JPH08136849A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JPH08136849A
JPH08136849A JP6274047A JP27404794A JPH08136849A JP H08136849 A JPH08136849 A JP H08136849A JP 6274047 A JP6274047 A JP 6274047A JP 27404794 A JP27404794 A JP 27404794A JP H08136849 A JPH08136849 A JP H08136849A
Authority
JP
Japan
Prior art keywords
rotating body
optical scanning
motor
opened
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6274047A
Other languages
Japanese (ja)
Inventor
Fujio Miyamoto
不二夫 宮本
Original Assignee
Konica Corp
コニカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Corp, コニカ株式会社 filed Critical Konica Corp
Priority to JP6274047A priority Critical patent/JPH08136849A/en
Publication of JPH08136849A publication Critical patent/JPH08136849A/en
Application status is Pending legal-status Critical

Links

Abstract

PURPOSE: To avert the occurrence of wind whistling and to enable deflection measurement and measurement of revolving shaft position with high accuracy with an optical scanner which executes image recording while rotating a laser beam over the entire circumference of a revolving shaft. CONSTITUTION: The outer periphery of a rotating body 5 in which a pentagonal prism and a condenser lens are housed is provided with a self cut face 21 cut by rotational driving of a motor 2 for rotational scanning. The deflection of the rotating body 5 is measured on the basis of this self-cut face 21. An exit part 12 for the light beam is opened on the cut face 16 dropped by cutting at the plane approximately parallel with the revolving shaft to suppress the wind whistling in this exit part 12. Further, a part where unbalance is adjusted by installation of a weight is covered by a hood 18 and is made flush with the outer peripheral surface of the rotating body 5. The occurrence of the wind whistling is averted by the ruggedness of the unbalance adjusting part.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は光走査装置に関し、詳しくは、モータによって偏向素子を回転させることで、光ビームを前記回転軸の全周にわたって偏向させる構成の光走査装置に関する。 The present invention relates to an optical scanning apparatus, particularly, by rotating the deflecting element by a motor, an optical scanning device configured to deflect the light beam over the entire circumference of the rotary shaft.

【0002】 [0002]

【従来の技術】光ビームを回転軸の全周にわたって偏向させる構成の光走査装置としては、従来、特開昭63− 2. Description of the Related Art As optical scanning device configured to deflect over the entire circumference of the optical beam rotation axis, conventionally, JP 63-
158580号公報等に開示されるようなものがあった。 It was something as disclosed in 158580 Patent Publication. 前記光走査装置は、例えば図1に示すように構成される。 The optical scanning device is configured as shown for example in FIG. 図1において、感光材料1は図示しない円筒状ドラムの内周面に形成され、該感光材料1の円筒軸と同軸にモータ(スピンドルモータ)2を配置し、該モータ2 In Figure 1, the photosensitive material 1 is formed on the inner peripheral surface of the unshown cylindrical drum, a motor (spindle motor) the cylindrical axis coaxial with the photosensitive material 1 2 was placed, the motor 2
の回転軸端には偏向素子としてのペンタプリズム3と集光レンズ(集光素子)4とを保持した回転体5を取り付けてある。 The rotational shaft end is mounted a rotary body 5 that holds the pentagonal prism 3 and the condenser lens (condensing element) 4 as the deflecting element.

【0003】一方、半導体レーザ6から発光されたレーザ光は、レンズ7を介して前記円筒軸に平行な光ビームとして、前記回転体5内のペンタプリズム3に照射され、該ペンタプリズム3による偏向を受けた後、集光レンズ4によって集光されて前記感光材料1の感光面上に結像する。 On the other hand, the laser beam emitted from the semiconductor laser 6, a light beam parallel to the cylindrical axis through the lens 7 is irradiated to the pentagonal prism 3 of the rotary body 5, deflection by the pentagonal prism 3 after receiving, by the condenser lens 4 is focused to form an image on a photosensitive surface of the photosensitive material 1. ここで、前記回転体5はモータ2によって回転するので、前記レーザ光は、前記円筒軸回りに回転しながら感光面上に結像されることになり、レーザ光の回転中心を円筒軸方向に移動させることで、感光材料1上に2次元の画像記録が行われる。 Since the rotary member 5 is rotated by the motor 2, the laser light is to be focused on the photosensitive surface while rotating the cylindrical axis, the rotational center of the laser beam in the cylinder axis direction by causing moved, a two-dimensional image recording is carried out on the photosensitive material 1.

【0004】尚、図1において、8は前記レーザ光発光手段6によるレーザ発光を制御する制御手段である。 [0004] In FIG. 1, 8 is a control means for controlling the laser light emission by the laser light emitting means 6. 前記回転体5は、図13に示すように、軸方向の一方端にレーザ光を入射しペンタプリズム3に照射させるための入射部11が開口されると共に、外周面にはペンタプリズム3で偏向されて集光レンズ4で集光されるレーザ光を感光材料1に向けて出射させるための出射部12が開口されている。 The rotating body 5, as shown in FIG. 13, the deflection with incident portion 11 for irradiating the pentagonal prism 3 is incident laser light to one end of the axial direction is opened, the outer peripheral surface at the pentagonal prism 3 It has been emitting portion 12 for emitting toward the laser light focused by the condenser lens 4 to the photosensitive material 1 is opened.

【0005】 [0005]

【発明が解決しようとする課題】ところで、前記ペンタプリズムなどの偏向素子を回転体内に保持するに当たって、従来では、偏向素子の材質とは異なる材質(一般には金属)の保持部材15(図1参照)に固着させていたため、固着時の雰囲気温度に対して温度変動が発生すると、偏向素子と保持部材との熱膨張率の違いのために偏向素子に熱応力が生じ、偏向素子に歪みが発生することがあった。 [SUMMARY OF THE INVENTION Incidentally, in order to hold the deflection element such as the penta prism in the rotational body, in the past, different materials holding member 15 (see FIG. 1 (typically metal) from the material of the deflecting element ) because it was allowed fixed to the temperature variation occurs for ambient temperature at the time of fixation, the thermal stress is generated in the deflection element for the difference in thermal expansion coefficient between the holding member and the deflection element, distortion occurs in the deflecting element that there was to be.

【0006】偏向素子に歪みが生じると、レーザビームの非点収差が生じ、ビーム径が所期値からずれて画質を悪化させることになってしまうという問題を生じる。 [0006] distortion deflection element occurs, resulting astigmatism of the laser beam, the beam diameter results in a problem that led to worsening the image quality deviates from the desired value. また、従来では、前記図13に示すように、回転体の外周面に出射部が開口されており、かかる開口によって回転体の肉厚分の段差が外周面に生じることになっていた。 Further, conventionally, as shown in FIG. 13, the emission portion on the outer peripheral surface of the rotary member and is opened, a step of the thick portion of the rotating body is supposed to occur on the outer peripheral surface by such opening.

【0007】このため、回転体を回転させると、前記段差部において風切りが発生し、これによって回転速度ジッタが悪化し、感光材料に記録される画像の画質が低下するという問題があった。 [0007] Therefore, when the rotary member, the wind is generated in the step portion, thereby deteriorating the rotational speed jitter, quality of an image to be recorded on the photosensitive material is lowered. 例えば、直径70mmの円筒上に5mmの段差が回転方向にあると、回転速度ジッタは略5 For example, if the level difference 5mm on a cylinder of diameter 70mm in the direction of rotation, rotational speed jitter is substantially 5
倍に悪化し、また、風切り音の発生によって商品価値を著しく低下させる惧れもあった。 Doubles worse, There was also a fear significantly reduces the commercial value due to the occurrence of wind noise.

【0008】また、従来では、前記回転体の不釣合い調整を、図14又は図15に示すように回転体5の外周面又は軸方向端面に穴(又はネジ穴)31或いは溝32を形成し、 Further, conventionally, a disproportionate adjustment of the rotating body, FIG. 14 or the outer peripheral surface or the hole (or the screw hole) in the axial end surface of the rotary body 5 as shown in FIG. 15 31 or a groove 32 ,
これらに重りを設置することで行ったり、また、修正面における削り加工によって回転バランスをとる構成となっており、これも前記出射部の段差と同様に回転時の風切りの原因となり、回転速度のジッタを悪化させることになっていた。 These and go by installing a weight, also by working scraping in the modified surface has a structure to take a rotational balance, which also cause a wind during rotation as with the step of the emitting portion, the rotational speed It was supposed to worsen the jitter.

【0009】更に、回転体の回転ぶれを測定するに当たって、回転体の歪みや細かい傷があると、これらによる変化と回転体の回転ぶれとの判別が行えず、高い測定精度を確保することが困難であった。 Furthermore, when measuring a rotational camera shake of the rotating member, if there is distortion or fine scratches of the rotating body, it can not be performed to distinguish between rotational shake of the rotating member and the change of these, ensuring high measurement accuracy It was difficult. 同様に、回転体の回転軸と感光材料面との距離を測定するに当たっても、前記回転体の歪み,傷が測定精度を悪化させる惧れがあった。 Similarly, when measuring the distance between the rotation shaft and the photosensitive material surface of the rotating body also distortion of the rotating body, scratches had a fear of deteriorating the measurement accuracy.

【0010】また、回転体の不釣合い量が何らかの原因で増大したり、モータのベアリングが摩耗することによって異常な振動が発生した場合に、従来では、かかる異常振動を検知する手段を備えないために、異常振動を生じた状態のまま記録動作が行われ、最悪の場合にはモータが破壊されるなどの不具合を招く惧れがあった。 [0010] or increased in disproportionate amounts for some reason of the rotating body, when the abnormal vibration occurs by the bearing of the motor is worn, since the conventional, not provided with means for detecting such abnormal vibration a, is performed while the recording operation of the state that caused the abnormal vibration, in the worst case there is a possibility of causing problems such as the motor is destroyed. また、従来では、ペンタプリズム等の偏向素子と集光レンズとを別々に回転体内に保持する構成であったため、両者を平行に取り付けることが難しく、平行に取り付けるためには高い加工精度が要求されることになってコスト高になるという問題があった。 Also, conventionally, because it was configured to hold the deflection element and a condenser lens such as a penta prism to rotate the body separately, it is difficult to attach the two parallel, are high processing accuracy is required for mounting in parallel there is a problem that high cost is to Rukoto.

【0011】更に、それぞれに保持部が必要になるので、その分コストがかかると共に、これらを収容するために回転体の直径も大きくなって回転体の重量が重くなるため、回転体のぶれが大きくなると共に、モータとして大きく重いものを用いる必要性が生じる。 Furthermore, since the holding portions respectively is required, together with correspondingly costly, since the weight of the rotating body is heavy larger diameter of the rotating body in order to accommodate these, the blur of the rotary body with large, need arises to use a large heavy as a motor. 従って、装置全体の重量アップになり、装置コストが大幅に上昇するという問題があった。 Accordingly, the weight-up of the entire device, there is a problem that the apparatus cost is greatly increased.

【0012】更に、従来では、感光材料を保持させるドラムと回転体との間の距離を測定しながら、人手でモータの取り付け位置を調整しており、取り付け精度に数μ Furthermore, in the past, while measuring the distance between the rotary member and the drum for holding the photosensitive material, and by adjusting the mounting position of the motor by hand, few in mounting precision μ
m以下という高精度が要求される光走査装置においては、調整に長い時間を要するという問題があった。 The optical scanning apparatus m high accuracy of less is required, it takes a long time to adjust. 本発明は上記問題点に鑑みなされたものであり、温度変動によって偏向素子に熱応力が生じることを抑制できるようにすることを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to enable to suppress the thermal stress in the deflection element by the temperature change.

【0013】また、風切りによる回転速度ジッタの悪化を回避できるようにすることを目的とする。 [0013] Another object of the invention is to allow avoiding a deterioration of the rotational speed jitter due wind. また、回転体のぶれの測定や位置の測定が、回転体の歪みや傷に影響されずに高精度に行えるようにすることを目的とする。 The measurement of the measurement and position of the motion of the rotating body, and an object thereof is to allow without being influenced by distortions and flaws of the rotating body with high accuracy. また、異常振動の発生を検知できるようにして、異常振動が発生したまま放置されることを回避できるようにすることを目的とする。 Also, to be able to detect the occurrence of abnormal vibration, and an object thereof is abnormal vibration to be prevented from being left to occur.

【0014】また、回転体内に収容される偏向素子と集光レンズとの取り付けを容易とし、また、回転体のコンパクト化を図ることを目的とする。 Further, the attachment of the deflection device and the condenser lens which is accommodated in the rotating body is facilitated and also aims to reduce the size of the rotating body. 更に、モータの取り付け位置の調整が、効率的に行えるようにすることを目的とする。 Furthermore, adjustment of the mounting position of the motor, and an object thereof is to allow efficient.

【0015】 [0015]

【課題を解決するための手段】そのため請求項1の発明にかかる光走査装置は、円筒状の回転体内に偏向素子を保持すると共に、前記回転体をモータによってその円筒軸回りに回転させ、前記回転体の軸方向端面に開口させた入射部から入射される回転軸と平行な光ビームを前記偏向素子によって直角に偏向させて前記回転体の周壁に開口された出射部から出射させ、前記光ビームを前記回転軸の全周にわたって偏向させる構成の光走査装置において、前記偏向素子を該偏向素子と同材質の保持部材によって前記回転体内に保持する構成とした。 Means for Solving the Problems] Therefore the optical scanning apparatus according to the invention of claim 1 holds the deflecting element to the rotating body of cylindrical, rotating the rotary member to the cylinder axis by a motor, the the parallel light beam and the rotational axis is incident from the incident part is opened to the axial end surface of the rotating body perpendicularly deflected by the deflecting element is emitted from the emitting unit which is opened in the peripheral wall of the rotary member, the light the optical scanning device configured to deflect the beam over the entire periphery of said rotary shaft, and configured to hold the rotary body by the holding member of the same material as the deflection element the deflection element.

【0016】請求項2の発明にかかる光走査装置では、 [0016] In the optical scanning apparatus according to the invention of claim 2,
前記回転体の外周を回転軸に略平行な面でカットしたカット面に、前記出射部を開口させる構成とした。 The cut surface cut by a plane substantially parallel to the rotation axis of the outer periphery of the rotating body and configured to open the exit portion. 請求項3の発明にかかる光走査装置では、前記回転体の外周壁又は軸方向端面に形成した凹陥部において前記回転体の不釣り合い調整を行う構成であって、前記凹陥部を前記回転体の円筒状外周と面一とするフードを取付ける構成とした。 In the optical scanning apparatus according to the invention of claim 3 is configured to perform imbalance adjustment of the rotating body in the recess formed on the outer peripheral wall or the axial end surface of said rotating body, said recessed portion of said rotary member and configured to attach the hood to the cylindrical periphery flush.

【0017】請求項4の発明にかかる光走査装置では、 [0017] In the optical scanning apparatus according to the invention of claim 4,
前記回転体の外周に前記モータによる回転駆動によって形成されたセルフカット面を設け、該セルフカット面を基準として前記回転体の回転軸位置又は前記回転体のぶれを測定する構成とした。 Said rotary member outer peripheral self-cut surface formed by the driving rotation by the motor to the provided, and configured to measure the vibration of the rotary shaft position or the rotating body of the rotating body based on the said self-cut surface. 請求項5の発明にかかる光走査装置では、前記モータ又は該モータの保持部に加速度センサを設け、該加速度センサによって異常振動を検出する構成とした。 In the optical scanning apparatus according to the invention of claim 5, the acceleration sensor is provided in the holding portion of the motor or the motor, and configured to detect the abnormal vibration by the acceleration sensor.

【0018】請求項6の発明にかかる光走査装置では、 [0018] In the optical scanning apparatus according to the invention of claim 6,
前記偏向素子と一体に集光素子を設ける構成とした。 And configured to provide a converging element integrally with the deflector element. 請求項7の発明にかかる光走査装置では、前記光走査装置の取り付け基準面と前記回転体の回転軸との間の距離を測定し、該測定結果に基づいて前記モータを径方向で支持する圧電素子に対する印加電圧を制御して回転体の中心軸調整を行う構成とした。 In the optical scanning apparatus according to the invention of claim 7, the distance between the rotation axis of the mounting reference surface and the rotating body of the optical scanning device is measured and for supporting the motor in the radial direction based on the measurement result and configured to perform a central axis adjustment of the rotating body by controlling the voltage applied to the piezoelectric element.

【0019】 [0019]

【作用】請求項1の発明にかかる光走査装置によると、 [Action] According to the optical scanning apparatus according to the invention of claim 1,
偏向素子と同材質の保持部材、即ち、同じ熱膨張率の材料で形成された保持部材に偏向素子を保持するから、偏向素子に熱応力が生じることが抑止される。 Deflecting element and the material of the supporting member, i.e., because holding the deflector element to the holding member formed of a material having the same thermal expansion coefficient, the thermal stress is generated is suppressed to the deflection element. 請求項2の発明にかかる光走査装置によると、回転体の外周を回転軸に略平行な面でカットし、該カット面に光ビーム出射部を開口させる構成であるから、出射部における段差を充分に小さくでき、また、カット面が回転体の外周面と連なるため、風切りの発生を回避でき、もって、回転速度ジッタを小さくできる。 According to the optical scanning apparatus according to the invention of claim 2, the outer periphery of the rotating body by cutting with a plane substantially parallel to the rotation axis, since it is configured to open the light beam emitting portion to the cut surface, a step on the exit portion sufficiently can be reduced, in addition, since the cut surface is contiguous with the outer peripheral surface of the rotating body, can avoid the occurrence of wind, with it, it is possible to reduce the rotational speed jitter.

【0020】請求項3の発明にかかる光走査装置によると、回転体の不釣合い調整のために形成される凹陥部に対して、回転体の外周面と面一になるようなフードを取り付けるから、前記凹陥部に対する重りの設置や、前記凹陥部の大きさを調整することによる不釣合い調整を可能としつつ、実際の光走査時には、回転体において風切りの原因となる段差が生じず、以て、回転速度ジッタを小さくできる。 [0020] According to the optical scanning apparatus according to the invention of claim 3, with respect to the concave portion formed to the imbalance adjustment of the rotating body, since attaching the hood such that the outer peripheral surface flush with the rotary body , weight installation and the relative said recess, while enabling unbalance adjustment by adjusting the size of the recess, in actual optical scanning, a step which causes wind in the rotating body does not occur, Te following , it is possible to reduce the rotational speed jitter.

【0021】請求項4の発明にかかる光走査装置によると、回転体にモータに対する取り付け状態で切削して形成したセルフカット面を設け、該セルフカット面を基準としてぶれや回転軸位置を測定するから、回転体の歪みや傷に影響されない測定が可能となる。 [0021] According to the optical scanning apparatus according to the invention of claim 4, the self-cut surface formed by cutting in a mounted state with respect to the motor to the rotating body is provided, to measure the blur and rotary axis positions relative to the said self-cut surface from, it is possible to not be affected by the distortion and scratches of the rotating body measurement. 請求項5の発明にかかる光走査装置によると、モータ又は該モータの保持部に加速度センサが設けられるから、回転体における不釣合い量の増大やモータベアリングの摩耗などによって異常振動が発生すると、かかる異常振動が前記加速度センサで検出され、モータ駆動の停止などのフェイルセーフ制御を実行できる。 According to the optical scanning apparatus according to the invention of claim 5, since the acceleration sensor is provided in the holding portion of the motor or the motor, when the abnormal vibration is generated by such unbalance amount of increase and the motor bearing abrasion in the rotating body, according abnormal vibration detected by the acceleration sensor, it can execute fail-safe control such as stop of the motor drive.

【0022】請求項6の発明にかかる光走査装置によると、偏向素子と集光素子とを一体として回転体内に設ける構成としたので、加工が容易となり、また、回転体のサイズを小型化でき、以て、装置全体のコンパクト化を図れる。 [0022] According to the optical scanning apparatus according to the invention of claim 6, since the deflection element and the focusing element has a configuration in which the rotary body integrally, processing becomes easy and also can reduce the size of the rotary body , following Te, thereby the size of the entire apparatus. 請求項7の発明にかかる光走査装置によると、 According to the optical scanning apparatus according to the invention of claim 7,
圧電素子によってモータの径方向を支持させ、基準面と回転体の回転軸との間の距離の測定結果に基づいて前記圧電素子の印加電圧を調整することで、モータ及び回転体の軸を平行移動させ、以て、前記距離を基準値に調整する。 Is supported in the radial direction of the motor by the piezoelectric element, by adjusting the applied voltage of the piezoelectric element based on the measurement result of the distance between the reference surface and the rotation axis of the rotating body, parallel to the axis of the motor and the rotor the moved, than Te, and adjusting the distance to the reference value.

【0023】 [0023]

【実施例】以下に本発明の実施例を説明する。 The embodiment of the present invention PREFERRED EMBODIMENTS Hereinafter will be described. 尚、以下の実施例における光走査装置のシステム構成は、前記図1に示したものと同じものとし、同一要素には同一符合を付して説明を進める。 Note that the system configuration of the optical scanning apparatus in the following examples, the same as that shown in FIG. 1, the same elements in the descriptions are given the same reference numerals. まず、本実施例においては、図2に示すように、回転体5内に収容される偏向素子としてのペンタプリズム3と集光レンズ(集光素子)4とを予め一体とし、回転体5内に収容する構成とした。 First, in the present embodiment, as shown in FIG. 2, and pentagonal prism 3 and the condenser lens as a deflection element which is housed in the rotary body 5 and the (converging elements) 4 in advance integrally, the rotary body 5 It was configured to be accommodated in.

【0024】かかる構成によれば、回転体5に対してペンタプリズム3の出射面と集光レンズ4とを平行に回転体5に対して取り付けるための調整作業を省略することができる。 [0024] according According to the arrangement, it is possible to omit the adjustment operation for mounting against parallel rotating body 5 and the exit surface and the condenser lens 4 of the pentagonal prism 3 with respect to the rotating body 5. また、保持機構をそれぞれに備える必要がなくペンタプリズム3と集光レンズ4とが一体化したものを保持する機構を1つ備えれば良いので、回転体5の直径を小さくすることが可能となり、これにより装置全体をコンパクトにできる。 Further, since the pentagonal prism 3 there is no need to provide a holding mechanism respectively and the condenser lens 4 may be Sonaere one a mechanism for holding the one integrated, it is possible to reduce the diameter of the rotary body 5 , thereby the entire apparatus compact.

【0025】ここで、単体としてのペンタプリズム3、 [0025] Here, penta prism 3 as a stand-alone,
或いは、集光レンズ4が一体化されたペンタプリズム3 Alternatively, pentagonal prism 3 condenser lens 4 is integrated
を回転体5内に保持する保持部材15を、ペンタプリズム3の材質と同じ材質、即ち、同じ熱膨張率の材質で形成させてあり、ペンタプリズム3を前記保持部材15に固着させたときの雰囲気温度に対して温度変動があっても、 The holding member 15 for holding in the rotary body 5 of the same material as that of the pentagonal prism 3, that is, Yes by forming a material having the same thermal expansion coefficient, obtained while fixing the pentagonal prism 3 to the holding member 15 even if there is a temperature change with respect to the ambient temperature,
ペンタプリズム3に熱応力が生じることを抑止できるようにしてある。 It is as possible to prevent the thermal stress in the pentagonal prism 3. このようにしてペンタプリズム3における熱応力の発生が抑制されれば、ペンタプリズム3に歪みが生じることを回避でき、以て、非点収差を防止できる。 If this way, the occurrence of thermal stress is suppressed in the pentagonal prism 3, it prevents the distortion in the pentagonal prism 3, than Te, the astigmatism can be prevented.

【0026】一方、本実施例では、前記回転体5において、図3(A),(B)に示すようにして出射部12を開口させるものとした。 On the other hand, in this embodiment, in the rotating body 5, FIG. 3 (A), the was assumed to open the exit portion 12 as shown in (B). 即ち、出射部12を回転体5の外周面に開口させるのではなく、回転体5の円筒軸と略平行な面でカットして落とし込まれた面(カット面)16に出射部12を開口させてある。 That is, instead of being opened exit portion 12 on the outer peripheral surface of the rotary body 5, the opening of the exit portion 12 to the rotating body cylindrical axis substantially was dropped by cutting along a plane parallel the plane of the 5 (cut surface) 16 It is allowed to. 尚、前記カット面16は、回転体5の外径に対して充分に大きな曲率を有する曲面としても良い。 Incidentally, the cut surface 16 may be a curved surface having a large curvature sufficiently the outer diameter of the rotating body 5.

【0027】かかる構成によると、前記回転体5をその円筒軸回りに回動させるときに、出射部12における回転方向の段差を無くすことができ、風切りの発生を抑制でき、以て、風切りによる回転速度ジッタの悪化を防止できる。 [0027] According to such a configuration, when rotating the rotary body 5 in its cylindrical axis, it is possible to eliminate the step in the rotation direction at the exit portion 12, it is possible to suppress the generation of wind, Te hereinafter, by wind the deterioration of the rotational speed jitter can be prevented. 即ち、回転体5の外周面に出射部12を開口させる構成とすると、回転方向において回転体5の肉厚分の段差が生じることになり、かかる段差部において風切りが発生することになってしまうが、図3に示すようにカット面16に出射部12を開口させる構成とすれば、回転体5 That is, if a configuration which opens the exit portion 12 on the outer peripheral surface of the rotary body 5, will be stepped wall thickness of the rotating body 5 min in the rotational direction is generated, becomes the wind is generated in such a stepped portion but with the configuration for opening the exit portion 12 on the cut surface 16 as shown in FIG. 3, the rotary body 5
の外周面から前記カット面16が段差なく連続し、かつ、 The cut surface 16 from the outer peripheral surface continuously without steps of, and,
カット面における肉厚が薄いことから、出射部12によって生じる段差を充分に小さくでき、以て、風切りの発生を抑制できるものである。 Since the thickness of the cut surface is thin, be sufficiently small step formed by the exit portion 12, than Te, those capable of suppressing the generation of wind. 風切りの発生が抑制されれば、風切りに伴って回転速度ジッタが悪化することを回避できると共に、風切り音の発生を防止できる。 When generation of wind is suppressed, it is possible to prevent the rotational speed jitter is deteriorated along with the wind, it can be prevented from occurring wind noise.

【0028】ところで、前記回転体5に不釣合いがあると、回転駆動されたときに振動(ぶれ)が生じることになってしまうので、不釣合い調整を行う必要がある。 By the way, if there is imbalance in the rotating body 5, because that would oscillation (shake) occurs when rotated, it is necessary to perform the disproportionate adjustment. 本実施例では、図4に示すように、回転体5の外周面の軸方向端部に、縮径部5aを形成すると共に、かかる縮径部5aの外周に略等間隔で設けた不釣合い調整部としての穴(或いはネジ穴)17(凹陥部)を形成し、該穴17に重りを設置することで不釣合い調整を行うものとする。 In this embodiment, as shown in FIG. 4, the axial end portion of the outer peripheral surface of the rotary member 5, to form a reduced diameter portion 5a, disproportionately provided at substantially equal intervals on the outer circumference of such reduced diameter portion 5a hole in the adjusting unit (or threaded hole) 17 (recess) is formed, it is assumed that the imbalance adjustment by installing the weight on the hole 17.
そして、不釣合い調整後は、図5に示すように、前記縮径部5aの段差を埋めるリング状(2分割構成であっても良い)のフード18を取り付けることで、回転体5の外周が不釣合い調整部によって凹凸となることなく、面一となるようにした。 After unbalance adjusting, as shown in FIG. 5, the reduced diameter portion 5a ring to fill a level difference (may be divided into two pieces) by attaching the hood 18, the outer periphery of the rotating body 5 without an uneven by unbalance adjusting unit, it was set to be flush.

【0029】従って、不釣合い調整のための回転体5の外周に凹陥形成される穴17を備える構成であっても、前記穴(或いはネジ穴)17がビーム走査時には風切りを生じる凹凸となることがなく、風切りによる回転速度ジッタの悪化及び風切り音の発生を回避できる。 [0029] Therefore, even though the configuration is equipped with holes 17 that are recessed formed on the outer periphery of the rotary body 5 for imbalance adjustment, that the hole (or the screw hole) 17 is uneven causing wind during beam scanning no, it is possible to avoid the occurrence of deterioration and wind roar of the rotational speed jitter due wind. また、不釣合い調整部としての凹陥部を、図6及び図7に示すように、回転体5の軸方向端面に環状に形成した溝19として設け、該溝19に対する重りの設置によって不釣合い調整を行う構成であっても良く、この場合には、入射部11用の開口を有する円板をフード20として、不釣合い調整後に前記溝19を覆うように取り付けることで、回転体5の軸方向端面における凹凸を無くす。 Further, the recess of the unbalance adjusting portion, as shown in FIGS. 6 and 7, provided as a groove 19 formed in an annular axial end face of the rotary body 5, imbalance adjustment depending on the installation of the weight with respect to the groove 19 may be configured to perform, in this case, the disc having an opening for incident portion 11 as the hood 20, by attaching to cover the groove 19 after disproportionately adjustment, the axial direction of the rotary body 5 eliminate the unevenness of the end face. この場合も、回転体5の外面が不釣合い調整部によって凹凸となることがなく、面一となって風切りの発生を回避できる。 Again, without the irregularities by the outer surface of the rotary body 5 unbalance adjusting portion can avoid the generation of wind becomes flush.

【0030】尚、前記穴17又は溝19に重りを設置することで不釣合い調整を行う構成を示したが、予め回転体5 [0030] Incidentally, although the configuration in which the imbalance adjustment by installing the weight on the hole 17 or groove 19, previously rotator 5
の外面に設定された修正面(凹陥部)を削り取ることで、不釣合い調整を行う構成であっても良く、この場合も、前記修正面を覆って回転体5の外周面と面一にできるフードを取り付けることで、不釣合い調整部による風切りの発生を回避できる。 By scraping the set modified surface to the outer surface (the recessed portion) may be configured to perform unbalance adjustment, also in this case, the outer peripheral surface flush with the rotary member 5 covers the modifications surface by attaching the hood, you can avoid the occurrence of wind by disproportionately adjuster.

【0031】ところで、光走査中に回転体5にぶれが生じると画質を悪化させることになり、また、回転体5の回転軸と感光材料1までの距離を調整して感光材料1の中心軸に回転体5の回転軸を正しく一致させることが要求される。 By the way, the blur in the rotary body 5 in the light scanning occurs will be worsen the picture quality, also the central axis of the photosensitive material 1 by adjusting the distance of the rotation axis of the rotary body 5 and to the photosensitive material 1 causing the rotation axis of the rotating body 5 correctly match is required. 従って、前記回転体5のぶれを測定したり、 Thus, we can measure the vibration of the rotating body 5,
又は、回転体5と感光材料面との間の距離を測定する作業が必要になる。 Or, it is necessary to work to measure the distance between the rotary body 5 and the photosensitive material surface. しかしながら、回転体5に歪みや傷があると、前記ぶれや距離の測定精度が悪化することになってしまう。 However, when the rotary body 5 is distorted or scratched, resulting in that the blurring or distance measurement accuracy is deteriorated.

【0032】そこで、本実施例では、回転体5をモータ2に取り付けて回転させた状態で回転体5の外周面にバイトを当てることで、図8に示すように、回転体5の外周に帯状の切削加工面(以下、セルフカット面という) [0032] Therefore, in this embodiment, by applying the byte on the outer circumferential surface of the rotary body 5 and the rotary body 5 while rotating is attached to the motor 2, as shown in FIG. 8, the outer periphery of the rotary body 5 strip cut surface (hereinafter, referred to as self-cutting surface)
21を形成し、該セルフカット面21を基準としてぶれや回転軸位置の測定などを行わせる構成としてある。 21 is formed, it is constituted to perform such measurements blur and rotary axis positions the self-cut surface 21 as a reference. 例えば回転体5のぶれ(面ぶれ)を測定する場合には、図9に示すように、微小変位計のプローブ22を前記セルフカット面21に当接させて、回転体5を回転させたときの面ぶれを測定させる。 For example, when measuring vibration of the rotating body 5 (surface wobbling), as shown in FIG. 9, the probe 22 of the micro-displacement meter is brought into contact with the self-cut surface 21, when rotating the rotary body 5 to the surface vibration measurement. かかる構成によれば、回転体5に歪みや細かな傷があっても、測定の基準は前記歪み,傷の影響を受けないセルフカット面21に基づいて行われるから、高精度な測定が可能となる。 According to such a configuration, even if there is distortion or minor scratches to the rotary body 5, since the reference measurements are performed on the basis of the self-cut surface 21 does not receive the strain, the influence of flaws, enabling high-precision measurement to become.

【0033】回転体5の回転軸位置の測定を行う場合も、前記セルフカット面21から感光材料1の形成位置までの距離を測定させるようにすれば、高いの測定精度を確保でき、以て、回転軸位置の調整精度を高くできる。 [0033] When measuring the rotational axis position of the rotary body 5 may, if so as to measure the distance from the self-cut surface 21 to the forming position of the photosensitive material 1, can ensure high measurement accuracy, Te following , possible to increase the adjustment accuracy of the rotation axis position.
ここで、上記のように回転体5の回転軸位置を測定させて回転体5(モータ2)の取り付け位置を調整する作業においては、数μm以下の調整精度が要求されるので、 Here, in the work of adjusting the mounting position of the rotary member by measuring the rotational axis position of the rotary body 5 as above 5 (motor 2), the number μm following adjustment precision is required,
人手による調整では長い時間を要することになってしまう。 It becomes it takes a long time in the manual adjustment.

【0034】そこで、本実施例では、図10に示すような構成によって前記調整作業を行わせる構成とした。 [0034] Therefore, in this embodiment, it has a structure to perform the adjustment operation by the configuration shown in FIG. 10. 図10 Figure 10
において、22はモータ2の保持部材であり、モータ2を囲むように形成されており、この保持部材22に対してモータ2は、付勢部材23とピエゾ素子24(圧電素子)とを介して非接触に保持される。 In, 22 is a holding member of the motor 2, it is formed to surround the motor 2, the motor 2 with respect to the holding member 22 via the biasing member 23 and the piezoelectric element 24 (piezoelectric element) It is held in a non-contact.

【0035】付勢部材23aはモータ2を回転軸を通る図で下向きの方向にモータ2を付勢するようになっており、かかる付勢部材23aと回転軸を挟んで対向する位置ではピエゾ素子24aがモータ2を支持している。 The biasing member 23a is a piezoelectric element in a position facing the motor 2 is a view through the rotary shaft so as to urge the motor 2 in a downward direction, across the rotation axis to take an urging member 23a 24a is supporting the motor 2. 同様に、付勢部材23b及びピエゾ素子24bは、前記付勢部材 Similarly, biasing member 23b and the piezoelectric element 24b, the biasing member
23aとピエゾ素子24aとを結ぶ径方向に対して直角の位置関係となるように配置されており、前記付勢部材23b 23a and are arranged so as to be perpendicular positional relationship with respect to the radial direction connecting the piezoelectric elements 24a, the urging member 23b
は、図で右方向にモータ2を付勢する。 Biases the motor 2 to the right in FIG.

【0036】ここで、前記ピエゾ素子24a,24bは、印加電圧に応じてモータ2の径方向に伸長するよう構成されており、ピエゾ素子24a,24bに電圧を印加すると、 [0036] Here, the piezoelectric element 24a, 24b is configured so as to extend in the radial direction of the motor 2 in accordance with the applied voltage, the piezoelectric element 24a, when a voltage is applied to 24b,
前記付勢部材23a,23bの付勢力に抗してモータ2の位置を径方向に動かすことになる。 It said biasing member 23a, thereby moving the position of the motor 2 in a radial direction against the biasing force of 23b. 尚、前記付勢部材23としては、ゴム,コイルバネ,板バネ等を用いることができる。 Incidentally, as the biasing member 23 may be rubber, a coil spring, a leaf spring or the like.

【0037】一方、内径測定器25によって、回転体5の前記セルフカット面21と感光材料1が形成されるドラム On the other hand, the internal diameter measurement device 25, a drum photosensitive material 1 and the self-cut surface 21 of the rotating body 5 is formed
26の内面(取り付け基準面)との間の距離が、回転軸とドラム面26との間の距離に対応するものとして測定されるようになっており、作業者は、前記測定器25のメモリによって読み取られる距離が目標値に一致するか否かによって、図10に示す場合では、ピエゾ素子24aの印加電圧を調整することで、モータ2(回転軸)の図で上下方向における位置を調整して、前記距離が目標値に一致するようにする。 The distance between the 26 inner surface of the (mounting reference surface) is adapted to be measured as corresponding to the distance between the rotary shaft and the drum surface 26, the operator, the memory of the measuring device 25 depending on whether the distance to be read coincides with the target value by, in the case shown in FIG. 10, by adjusting the applied voltage of the piezoelectric element 24a, to adjust the position in the vertical direction in FIG motor 2 (the rotational axis) Te, so that the distance is equal to the target value. 同様に、モータ2(回転軸)の図で左右方向における位置を調整する場合にはピエゾ素子24bの印加電圧を調整する。 Similarly, when adjusting the position in the lateral direction in FIG motor 2 (the rotational axis) adjusting the applied voltage of the piezoelectric element 24b.

【0038】かかる構成によれば、ピエゾ素子24a,24 [0038] According to such a configuration, the piezoelectric element 24a, 24
bに与える電圧によって微小にモータ2(回転軸)の位置を調整できるから、人手によってモータ位置を動かす場合に比べて高精度な位置調整を短時間に行わせることが可能である。 Since the ability to adjust the positions of the finely motor 2 (rotation axis) by a voltage applied to b, it is possible to perform in a short time with high precision positional adjustment as compared with the case of moving the motor position manually. 尚、内径測定器25の出力に基づいてピエゾ素子24の印加電圧を自動調整させることも可能である。 It is also possible to automatically adjust the voltage applied to piezoelectric element 24 based on the output of the internal diameter measurement device 25.

【0039】ところで、前記不釣り合い調整において設置した重りが外れたりして、不釣り合い量が増大したり、モータ2のベアリングが磨耗したりすると、異常振動が発生して画質を悪化させるのみならず、回転体5が吹き飛ぶ惧れがある。 [0039] Incidentally, said dislodged installation the weight in disproportionate adjustment, or unbalance amount is increased, the bearing of the motor 2 or worn not only worsen the image quality abnormal vibration occurs is a danger that the rotary body 5 blow off is. そこで、図11又は図12に示すように、前記モータ2の保持部材22やモータ2自体に加速度センサ27を取り付け、動作中に前記加速度センサ27で異常振動が検出されたときに、直ちにモータを停止させて使用者に警告するなどのフェイルセーフが実行されるようにすると良い。 Therefore, as shown in FIG. 11 or 12, mounting the acceleration sensor 27 to the holding member 22 and the motor 2 itself of the motor 2, when the abnormal vibration is detected by the acceleration sensor 27 during operation, immediately the motor failsafe such as warn the user to stop the good to be executed.

【0040】また、加速度センサ27を取り付けてあれば、回転体5の不釣合い調整を実機上で行うことができる。 Further, if mounted an acceleration sensor 27, it is possible to perform the imbalance adjustment of the rotating body 5 on the real machine. 一般的に、モータの保持方法が変わると回転体5のぶれが変化するので、実機上で不釣合い調整が行えれば、前記不釣合い調整を高精度に行えることになる。 Generally, since vibration of the rotary body 5 and the method of holding the motor is changed it is changed, if Okonaere is disproportionate adjustment on actual machine would perform the disproportionately accurately adjusted.
尚、前記光走査装置は、光源(半導体レーザ)を1つだけ備える構成としたが、複数の光源を備えて複数ラインを同時記録する構成のものであっても良い。 Incidentally, the optical scanning apparatus, the light source has been configured to include only one (semiconductor laser), or may be recorded simultaneously constituting a plurality of lines includes a plurality of light sources.

【0041】また、偏向素子としてペンタプリズムを用いる構成に限定されるものではなく、直角プリズム等を偏向素子とする構成であっても良いことは明らかである。 Further, the invention is not limited to the configuration using the pentagonal prism as a deflecting element, it is obvious that it may be configured to deflection element rectangular prisms and the like.

【0042】 [0042]

【発明の効果】以上説明したように、請求項1の発明にかかる光走査装置によると、雰囲気温度の変動があっても、偏向素子に熱応力が生じることが抑止され、以て、 As described in the foregoing, according to the optical scanning apparatus according to the invention of claim 1, even if there is variation in the ambient temperature, the thermal stress is generated is suppressed to the deflection element, Te following,
偏向素子における非点収差の発生を回避して、ビーム径を所期値に収めることができるという効果がある。 To avoid the occurrence of astigmatism in the deflection element, there is an effect that it is possible to keep the beam diameter on the intended value.

【0043】請求項2の発明にかかる光走査装置によると、光ビームの出射部において回転方向に段差が生じることを回避でき、以て、風切りによる回転速度ジッタの悪化や風切り音の発生を防止できるという効果がある。 [0043] According to the optical scanning apparatus according to the invention of claim 2, at the exit portion of the light beam can avoid step in the rotational direction is generated, than Te, prevent deterioration and wind noise rotational speed jitter due whistling there is an effect that can be.
請求項3の発明にかかる光走査装置によると、回転体の不釣り合い調整にかかる凹陥部を覆って回転体の外周面と面一になるようなフードを取り付けるので、前記凹陥部によって風切りが発生して、回転速度ジッタの悪化や風切り音が発生することを防止できるという効果がある。 According to the optical scanning apparatus according to the invention of claim 3, since over the recess according disproportionately adjustment of the rotating body mounting the hood such that the outer peripheral surface flush with the rotating body, wind by the recess is generated to an effect that can prevent the deterioration and wind noise of the rotational speed jitter is generated.

【0044】請求項4の発明にかかる光走査装置によると、回転体にセルフカット面を設けることで、面ぶれの測定や回転軸位置の測定が、回転体の歪みや傷に影響されずに高精度に行えるという効果がある。 [0044] According to the optical scanning apparatus according to the invention of claim 4, by providing the self-cut surface on the rotating body, measurement of the measurement and the rotational axis position of the surface wobbling is, without being influenced by distortions and flaws of the rotary body there is an effect that allows a high precision. 請求項5の発明にかかる光走査装置によると、異常振動の発生を検知してフェイルセーフを実行させることができ、以て、モータが破壊されるなどの最悪の事態を確実に回避できるという効果がある。 According to the optical scanning apparatus according to the invention of claim 5, the abnormality generation of vibration by detecting can be performed failsafe, than Te, effect of worst to be reliably avoided, such as the motor is destroyed there is.

【0045】請求項6の発明にかかる光走査装置によると、偏向素子と集光素子とを一体として回転体内に設ける構成としたので、加工が容易となり、また、回転体のサイズを小型化でき、以て、装置全体のコンパクト化を図れるという効果がある。 [0045] According to the optical scanning apparatus according to the invention of claim 6, since the deflection element and the focusing element has a configuration in which the rotary body integrally, processing becomes easy and also can reduce the size of the rotary body , following Te, there is an effect that attained the size of the entire apparatus. 請求項7の発明にかかる光走査装置によると、圧電素子に対する印加電圧の調整によって回転軸位置の調整を行えるので、高精度な位置調整を短時間に行わせることができるという効果がある。 According to the optical scanning apparatus according to the invention of claim 7, since it allows the adjustment of the rotational shaft position by adjusting the voltage applied to the piezoelectric element, there is an effect that it is possible to perform in a short time with high precision alignment.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明にかかる光走査装置のシステム構成図。 System configuration diagram of an optical scanning apparatus according to the present invention; FIG.

【図2】実施例における偏向素子と集光レンズとを示す図。 Figure 2 illustrates the deflection element and the condenser lens in Example.

【図3】実施例における出射部を示す図であり、(A) [Figure 3] is a diagram showing an emission unit in the first embodiment, (A)
が正面斜視図、(B)は側面図。 There front perspective view, (B) is a side view.

【図4】実施例における不釣り合い調整部を示す分解斜視図。 Figure 4 is an exploded perspective view showing a disproportionate adjustment unit in the first embodiment.

【図5】実施例におけるフードの取り付け状態を示す斜視図。 Figure 5 is a perspective view showing a mounting state of the hood in the embodiment.

【図6】実施例における不釣り合い調整部を示す分解斜視図。 Figure 6 is an exploded perspective view showing a disproportionate adjustment unit in the first embodiment.

【図7】実施例におけるフードの取り付け状態を示す斜視図。 Figure 7 is a perspective view showing a mounting state of the hood in the embodiment.

【図8】実施例におけるセルフカット面を示す側面図。 Figure 8 is a side view showing a self-cut face in the embodiment.

【図9】実施例におけるセルフカット面を用いたぶれ測定の様子を示す斜視図。 Figure 9 is a perspective view illustrating a state of vibration measurements using self-cut surface in the embodiment.

【図10】実施例における回転軸位置調整のための構成を示す正面図。 Front view illustrating the configuration for FIG. 10 rotational axis position adjustment in the embodiment.

【図11】加速度センサを備えた実施例を示す斜視図。 Figure 11 is a perspective view showing an embodiment with an acceleration sensor.

【図12】加速度センサを備えた実施例を示す斜視図。 Figure 12 is a perspective view showing an embodiment with an acceleration sensor.

【図13】従来の回転体を示す斜視図。 Figure 13 is a perspective view showing a conventional rotor.

【図14】従来の不釣り合い調整部を示す斜視図。 Figure 14 is a perspective view showing a conventional disproportionate adjustment unit.

【図15】従来の不釣り合い調整部を示す斜視図。 Figure 15 is a perspective view showing a conventional disproportionate adjustment unit. 1
感光材料 2 モータ 3 ペンタプリズム(偏向素子) 4 集光レンズ(集光素子) 5 回転体 11 入射部 12 出射部 15 保持部材 16 カット面 17 穴 18,20 フード 19 溝 21 セルフカット面 23 付勢部材 24 ピエゾ素子(圧電素子) 25 内径測定器 26 ドラム 27 加速度センサ The photosensitive material 2 motor 3 pentaprism (deflector) 4 condensing lens (condensing element) 5 rotating body 11 enters part 12 emitting portion 15 holding member 16 cut face 17 holes 18,20 hood 19 groove 21 with a self-cut surface 23 biases member 24 piezoelectric element; 25 internal diameter measurement device 26 the drum 27 acceleration sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 6識別記号 庁内整理番号 FI 技術表示箇所 G03G 15/04 21/00 502 H04N 1/19 ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 6 identification symbol Agency in Docket No. FI art display portion G03G 15/04 21/00 502 H04N 1/19

Claims (7)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】円筒状の回転体内に偏向素子を保持すると共に、前記回転体をモータによってその円筒軸回りに回転させ、前記回転体の軸方向端面に開口させた入射部から入射される回転軸と平行な光ビームを前記偏向素子によって直角に偏向させて前記回転体の周壁に開口された出射部から出射させ、前記光ビームを前記回転軸の全周にわたって偏向させる構成の光走査装置において、 前記偏向素子を該偏向素子と同材質の保持部材によって前記回転体内に保持することを特徴とする光走査装置。 1. A holds the deflecting element on a cylindrical rotating body, rotating said rotary member is rotated to the cylinder axis by a motor, is incident from the incident part is opened to the axial end face of said rotating body an axis parallel to the light beam perpendicularly deflected by the deflecting element is emitted from the emitting unit which is opened in the peripheral wall of the rotating body, in the optical scanning apparatus in which deflecting the light beam over the entire periphery of said rotary shaft optical scanning device, characterized in that retaining the rotating body of the deflector element by the holding member of the same material as the deflection elements.
  2. 【請求項2】円筒状の回転体内に偏向素子を保持すると共に、前記回転体をモータによってその円筒軸回りに回転させ、前記回転体の軸方向端面に開口させた入射部から入射される回転軸と平行な光ビームを前記偏向素子によって直角に偏向させて前記回転体の周壁に開口された出射部から出射させ、前記光ビームを前記回転軸の全周にわたって偏向させる構成の光走査装置において、 前記回転体の外周を回転軸に略平行な面でカットしたカット面に、前記出射部を開口させたことを特徴とする光走査装置。 2. A holds the deflecting element on a cylindrical rotating body, rotating said rotary member is rotated to the cylinder axis by a motor, is incident from the incident part is opened to the axial end face of said rotating body an axis parallel to the light beam perpendicularly deflected by the deflecting element is emitted from the emitting unit which is opened in the peripheral wall of the rotating body, in the optical scanning apparatus in which deflecting the light beam over the entire periphery of said rotary shaft the outer periphery of the rotating body in the cut surface cut by a plane substantially parallel to the rotation axis, an optical scanning device, characterized in that the exit portion was opened.
  3. 【請求項3】円筒状の回転体内に偏向素子を保持すると共に、前記回転体をモータによってその円筒軸回りに回転させ、前記回転体の軸方向端面に開口させた入射部から入射される回転軸と平行な光ビームを前記偏向素子によって直角に偏向させて前記回転体の周壁に開口された出射部から出射させ、前記光ビームを前記回転軸の全周にわたって偏向させる構成の光走査装置において、 前記回転体の外周壁又は軸方向端面に形成した凹陥部において前記回転体の不釣り合い調整を行う構成であって、前記凹陥部を前記回転体の円筒状外周と面一とするフードを取付けたことを特徴とする光走査装置。 3. A holds the deflecting element on a cylindrical rotating body, rotating said rotary member is rotated to the cylinder axis by a motor, is incident from the incident part is opened to the axial end face of said rotating body an axis parallel to the light beam perpendicularly deflected by the deflecting element is emitted from the emitting unit which is opened in the peripheral wall of the rotating body, in the optical scanning apparatus in which deflecting the light beam over the entire periphery of said rotary shaft , a configuration in which the imbalance adjustment of the rotating body in the recess formed on the outer peripheral wall or the axial end face of the rotating body, mounting the hood to the recess and the cylindrical outer peripheral flush of the rotor an optical scanning device, characterized in that the.
  4. 【請求項4】円筒状の回転体内に偏向素子を保持すると共に、前記回転体をモータによってその円筒軸回りに回転させ、前記回転体の軸方向端面に開口させた入射部から入射される回転軸と平行な光ビームを前記偏向素子によって直角に偏向させて前記回転体の周壁に開口された出射部から出射させ、前記光ビームを前記回転軸の全周にわたって偏向させる構成の光走査装置において、 前記回転体の外周に前記モータによる回転駆動によって形成されたセルフカット面を設け、該セルフカット面を基準として前記回転体の回転軸位置又は前記回転体のぶれを測定することを特徴とする光走査装置。 4. A holds the deflecting element on a cylindrical rotating body, rotating said rotary member is rotated to the cylinder axis by a motor, is incident from the incident part is opened to the axial end face of said rotating body an axis parallel to the light beam perpendicularly deflected by the deflecting element is emitted from the emitting unit which is opened in the peripheral wall of the rotating body, in the optical scanning apparatus in which deflecting the light beam over the entire periphery of said rotary shaft , the rotating body periphery to provide a self-cut surface formed by the driving rotation by said motor, and measuring the vibration of the rotary shaft position or the rotating body of the rotating body based on the said self-cut surface optical scanning device.
  5. 【請求項5】円筒状の回転体内に偏向素子を保持すると共に、前記回転体をモータによってその円筒軸回りに回転させ、前記回転体の軸方向端面に開口させた入射部から入射される回転軸と平行な光ビームを前記偏向素子によって直角に偏向させて前記回転体の周壁に開口された出射部から出射させ、前記光ビームを前記回転軸の全周にわたって偏向させる構成の光走査装置において、 前記モータ又は該モータの保持部に加速度センサを設け、該加速度センサによって異常振動を検出することを特徴とする光走査装置。 5. A holds the deflecting element on a cylindrical rotating body, rotating said rotary member is rotated to the cylinder axis by a motor, is incident from the incident part is opened to the axial end face of said rotating body an axis parallel to the light beam perpendicularly deflected by the deflecting element is emitted from the emitting unit which is opened in the peripheral wall of the rotating body, in the optical scanning apparatus in which deflecting the light beam over the entire periphery of said rotary shaft , an acceleration sensor is provided in the holding portion of the motor or the motor, an optical scanning device and detects the abnormal vibration by the acceleration sensor.
  6. 【請求項6】円筒状の回転体内に偏向素子を保持すると共に、前記回転体をモータによってその円筒軸回りに回転させ、前記回転体の軸方向端面に開口させた入射部から入射される回転軸と平行な光ビームを前記偏向素子によって直角に偏向させて前記回転体の周壁に開口された出射部から出射させ、前記光ビームを前記回転軸の全周にわたって偏向させる構成の光走査装置において、 前記偏向素子と一体に集光素子を設けたことを特徴とする光走査装置。 6. holds the deflecting element on a cylindrical rotating body, rotating said rotary member is rotated to the cylinder axis by a motor, is incident from the incident part is opened to the axial end face of said rotating body an axis parallel to the light beam perpendicularly deflected by the deflecting element is emitted from the emitting unit which is opened in the peripheral wall of the rotating body, in the optical scanning apparatus in which deflecting the light beam over the entire periphery of said rotary shaft optical scanning device which is characterized in that a condensing element integrally with the deflector element.
  7. 【請求項7】円筒状の回転体内に偏向素子を保持すると共に、前記回転体をモータによってその円筒軸回りに回転させ、前記回転体の軸方向端面に開口させた入射部から入射される回転軸と平行な光ビームを前記偏向素子によって直角に偏向させて前記回転体の周壁に開口された出射部から出射させ、前記光ビームを前記回転軸の全周にわたって偏向させる構成の光走査装置において、 前記光走査装置の取り付け基準面と前記回転体の回転軸との間の距離を測定し、該測定結果に基づいて前記モータを径方向で支持する圧電素子に対する印加電圧を制御して回転体の中心軸調整を行うことを特徴とする光走査装置。 7. holds the deflecting element on a cylindrical rotating body, rotating said rotary member is rotated to the cylinder axis by a motor, is incident from the incident part is opened to the axial end face of said rotating body an axis parallel to the light beam perpendicularly deflected by the deflecting element is emitted from the emitting unit which is opened in the peripheral wall of the rotating body, in the optical scanning apparatus in which deflecting the light beam over the entire periphery of said rotary shaft , the distance between the rotation axis of the mounting reference surface and the rotating body of the optical scanning device measures the rotation body by controlling the voltage applied to the piezoelectric element for supporting the motor in the radial direction based on the measurement result optical scanning apparatus which is characterized in that the central axis adjustment.
JP6274047A 1994-11-08 1994-11-08 Optical scanner Pending JPH08136849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6274047A JPH08136849A (en) 1994-11-08 1994-11-08 Optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6274047A JPH08136849A (en) 1994-11-08 1994-11-08 Optical scanner

Publications (1)

Publication Number Publication Date
JPH08136849A true JPH08136849A (en) 1996-05-31

Family

ID=17536234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6274047A Pending JPH08136849A (en) 1994-11-08 1994-11-08 Optical scanner

Country Status (1)

Country Link
JP (1) JPH08136849A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094287A (en) * 1998-12-03 2000-07-25 Eastman Kodak Company Wobble correcting monogon scanner for a laser imaging system
JP2013508695A (en) * 2009-11-20 2013-03-07 ファロ テクノロジーズ インコーポレーテッド Environmental optically scanned to measure an apparatus for
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9163922B2 (en) 2010-01-20 2015-10-20 Faro Technologies, Inc. Coordinate measurement machine with distance meter and camera to determine dimensions within camera images
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094287A (en) * 1998-12-03 2000-07-25 Eastman Kodak Company Wobble correcting monogon scanner for a laser imaging system
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
JP2013508695A (en) * 2009-11-20 2013-03-07 ファロ テクノロジーズ インコーポレーテッド Environmental optically scanned to measure an apparatus for
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9163922B2 (en) 2010-01-20 2015-10-20 Faro Technologies, Inc. Coordinate measurement machine with distance meter and camera to determine dimensions within camera images
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
US9684078B2 (en) 2010-05-10 2017-06-20 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US9739886B2 (en) 2012-10-05 2017-08-22 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9746559B2 (en) 2012-10-05 2017-08-29 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10203413B2 (en) 2012-10-05 2019-02-12 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack

Similar Documents

Publication Publication Date Title
JP3422581B2 (en) Support apparatus for an optical scanning device
EP0075628B2 (en) Beam intensity measurement system for raster scanners
US6285390B1 (en) Rotatable mirror assembly
JP4065681B2 (en) Three-dimensional recording device of a scene using a laser radiation
US6441908B1 (en) Profiling of a component having reduced sensitivity to anomalous off-axis reflections
KR890000199B1 (en) Electro-optical apparatus
US5610751A (en) Optical scanning device having a spherical exit window
US4918306A (en) Apparatus for adjusting a beam position detecting device
EP1445097B1 (en) Verifying correct mounting of a printing plate on an external drum imaging machine
JP2004047994A (en) Deformable mirror actuation system
US7969636B2 (en) Laser direct imaging apparatus
CN1506713A (en) Apparatus for generating laser beam detecting signal
US5661559A (en) Optical surface detection for magnetic disks
US5026133A (en) Large format laser scanner with wavelength insensitive scanning mechanism
KR0136840B1 (en) A light scanning apparatus
US5793408A (en) Optical scanning apparatus with improved structure for adjusting focus position
US5245481A (en) Optical unit and method of fixing optical elements in optical unit
JP3504899B2 (en) Optical scanning device
JP3327781B2 (en) Position detecting device and the adjusting method thereof assay method
JP3705629B2 (en) Light modulation control device in a rotational polygonal format image forming apparatus
US4367912A (en) Light deflecting apparatus
KR20080098629A (en) Method and device for the correction of imaging defects
CN1324297C (en) Scanning unit for a position measuring device
JP2928552B2 (en) Scanning optical device
JP2001215434A (en) Optical scanner