃度層で表面が覆われたLiNiO 2粉末は結晶構造が安定し、充放電サイクルによる結晶構造の変化が抑制され、かつ水分との反応性も抑制されたために充放電サイクル特性および保存性能が向上したものと考えられる。 This, LiNiO 2 powder whose surface is covered with the high concentration layer crystal structure is stable, is suppressed change in crystal structure due to charging and discharging cycle, and the charge-discharge cycle characteristics to be was suppressed reactivity with moisture and it is believed that storage performance is improved.

【0084】これに対し、比較例1の非水溶媒二次電池は充放電サイクルの進行に伴う放電容量の低下が著しく、さらに比較例1で合成したLiNiO 2粉末を空気中、室温で6か月間放置したものを正極活物質として用いた比較例2の二次電池では充放電サイクルの進行に伴う放電容量の低下がさらに顕著になり、保存性が劣ることがわかる。 [0084] In contrast, the non-aqueous solvent secondary battery of Comparative Example 1 is significantly decrease in discharge capacity with the progress of charge-discharge cycles, further LiNiO 2 powder in air synthesized in Comparative Example 1, or 6 at room temperature in the secondary battery of Comparative example 2 was used as the month left as the positive electrode active material decrease in discharge capacity with the progress of charge-discharge cycles becomes more remarkable, it can be seen that the storage stability is poor.

【0085】 [0085]

【発明の効果】以上説明したように、本発明によればエネルギー密度が大きく、充放電サイクル特性および保存特性の優れた非水溶媒二次電池を提供することができる。 As described in the foregoing, it is the energy density according to the present invention is large, provide excellent non-aqueous solvent secondary battery charge-discharge cycle characteristics and the storage characteristics.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明に係わる円筒形非水溶媒二次電池を示す部分断面図。 Partial cross-sectional view showing a cylindrical nonaqueous solvent secondary battery according to the present invention; FIG.

【図2】ホウ素添加量とLiNiO 2粉末の格子定数との関係を示す特性図。 [Figure 2] characteristic diagram showing the relationship between the lattice constant of the boron addition amount and LiNiO 2 powder.

【図3】実施例1、3、9、12、18で合成されたL [Figure 3] was synthesized in Example 1,3,9,12,18 L
iNiO 2粉末の表面から深さ方向に亘る添加元素のニッケル原子に対する比率を示す特性図。 characteristic diagram showing the ratio of nickel atoms of the additional element across the depth direction from INiO 2 powder surface.

【図4】実施例1〜3、19、20および比較例1、2 [4] Examples 1~3,19,20 and Comparative Examples 1 and 2
の非水溶媒二次電池における充放電サイクルと放電容量との関係を示す特性図。 Characteristic diagram showing the relation between charge-discharge cycle and the discharge capacity in the non-aqueous solvent secondary battery.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…容器、3…電極群、4…正極、5…セパレ―タ、6 1 ... container, 3 ... electrode group, 4 ... positive electrode, 5 ... separator - motor, 6
…負極、8…封口板、9…正極端子。 ... negative electrode, 8 ... sealing plate, 9 ... positive terminal.

Claims (3)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 リチウムもしくはリチウム合金からなるか、またはリチウムイオンを吸蔵・放出する化合物を含む負極と、LiNiO 2を主体とする正極活物質を含む正極と、非水溶媒に電解質を溶解した電解液とを備えた非水溶媒二次電池において、 前記LiNiO 2粉末は、少なくとも表面にLi以外のアルカリ金属、アルカリ土類金属、Ni以外の遷移金属、III 族元素、IV族元素、V族元素およびカルコゲンの群から選ばれる少なくとも1つの元素を含み、かつ表面が内部に比べて前記元素濃度の高い層で覆われていることを特徴とする非水溶媒二次電池。 [Claim 1] or a lithium or lithium alloy, or by dissolving a lithium ion and a negative electrode containing a compound capable of absorbing and desorbing, a positive electrode including a positive active material composed mainly of LiNiO 2, an electrolyte in a non-aqueous solvent electrolyte in non-aqueous solvent secondary battery and a liquid, the LiNiO 2 powder, an alkali metal other than Li at least on the surface, the alkaline earth metals, transition metals other than Ni, III group elements, IV group elements, V group element and at least one element comprises, and surface non-aqueous solvent secondary battery, characterized by being covered with a high layer of the element concentration than the interior selected from the group consisting of chalcogen.
  2. 【請求項2】 前記元素は、その電気陰性度をE M 、酸素の電気陰性度をE Oとした時、E OとE MのΔEの値がpauling の電気陰性度値を用いると、 0.5≦ΔE≦2.8 で表されることを特徴とする請求項1記載の非水溶媒二次電池。 Wherein said element has its electronegativity E M, when the electronegativity of oxygen was set to E O, the value of ΔE of E O and E M are used electronegativity value of Pauling, 0 non-aqueous solvent secondary battery according to claim 1, characterized by being represented by .5 ≦ ΔE ≦ 2.8.
  3. 【請求項3】 表面が前記元素濃度の高い層で覆われたLiNiO 2粉末は、比表面積が0.5〜2m 2 /gであることを特徴とする請求項1記載の非水溶媒二次電池。 3. LiNiO 2 powder whose surface is covered with high the element concentration layer, a non-aqueous solvent secondary of claim 1, wherein the specific surface area, characterized in that a 0.5 to 2 m 2 / g battery.
JP27751394A 1994-11-11 1994-11-11 A non-aqueous solvent secondary battery Expired - Lifetime JP3195175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27751394A JP3195175B2 (en) 1994-11-11 1994-11-11 A non-aqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27751394A JP3195175B2 (en) 1994-11-11 1994-11-11 A non-aqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JPH08138670A true true JPH08138670A (en) 1996-05-31
JP3195175B2 JP3195175B2 (en) 2001-08-06

Family

ID=17584650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27751394A Expired - Lifetime JP3195175B2 (en) 1994-11-11 1994-11-11 A non-aqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JP3195175B2 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196063A (en) * 1999-10-26 2001-07-19 Sumitomo Chem Co Ltd Non-aqueous secondary battery using the active material and this for a non-aqueous secondary battery
JP2003059489A (en) * 2001-08-09 2003-02-28 Toyota Motor Corp Positive active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and manufacturing method of positive active material for lithium secondary battery
JP2005251716A (en) * 2004-02-05 2005-09-15 Nichia Chem Ind Ltd Cathode active substance for nonaqueous electrolyte secondary battery, cathode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2005268017A (en) * 2004-03-18 2005-09-29 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US7018741B2 (en) 2002-02-15 2006-03-28 Seimi Chemical Co., Ltd. Particulate positive electrode active material for a lithium secondary cell
JP2006127932A (en) * 2004-10-29 2006-05-18 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery, and its manufacturing method
JP2006196433A (en) * 2004-12-13 2006-07-27 Matsushita Electric Ind Co Ltd Positive electrode activator, its manufacturing method and nonaqueous secondary battery
JP2008010434A (en) * 1996-08-12 2008-01-17 Toda Kogyo Corp Lithium/nickel/cobalt composite oxide, manufacturing method therefor, and cathode active material for secondary battery
JP2008016236A (en) * 2006-07-03 2008-01-24 Sony Corp Cathode active material and manufacturing method therefor, and nonaqueous electrolyte secondary battery
JP2008037749A (en) * 1996-08-12 2008-02-21 Toda Kogyo Corp Lithium nickel cobalt composite oxide, its manufacturing method and cathode active material for secondary battery
JP2008251434A (en) * 2007-03-30 2008-10-16 Sony Corp Positive electrode active material, positive electrode, and nonaqueous electrolyte battery
US7473493B2 (en) 2002-05-13 2009-01-06 Samsung Sdi Co., Ltd. Process of preparing active material for battery and active material for battery prepared therefrom
WO2009063613A1 (en) * 2007-11-12 2009-05-22 Toda Kogyo Corporation Li-ni-based composite oxide particle powder for rechargeable battery with nonaqueous elctrolyte, process for producing the powder, and rechargeable battery with nonaqueous electrolyte
JPWO2007072595A1 (en) * 2005-12-20 2009-05-28 パナソニック株式会社 Non-aqueous electrolyte secondary battery
US7541114B2 (en) 2002-03-01 2009-06-02 Panasonic Corporation Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP2009146739A (en) * 2007-12-14 2009-07-02 Sony Corp Manufacturing method of positive active material
JP2009152214A (en) * 2000-09-25 2009-07-09 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, and manufacturing method therefor
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7615313B2 (en) 2003-06-24 2009-11-10 Canon Kabushiki Kaisha Electrode material for lithium secondary battery including particles having central portion and surface portion, electrode structure and lithium secondary battery
JP2010044963A (en) * 2008-08-13 2010-02-25 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
US7713659B2 (en) 2001-06-14 2010-05-11 Samsung Sdi Co., Ltd. Active material for battery and battery having the same
US7722989B2 (en) 2003-11-07 2010-05-25 Panasonic Corporation Non-aqueous electrolyte secondary battery with a positive active material comprising primary particles and secondary particles made of the primary particles
US7816036B2 (en) 2001-09-13 2010-10-19 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
JP2011129498A (en) * 2009-11-18 2011-06-30 Sony Corp Positive electrode active material and nonaqueous electrolyte secondary battery
US8007941B2 (en) * 2000-10-09 2011-08-30 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
JP4837661B2 (en) * 2004-09-02 2011-12-14 エルジー・ケム・リミテッド Electrode active material and a manufacturing method thereof multicomponent oxide coating layer
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8187748B2 (en) 2004-12-24 2012-05-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
US8262747B2 (en) 2007-03-30 2012-09-11 Sony Corporation Cathode active material, cathode, nonaqueous electrolyte battery, and method for manufacturing cathode
JP2012204036A (en) * 2011-03-24 2012-10-22 Hitachi Maxell Energy Ltd Positive electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
WO2013037692A1 (en) 2011-09-13 2013-03-21 Solvay Specialty Polymers Italy S.P.A. Electrode-forming composition
JP5236940B2 (en) * 2005-12-20 2013-07-17 パナソニック株式会社 Non-aqueous electrolyte secondary battery
US8652577B2 (en) 2008-02-13 2014-02-18 Sony Corporation Method of manufacturing cathode active material
US8808920B2 (en) 2009-09-09 2014-08-19 Sony Corporation Positive electrode active material, positive electrode, nonaqueous electrolyte cell, and method of preparing positive electrode active material
US8911903B2 (en) 2006-07-03 2014-12-16 Sony Corporation Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery
US8951674B2 (en) 2004-12-24 2015-02-10 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
JP2015076336A (en) * 2013-10-11 2015-04-20 日立マクセル株式会社 Positive electrode material for nonaqueous electrolyte secondary batteries, method for manufacturing the same and nonaqueous electrolyte secondary battery
US9105926B2 (en) 2009-07-24 2015-08-11 Sony Corporation Positive electrode active material, positive electrode, and nonaqueous electrolyte cell
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1492180A4 (en) * 2002-03-28 2010-06-23 Mitsubishi Chem Corp Positive electrode material for lithium secondary cell and secondary cell using the same, and method for producing positive electrode material for lithium secondary cell
US7241532B2 (en) 2002-03-28 2007-07-10 Mitsubishi Chemical Corporation Positive-electrode material for lithium secondary battery, secondary battery employing the same, and process for producing positive-electrode material for lithium secondary battery
JP4655453B2 (en) * 2002-03-28 2011-03-23 三菱化学株式会社 Method for producing a cathode material for lithium secondary battery and a secondary battery and a positive electrode material for a lithium secondary battery using the same

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037749A (en) * 1996-08-12 2008-02-21 Toda Kogyo Corp Lithium nickel cobalt composite oxide, its manufacturing method and cathode active material for secondary battery
JP2008010434A (en) * 1996-08-12 2008-01-17 Toda Kogyo Corp Lithium/nickel/cobalt composite oxide, manufacturing method therefor, and cathode active material for secondary battery
JP2001196063A (en) * 1999-10-26 2001-07-19 Sumitomo Chem Co Ltd Non-aqueous secondary battery using the active material and this for a non-aqueous secondary battery
JP2009152214A (en) * 2000-09-25 2009-07-09 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, and manufacturing method therefor
US8007941B2 (en) * 2000-10-09 2011-08-30 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
US8034486B2 (en) 2000-10-09 2011-10-11 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
US7682747B2 (en) 2001-03-22 2010-03-23 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7718318B2 (en) 2001-03-22 2010-05-18 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7713659B2 (en) 2001-06-14 2010-05-11 Samsung Sdi Co., Ltd. Active material for battery and battery having the same
US8409752B2 (en) 2001-06-14 2013-04-02 Samsung Sdi Co., Ltd. Active material for battery and battery having the same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
JP2003059489A (en) * 2001-08-09 2003-02-28 Toyota Motor Corp Positive active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and manufacturing method of positive active material for lithium secondary battery
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US7816036B2 (en) 2001-09-13 2010-10-19 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7018741B2 (en) 2002-02-15 2006-03-28 Seimi Chemical Co., Ltd. Particulate positive electrode active material for a lithium secondary cell
US7541114B2 (en) 2002-03-01 2009-06-02 Panasonic Corporation Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US7473493B2 (en) 2002-05-13 2009-01-06 Samsung Sdi Co., Ltd. Process of preparing active material for battery and active material for battery prepared therefrom
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7615313B2 (en) 2003-06-24 2009-11-10 Canon Kabushiki Kaisha Electrode material for lithium secondary battery including particles having central portion and surface portion, electrode structure and lithium secondary battery
US7640150B2 (en) 2003-06-24 2009-12-29 Canon Kabushiki Kaisha Method of judging the propriety of a positive electrode active material
US7939200B2 (en) 2003-11-07 2011-05-10 Panasonic Corporation Non-aqueous electrolyte secondary battery
US7722989B2 (en) 2003-11-07 2010-05-25 Panasonic Corporation Non-aqueous electrolyte secondary battery with a positive active material comprising primary particles and secondary particles made of the primary particles
JP2005251716A (en) * 2004-02-05 2005-09-15 Nichia Chem Ind Ltd Cathode active substance for nonaqueous electrolyte secondary battery, cathode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2005268017A (en) * 2004-03-18 2005-09-29 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP4679064B2 (en) * 2004-03-18 2011-04-27 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP4837661B2 (en) * 2004-09-02 2011-12-14 エルジー・ケム・リミテッド Electrode active material and a manufacturing method thereof multicomponent oxide coating layer
JP2006127932A (en) * 2004-10-29 2006-05-18 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery, and its manufacturing method
JP4679112B2 (en) * 2004-10-29 2011-04-27 三洋電機株式会社 A nonaqueous electrolyte secondary battery and a manufacturing method thereof
JP2006196433A (en) * 2004-12-13 2006-07-27 Matsushita Electric Ind Co Ltd Positive electrode activator, its manufacturing method and nonaqueous secondary battery
US8951674B2 (en) 2004-12-24 2015-02-10 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
US8187748B2 (en) 2004-12-24 2012-05-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP5236940B2 (en) * 2005-12-20 2013-07-17 パナソニック株式会社 Non-aqueous electrolyte secondary battery
JPWO2007072595A1 (en) * 2005-12-20 2009-05-28 パナソニック株式会社 Non-aqueous electrolyte secondary battery
JP5236880B2 (en) * 2005-12-20 2013-07-17 パナソニック株式会社 Non-aqueous electrolyte secondary battery
US8911903B2 (en) 2006-07-03 2014-12-16 Sony Corporation Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery
JP2008016236A (en) * 2006-07-03 2008-01-24 Sony Corp Cathode active material and manufacturing method therefor, and nonaqueous electrolyte secondary battery
US8647772B2 (en) 2007-03-30 2014-02-11 Sony Corporation Cathode active material, cathode, and nonaqueous electrolyte battery
JP2008251434A (en) * 2007-03-30 2008-10-16 Sony Corp Positive electrode active material, positive electrode, and nonaqueous electrolyte battery
US8262747B2 (en) 2007-03-30 2012-09-11 Sony Corporation Cathode active material, cathode, nonaqueous electrolyte battery, and method for manufacturing cathode
US8546018B2 (en) 2007-11-12 2013-10-01 Toda Kogyo Corporation Li—Ni-based composite oxide particles for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
JP2010114088A (en) * 2007-11-12 2010-05-20 Toda Kogyo Corp Li-Ni SYSTEM COMPOSITE OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR MANUFACTURING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
WO2009063613A1 (en) * 2007-11-12 2009-05-22 Toda Kogyo Corporation Li-ni-based composite oxide particle powder for rechargeable battery with nonaqueous elctrolyte, process for producing the powder, and rechargeable battery with nonaqueous electrolyte
JP2009146739A (en) * 2007-12-14 2009-07-02 Sony Corp Manufacturing method of positive active material
US8652577B2 (en) 2008-02-13 2014-02-18 Sony Corporation Method of manufacturing cathode active material
JP2010044963A (en) * 2008-08-13 2010-02-25 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
US9105926B2 (en) 2009-07-24 2015-08-11 Sony Corporation Positive electrode active material, positive electrode, and nonaqueous electrolyte cell
US8808920B2 (en) 2009-09-09 2014-08-19 Sony Corporation Positive electrode active material, positive electrode, nonaqueous electrolyte cell, and method of preparing positive electrode active material
JP2011129498A (en) * 2009-11-18 2011-06-30 Sony Corp Positive electrode active material and nonaqueous electrolyte secondary battery
JP2012204036A (en) * 2011-03-24 2012-10-22 Hitachi Maxell Energy Ltd Positive electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2013037692A1 (en) 2011-09-13 2013-03-21 Solvay Specialty Polymers Italy S.P.A. Electrode-forming composition
JP2015076336A (en) * 2013-10-11 2015-04-20 日立マクセル株式会社 Positive electrode material for nonaqueous electrolyte secondary batteries, method for manufacturing the same and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date Type
JP3195175B2 (en) 2001-08-06 grant

Similar Documents

Publication Publication Date Title
US6582852B1 (en) Metal oxide containing multiple dopants and method of preparing same
US6783890B2 (en) Positive active material for rechargeable lithium battery and method of preparing same
US6071645A (en) Lithium electrode for a rechargeable electrochemical cell
US5478671A (en) Nonaqueous secondary battery
US5620812A (en) Non-aqueous electrolyte secondary battery
US6984469B2 (en) Positive active material for rechargeable lithium batteries and method of preparing same
US5993998A (en) Positive active material for lithium battery, lithium battery having the same and method for producing the same
US6379842B1 (en) Mixed lithium manganese oxide and lithium nickel cobalt oxide positive electrodes
US6277521B1 (en) Lithium metal oxide containing multiple dopants and method of preparing same
US20030003352A1 (en) Positive electrode for rechargeable lithium batteries and method of the same
US6037095A (en) Non-aqueous lithium ion secondary battery
Broussely et al. Lithium insertion into host materials: the key to success for Li ion batteries
US20040253518A1 (en) Positive active material and nonaqueous electrolyte secondary battery produced using the same
US20110052989A1 (en) Lithium doped cathode material
US6274273B1 (en) Positive active material for rechargeable lithium battery and method of preparing same
JP2997741B2 (en) A nonaqueous electrolyte secondary battery and a manufacturing method thereof
US20030138699A1 (en) Positive active material for rechargeable lithium battery
US5576121A (en) Llithium secondary battery and process for preparing negative-electrode active material for use in the same
KR100815583B1 (en) Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
WO2011105126A1 (en) Positive electrode material, method of production therefor, positive electrode for nonaqueous rechargeable battery, and nonaqueous rechargeable battery
Park et al. Synthesis and electrochemical properties of layered Li [Li0. 15Ni (0.275− x/2) AlxMn (0.575− x/2)] O2 materials prepared by sol–gel method
JP2002145623A (en) Lithium-containing transition metal multiple oxide and manufacturing method thereof
JP2000243396A (en) Lithium secondary battery and its manufacture and its negative electrode material and electric apparatus
JP2000082466A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JPH11345615A (en) Lithium ion nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080601

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 12

EXPY Cancellation because of completion of term