JPH08126628A - Magnetic resonance tomographic imaging apparatus - Google Patents

Magnetic resonance tomographic imaging apparatus

Info

Publication number
JPH08126628A
JPH08126628A JP6292130A JP29213094A JPH08126628A JP H08126628 A JPH08126628 A JP H08126628A JP 6292130 A JP6292130 A JP 6292130A JP 29213094 A JP29213094 A JP 29213094A JP H08126628 A JPH08126628 A JP H08126628A
Authority
JP
Japan
Prior art keywords
coil
magnetic field
flat plate
gradient magnetic
conductor flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6292130A
Other languages
Japanese (ja)
Inventor
Kiyoto Sonoki
清人 園木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP6292130A priority Critical patent/JPH08126628A/en
Publication of JPH08126628A publication Critical patent/JPH08126628A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a magetic resonance tomographic imaging apparatus equipped with an inclined magnetic field coil or static magnetic field correcting shim coil reduced in resistance value as low as possible and easy to produce. CONSTITUTION: This magnetic resonance tomographic imaging apparatus is equipped with an inclined magnetic field coil and/or a static magnetic field correcting shim coil formed by forming short strip-shaped conductors 12 becoming the filaments of the coil by alternately providing deep notches to the opposed sides of an almost rectangular conductor flat plate at an interval determined so as to show a desired change in the current density of the coil and winding this notched conductor flat plate around a coil bobbin 20 while folding back the same at the connection parts 13 of the short strip-shaped conductors 12 on the deep side of the respective notches.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、核磁気共鳴現象を利
用して断層像撮影をする磁気共鳴断層撮影(MRI)装
置に係り、特に、MRI装置に備えられる傾斜磁場コイ
ルや静磁場補正用シムコイルの構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic resonance tomography (MRI) apparatus for taking a tomographic image by utilizing a nuclear magnetic resonance phenomenon, and more particularly to a gradient magnetic field coil and a static magnetic field correction provided in the MRI apparatus. The structure of the shim coil is related.

【0002】[0002]

【従来の技術】図6にMRI装置の要部構成を示す。周
知のように、MRI装置のガントリ1内には、被検体が
挿通される貫通孔2内の撮像領域に均一な静磁場空間を
形成するための主マグネット3と、撮像領域の直交する
3軸方向(X,Y,Z)に磁場強度が変化した傾斜磁場
を形成するための傾斜磁場コイル4(4X ,4Y
Z)と、主マグネット3による静磁場の不均一性を補
正するための静磁場補正用シムコイル5等が備えられて
いる。傾斜磁場コイル4と静磁場補正用シムコイル5と
は、発生させる磁場分布の関数の次数が異なるだけで、
基本的な構造、および主マグネット3による静磁場の分
布を意図的に変えるという作用は同じであるので、以下
では傾斜磁場コイル4を例に採って説明する。
2. Description of the Related Art FIG. 6 shows a main structure of an MRI apparatus. As is well known, in the gantry 1 of the MRI apparatus, a main magnet 3 for forming a uniform static magnetic field space in an imaging area in a through hole 2 through which a subject is inserted, and three axes orthogonal to the imaging area. Gradient magnetic field coils 4 (4 X , 4 Y , for forming a gradient magnetic field whose magnetic field strength changes in the directions (X, Y, Z)
4 Z ) and a static magnetic field correction shim coil 5 for correcting the non-uniformity of the static magnetic field due to the main magnet 3. The gradient magnetic field coil 4 and the static magnetic field correction shim coil 5 differ only in the order of the function of the generated magnetic field distribution,
Since the basic structure and the action of intentionally changing the distribution of the static magnetic field by the main magnet 3 are the same, the gradient magnetic field coil 4 will be described below as an example.

【0003】図7(a) は、ガントリ1の貫通孔2の軸心
方向(Z方向)に磁場強度が変化する傾斜磁場を発生さ
せるための傾斜磁場コイルの概略構成を示している。こ
の傾斜磁場コイル4Z は、撮像領域の中心Oを挟んでZ
方向に対向配備された、例えば6つに分割されたコイル
Z1〜4Z6を直列に電気接続して構成されている。コイ
ル対4Z1と4Z4、コイル対4Z2と4Z5、コイル対4Z3
Z6は、それぞれ巻き数が同じで、巻き方向が逆に設定
されることにより、図7(b) に示すように、Z方向に磁
場強度がリニアに変化した傾斜磁場が得られるようにな
っている。この傾斜磁場の線形性は、断層画像の品質
(データの位置の正確性)に大きく寄与するので、線形
性の確保は重要である。
FIG. 7 (a) shows a schematic structure of a gradient magnetic field coil for generating a gradient magnetic field whose magnetic field strength changes in the axial direction (Z direction) of the through hole 2 of the gantry 1. The gradient magnetic field coil 4 Z has Z
For example, the coils 4 Z1 to 4 Z6 , which are arranged so as to face each other and are divided into six, are electrically connected in series. The coil pairs 4 Z1 and 4 Z4 , the coil pairs 4 Z2 and 4 Z5 , and the coil pairs 4 Z3 and 4 Z6 have the same number of turns respectively, but the winding directions are set in reverse, so that it is shown in FIG. 7 (b). Thus, a gradient magnetic field in which the magnetic field strength changes linearly in the Z direction can be obtained. The linearity of the gradient magnetic field greatly contributes to the quality of the tomographic image (accuracy of the position of the data), and thus ensuring the linearity is important.

【0004】ところが、上記の傾斜磁場コイルによれ
ば、線形性が確保されたとしても、密に巻かれた各コイ
ル4Z1〜4Z6が配置された領域に電流が集中する(電流
密度が大きくなる)ので、コイルの自己インダクタンス
が大きくなる。その結果、傾斜磁場の立ち上がりが遅く
なり、高速度で断層撮影を行うことができないという難
点がある。
However, according to the above-mentioned gradient magnetic field coil, even if the linearity is secured, the current is concentrated in the region where the densely wound coils 4 Z1 to 4 Z6 are arranged (the current density is large). Therefore, the self-inductance of the coil increases. As a result, the rise of the gradient magnetic field is delayed, and there is a drawback that it is not possible to perform tomography at high speed.

【0005】そこで、最近では、傾斜磁場の線形性の確
保と、コイルのインダクタンスの低減を企図して、電流
密度が連続的に変化するモデル(関数系)について、傾
斜磁場の高線形性を得るための最適化を行い、この関数
系を離散化することにより、コイルのフィラメント(導
線)の位置関係を決定する手法が採られるようになって
きている。このような最適化手法はいくつか提案されて
いるが、以下では図3〜図5を参照して流れ関数法と呼
ばれる手法を例に採って説明する。
Therefore, recently, in order to secure the linearity of the gradient magnetic field and reduce the inductance of the coil, a highly linear gradient magnetic field is obtained for a model (function system) in which the current density continuously changes. Therefore, a method of determining the positional relationship of the filaments (conductors) of the coil has been adopted by optimizing for this purpose and discretizing this functional system. Although some such optimization methods have been proposed, a method called a stream function method will be described below as an example with reference to FIGS. 3 to 5.

【0006】図3は流れ関数の説明に供する電流密度と
Z方向位置との関係を示す図、図4はは流れ関数と傾斜
磁場コイルのフィラメントの位置関係を示す図、図5は
流れ関数法によって得られた従来の傾斜磁場コイルの平
面図である。
FIG. 3 is a diagram showing the relationship between the current density and the position in the Z direction used to explain the stream function, FIG. 4 is a diagram showing the positional relationship between the stream function and the filament of the gradient magnetic field coil, and FIG. 5 is the stream function method. It is a top view of the conventional gradient magnetic field coil obtained by.

【0007】まず、図3を参照して流れ関数の概念を説
明する。Z方向の傾斜磁場コイルを例に採って説明す
る。このコイルの自己インダクタンスを低減するため
に、図3に示すように、電流密度がZ方向にリニアに変
化するようなモデルを想定する。ただし、実際にはZ方
向は有限であるので、補正の必要性から電流密度の変化
は完全なリニアではないが、ここでは説明の便宜のため
にリニアであるとしてと説明する。なお、図中の符号O
は撮像領域の中心である。このモデルにおいて、Z方向
に10分割した、ある領域Ai (iは1〜10)を流れ
る総電流量は、図3に示した斜線領域の面積Si で表さ
れる。したがって、各分割領域A1 〜A10に対応した面
積S1 〜S10が等しくなるように領域A1 〜A10を分割
し、各領域A1 〜A10の中心位置に一本のフィラメント
1 〜f10を置いてやれば、図3に示したと同等の電流
密度分布を得ることができる。
First, the concept of the stream function will be described with reference to FIG. An explanation will be given taking a gradient magnetic field coil in the Z direction as an example. In order to reduce the self-inductance of this coil, a model in which the current density changes linearly in the Z direction is assumed as shown in FIG. However, since the Z direction is actually finite, the change in the current density is not completely linear because of the necessity of correction, but here, for convenience of description, it is described as being linear. In addition, the symbol O in the figure
Is the center of the imaging area. In this model, the total amount of current flowing through a certain area A i (i is 1 to 10) divided into 10 in the Z direction is represented by the area S i of the hatched area shown in FIG. Thus, the divided areas A 1 to A area S 1 to S 10 corresponding to the 10 divides the area A 1 to A 10 to be equal, the areas A 1 to A 10 single filaments f at the center of the If 1 to f 10 are set, the current density distribution equivalent to that shown in FIG. 3 can be obtained.

【0008】図4に示した流れ関数は、図3に示した電
流密度の積分関数である。したがって、図4に示した流
れ関数は、近似的に二次関数である。したがって、傾斜
磁場コイルの出力に応じてコイルの巻数Tが決定される
と、その巻数Tに等しい数だけ、図4の縦軸(流れ関数
の軸)を等しい間隔でT分割(例えば、10分割)す
る。そして、図4(c)に示すように、各分割領域A1
〜A10の中心位置に各々一本のフィラメントf1 〜f10
を置いてやれば、図3で説明したと同様なリニアな電流
密度分布を得ることができる。図5に示すように上述し
た流れ関数法で得られた従来の傾斜磁場コイルによれ
ば、コイルボビン20に巻回されたフィラメント(導
線)fは、ボビン両端部で巻き間隔が狭く、ボビン中央
部で広くなっており、撮像中心Oを挟んでフィラメント
fの巻き方向が左右逆になっている。
The stream function shown in FIG. 4 is an integral function of the current density shown in FIG. Therefore, the stream function shown in FIG. 4 is approximately a quadratic function. Therefore, when the number of turns T of the coil is determined according to the output of the gradient magnetic field coil, the vertical axis (axis of the stream function) of FIG. 4 is divided into Ts (for example, 10 divisions) at equal intervals by a number equal to the number of turns T. ) Do. Then, as shown in FIG. 4C, each divided area A 1
Filament f 1 each one of the center position of the to A 10 ~f 10
With the above, it is possible to obtain a linear current density distribution similar to that described in FIG. As shown in FIG. 5, according to the conventional gradient magnetic field coil obtained by the above-described stream function method, the filament (conductor wire) f wound around the coil bobbin 20 has a narrow winding interval at both ends of the bobbin and has a central portion of the bobbin. And the winding direction of the filament f is left-right reversed with the imaging center O interposed therebetween.

【0009】上述したような手法によれば、関数の最適
化により傾斜磁場の高線形性が確保されるとともに、フ
ィラメントの局所的な集中が避けられるのでコイルの自
己インダクタンスが低減し、傾斜磁場の立ち上がり時間
が短くなり、高速度撮影に適した傾斜磁場コイルを実現
することができる。
According to the above-described method, the function is optimized to ensure the high linearity of the gradient magnetic field, and the local concentration of the filament is avoided, so that the self-inductance of the coil is reduced and the gradient magnetic field is reduced. The rise time is shortened, and a gradient magnetic field coil suitable for high-speed imaging can be realized.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、このよ
うな構成を有する従来例の場合には、次のような問題が
ある。すなわち、断面形状が円形の導線であるフィラメ
ントの断面積が、傾斜磁場コイルの両端部の最小フィラ
メント間隔によって制限されるので、フィラメントの断
面積をあまり大きくすることができない。その結果、傾
斜磁場コイルの抵抗値が大きくなり、傾斜磁場コイル駆
動用の電源として大出力のものが必要となったり、傾斜
磁場コイルの発熱量が大きくなるという問題点がある。
However, the prior art having such a structure has the following problems. That is, since the cross-sectional area of the filament, which is a conductor wire having a circular cross-sectional shape, is limited by the minimum filament spacing at both ends of the gradient magnetic field coil, the cross-sectional area of the filament cannot be increased so much. As a result, there is a problem that the resistance value of the gradient magnetic field coil becomes large, a power source for driving the gradient magnetic field coil needs a large output, and the amount of heat generation of the gradient magnetic field coil becomes large.

【0011】また、フィラメントを巻回する過程で、フ
ィラメント位置に製作誤差が生じやすいという問題点も
ある。
There is also a problem that a manufacturing error is likely to occur at the filament position during the process of winding the filament.

【0012】以上のような問題点は、同様の構成および
作用を有する他のX,Y方向の傾斜磁場コイルや、静磁
場補正用シムコイルについても言える。
The above-mentioned problems can be applied to other gradient magnetic field coils in the X and Y directions and a shim coil for correcting a static magnetic field, which have the same structure and function.

【0013】この発明は、このような事情に鑑みてなさ
れたものであって、コイルの抵抗値が極力小さく、かつ
製作の容易な傾斜磁場コイルあるいは静磁場補正用シム
コイルを備えた磁気共鳴断層撮影装置を提供することを
目的としている。
The present invention has been made in view of the above circumstances, and a magnetic resonance tomography having a gradient magnetic field coil or a static magnetic field correction shim coil whose resistance value is as small as possible and which is easy to manufacture. The purpose is to provide a device.

【0014】[0014]

【課題を解決するための手段】この発明は、このような
目的を達成するために、次のような構成をとる。すなわ
ち、この発明に係る磁気共鳴断層撮影装置は、略矩形状
の導体平板の対向側辺に、コイルの電流密度が所望の変
化を呈するように決定された間隔で、交互に深い切り込
みを入れることにより、コイルのフィラメントになる短
冊状導体を形成し、この切り込みが入れられた導体平板
を、各切り込みの奥側にあたる短冊導体の連結部で折り
返しながらコイルボビンに巻き付けて形成された傾斜磁
場コイルおよび/または静磁場補正用シムコイルを備え
たものである。
The present invention has the following configuration to achieve the above object. That is, in the magnetic resonance tomography apparatus according to the present invention, deep cuts are alternately formed on opposite sides of a substantially rectangular conductor flat plate at intervals determined so that the current density of the coil exhibits a desired change. By forming a strip-shaped conductor to be a filament of the coil, and winding the conductor flat plate in which the notch is made around the coil bobbin while being folded back at the connecting portion of the strip conductor at the back side of each notch and / Alternatively, a shim coil for static magnetic field correction is provided.

【0015】[0015]

【作用】この発明によれば、コイルのフィラメントにな
る短冊状導体の幅は、コイルの電流密度が所望の変化を
呈するように決定された切り込みの間隔に応じて変化す
る。つまり、電流密度が高く設定されたところでは切り
込みの間隔が狭くなるので短冊状導体の幅は狭くなる
が、電流密度が低く設定されたところでは切り込みの間
隔が広くなるので短冊状導体の幅も広くなる。したがっ
て、各短冊状導体の断面積は、必要とされるコイルの電
流密度の変化との関係で最大値を採るので、コイルの抵
抗値が極力小さくなる。また、コイルボビンに巻回され
た短冊状導体(フィラメント)の位置関係は、平板導体
の切り込み間隔で決定されているので、コイルへの巻き
付け時のフィラメントの位置関係の製作誤差が発生しに
くい。
According to the present invention, the width of the strip-shaped conductor serving as the filament of the coil changes according to the intervals of the cuts determined so that the current density of the coil exhibits the desired change. In other words, when the current density is set high, the gap between the cuts becomes narrow, so the width of the strip conductor becomes narrow, but when the current density is set low, the gap between the cuts becomes wide, so the width of the strip conductor also becomes narrow. Get wider Therefore, since the cross-sectional area of each strip-shaped conductor takes the maximum value in relation to the required change in the current density of the coil, the resistance value of the coil becomes as small as possible. Further, since the positional relationship between the strip-shaped conductors (filaments) wound around the coil bobbin is determined by the cut intervals of the flat plate conductors, a manufacturing error in the positional relationship of the filaments when winding around the coil is unlikely to occur.

【0016】[0016]

【実施例】以下、図面を参照してこの発明の実施例を説
明する。実施例に係る磁気共鳴断層撮影装置のガントリ
等の構成は、図6に示した従来装置と同様であるので、
ここではその説明を省略する。以下では、実施例の要部
である傾斜磁場コイルの構成について説明する。
Embodiments of the present invention will be described below with reference to the drawings. Since the configuration of the gantry and the like of the magnetic resonance tomography apparatus according to the embodiment is similar to that of the conventional apparatus shown in FIG. 6,
The description is omitted here. The configuration of the gradient magnetic field coil, which is the main part of the embodiment, will be described below.

【0017】図1は傾斜磁場コイル用の導体平板の平面
図、図2は導体平板が巻回されて構成された傾斜磁場コ
イルの平面図である。図1に示すように、導体平板10
は略矩形状を呈し、厚さが1〜3mm程度の銅板で形成
されている。導体平板10の長さLは、この導体平板1
0が巻回されるコイルボビン20(図2参照)の長さに
略等しい。また、導体平板10の幅Wは、コイルボビン
20の円周長Sから導体間間隔α(図2参照)を差し引
いた長さに折り返し部分の長さδを加えた長さ(S−α
+δ)に設定されている。
FIG. 1 is a plan view of a conductor flat plate for a gradient magnetic field coil, and FIG. 2 is a plan view of a gradient magnetic field coil formed by winding a conductor flat plate. As shown in FIG. 1, the conductor flat plate 10
Has a substantially rectangular shape, and is formed of a copper plate having a thickness of about 1 to 3 mm. The length L of the conductor flat plate 10 is equal to
0 is substantially equal to the length of the coil bobbin 20 (see FIG. 2) wound around. Further, the width W of the conductor flat plate 10 is a length obtained by subtracting the inter-conductor spacing α (see FIG. 2) from the circumferential length S of the coil bobbin 20 plus the length δ of the folded portion (S−α).
+ Δ) is set.

【0018】この導体平板10の対向する側辺10a,
10bに交互に深い切り込み11(111 ,112 ,1
3 ,…)が入れられることにより、コイルのフィラメ
ントになる短冊状導体12(121 ,122 ,123
…)が形成されている。切り込み11は機械加工やエッ
チング加工等の適宜な手段で形成される。また、各切り
込み11の幅は、加工上の制約で1〜3mm程度であ
る。なお、コイルボビン20への短冊状導体12の巻回
方向は、ボビン中央部で切り換えられるので、導体平板
10の一方の側辺10aの中央部には折り返し部分がな
く、図1に示すような切欠き14が形成されている。
The opposite sides 10a of the conductor flat plate 10,
Alternate deep cuts 11 (11 1 , 11 2 , 1 in 10b)
1 3, ...) by is entered, the strip-shaped conductor 12 made a filament coil (12 1, 12 2, 12 3,
…) Is formed. The notch 11 is formed by an appropriate means such as machining or etching. The width of each notch 11 is about 1 to 3 mm due to processing restrictions. Since the winding direction of the strip-shaped conductor 12 around the coil bobbin 20 can be switched at the central portion of the bobbin, there is no folded portion at the central portion of one side 10a of the conductor flat plate 10, and there is no cut as shown in FIG. The notch 14 is formed.

【0019】切り込み11の間隔、換言すれば短冊状導
体12の幅は、図4に示した流れ関数とZ方向位置との
関係から決定される。すなわち、傾斜磁場コイルの出力
に応じてコイルの巻数Tが決定されると、その巻数Tに
等しい数だけ、図4の縦軸(流れ関数の軸)を等しい間
隔でT分割する。各々の分割線に対応するZ方向の位置
が切り込み11を形成する位置になる。結果、図4の
(b)に示すように、切り込み11の間隔(つまり、短
冊状導体12の幅)は、撮像中心Oに対応した導体平板
10の中央部(コイル中央部)が広く、導体平板10の
両端(コイル両端)に行くに従って狭くなる。
The interval between the notches 11, in other words, the width of the strip-shaped conductor 12 is determined from the relationship between the stream function and the Z direction position shown in FIG. That is, when the number of turns T of the coil is determined according to the output of the gradient magnetic field coil, the vertical axis (axis of the stream function) of FIG. 4 is divided into Ts at equal intervals by a number equal to the number of turns T. The position in the Z direction corresponding to each dividing line is the position where the cut 11 is formed. As a result, as shown in FIG. 4B, the gap between the cuts 11 (that is, the width of the strip-shaped conductor 12) is wide in the central portion (coil central portion) of the conductor flat plate 10 corresponding to the imaging center O, and It becomes narrower toward both ends (both ends of the coil) of the flat plate 10.

【0020】以上のような導体平板10を切り込み11
の奥側にあたる短冊状導体12の連結部13で折り返し
ながら、短冊状導体12をコイルボビン20に巻き付け
ていく。そして、導体平板10の中央部の切欠き14部
分では短冊状導体12を折り返することなく巻回し、そ
れ以降は連結部13で折り返して短冊状導体12を巻回
していく。結果、図2に示した傾斜磁場コイルのよう
に、右半分と左半分とで巻き方向が逆で、直列接続され
たコイルLL ,LR が得られる。以上のようにして短冊
状導体12を巻回した後、位置固定のために樹脂で固め
られる。
The conductor flat plate 10 as described above is cut 11
The strip-shaped conductor 12 is wound around the coil bobbin 20 while being folded back at the connecting portion 13 of the strip-shaped conductor 12 which is the inner side of the strip-shaped conductor 12. Then, the strip-shaped conductor 12 is wound around the notch 14 in the central portion of the conductor flat plate 10 without being folded back, and thereafter, the strip-shaped conductor 12 is wound around by being folded back at the connecting portion 13. As a result, like the gradient magnetic field coil shown in FIG. 2, coils L L and L R in which the right half and the left half have opposite winding directions and are connected in series are obtained. After winding the strip-shaped conductor 12 as described above, the strip-shaped conductor 12 is fixed with resin for fixing the position.

【0021】磁気共鳴断層撮影装置に使用される傾斜磁
場コイルはX,Y,Z方向に対応した3つの傾斜磁場コ
イルから構成されるので、各々の傾斜磁場コイルは絶縁
シートを介在させて、上述したと同様に同一コイルボビ
ン上に積層形成される。
Since the gradient magnetic field coil used in the magnetic resonance tomography apparatus is composed of three gradient magnetic field coils corresponding to the X, Y, and Z directions, each of the gradient magnetic field coils has an insulating sheet interposed between them. In the same manner as described above, the layers are formed on the same coil bobbin.

【0022】なお、この発明は上述した実施例に限定さ
れず、以下のように変形実施することも可能である。
The present invention is not limited to the above-mentioned embodiment, but can be modified as follows.

【0023】(1) 実施例では傾斜磁場コイルを例に採っ
て説明したが、この発明は主マグネットの静磁場の不均
一性を補正するための静磁場補正用シムコイルにも適用
することができる。
(1) In the embodiment, the gradient magnetic field coil has been described as an example, but the present invention can also be applied to a static magnetic field correction shim coil for correcting the nonuniformity of the static magnetic field of the main magnet. .

【0024】(2) 実施例では、導体平板10に形成され
る切り込み11は側辺10a,10bに直交している
が、切り込み11を斜め方向に形成してもよい。この場
合、短冊状導体12はコイルボビン20に螺旋状に巻回
されることになる。
(2) In the embodiment, the cut 11 formed in the conductor flat plate 10 is orthogonal to the side edges 10a and 10b, but the cut 11 may be formed in an oblique direction. In this case, the strip-shaped conductor 12 is spirally wound around the coil bobbin 20.

【0025】(3) 実施例では、巻数Tの一つのコイルを
形成するのに一枚の導体平板を用いたが、複数枚の導体
平板を積層することにより、一つのコイルを形成するよ
うにしてもよい。このような積層構造にすれば、各導体
平板の板厚みを薄くできるので、切り込み形成のための
加工やボビンへの巻回作業が容易になる。
(3) In the embodiment, one conductor flat plate is used to form one coil having the number of turns T, but one coil is formed by stacking a plurality of conductor flat plates. May be. With such a laminated structure, the plate thickness of each conductor flat plate can be reduced, so that the processing for forming the notches and the winding operation on the bobbin are facilitated.

【0026】[0026]

【発明の効果】以上の説明から明らかなように、この発
明によれば、コイルボビンに巻回される導体平板の各短
冊状導体の断面積は、必要とされるコイルの電流密度の
変化との関係で最大値を採るので、コイルの抵抗値を極
力小さくすくことができる。また、短冊状導体(フィラ
メント)の位置関係は、平板導体の切り込み間隔で決定
されているので、コイルへの巻き付け時のフィラメント
の位置関係の製作誤差が発生しにくい。
As is apparent from the above description, according to the present invention, the cross-sectional area of each strip-shaped conductor of the conductor flat plate wound around the coil bobbin is different from the required change in the current density of the coil. Since the maximum value is adopted because of the relationship, the resistance value of the coil can be minimized. Further, the positional relationship of the strip-shaped conductors (filaments) is determined by the cut intervals of the flat plate conductors, so that a manufacturing error in the positional relationship of the filaments when wound around the coil is unlikely to occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に用いられる導体平板の平面図である。FIG. 1 is a plan view of a conductor flat plate used in Examples.

【図2】実施例に係る傾斜磁場コイルの平面図てある。FIG. 2 is a plan view of a gradient magnetic field coil according to an embodiment.

【図3】流れ関数の説明に供する電流密度とZ方向位置
との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a current density and a Z-direction position, which is used for explaining a flow function.

【図4】流れ関数とZ方向位置との関係を示すグラフで
ある。
FIG. 4 is a graph showing a relationship between a stream function and a Z-direction position.

【図5】従来例に係る傾斜磁場コイルの平面図である。FIG. 5 is a plan view of a gradient magnetic field coil according to a conventional example.

【図6】MRI装置のガントリの概略構成を示す断面図
である。
FIG. 6 is a sectional view showing a schematic configuration of a gantry of the MRI apparatus.

【図7】従来例に係る別の傾斜磁場コイルの模式図であ
る。
FIG. 7 is a schematic diagram of another gradient magnetic field coil according to a conventional example.

【符号の説明】[Explanation of symbols]

10…導体平板 11…切り込み 12…短冊状導体 13…連結部 20…コイルボビン 10 ... Conductor flat plate 11 ... Notch 12 ... Strip-shaped conductor 13 ... Connection part 20 ... Coil bobbin

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 略矩形状の導体平板の対向側辺に、コイ
ルの電流密度が所望の変化を呈するように決定された間
隔で、交互に深い切り込みを入れることにより、コイル
のフィラメントになる短冊状導体を形成し、この切り込
みが入れられた導体平板を、各切り込みの奥側にあたる
短冊導体の連結部で折り返しながらコイルボビンに巻き
付けて形成された傾斜磁場コイルおよび/または静磁場
補正用シムコイルを備えたことを特徴とする磁気共鳴断
層撮影装置。
1. A strip that becomes a filament of a coil by alternately making deep cuts on opposite sides of a substantially rectangular conductor flat plate at intervals determined so that the current density of the coil exhibits a desired change. A magnetic field coil and / or a shim coil for correcting static magnetic field, which is formed by winding a conductor flat plate in which a notch is formed and winding it around a coil bobbin while folding back the conductor flat plate at the back side of each notch A magnetic resonance tomography apparatus characterized by the above.
JP6292130A 1994-10-31 1994-10-31 Magnetic resonance tomographic imaging apparatus Pending JPH08126628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6292130A JPH08126628A (en) 1994-10-31 1994-10-31 Magnetic resonance tomographic imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6292130A JPH08126628A (en) 1994-10-31 1994-10-31 Magnetic resonance tomographic imaging apparatus

Publications (1)

Publication Number Publication Date
JPH08126628A true JPH08126628A (en) 1996-05-21

Family

ID=17777930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6292130A Pending JPH08126628A (en) 1994-10-31 1994-10-31 Magnetic resonance tomographic imaging apparatus

Country Status (1)

Country Link
JP (1) JPH08126628A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013031664A (en) * 2011-08-02 2013-02-14 Siemens Ag Local coil for imaging system, and method for shimming and/or uniforming magnetic field in imaging system with local coil
JP2019141226A (en) * 2018-02-19 2019-08-29 キヤノンメディカルシステムズ株式会社 Gradient magnetic field coil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013031664A (en) * 2011-08-02 2013-02-14 Siemens Ag Local coil for imaging system, and method for shimming and/or uniforming magnetic field in imaging system with local coil
JP2019141226A (en) * 2018-02-19 2019-08-29 キヤノンメディカルシステムズ株式会社 Gradient magnetic field coil

Similar Documents

Publication Publication Date Title
US6311389B1 (en) Gradient magnetic coil apparatus and method of manufacturing the same
US7852083B2 (en) Magnetic resonance imaging apparatus and gradient magnetic field coil
US20060279160A1 (en) Rotary electric machine with a stator core made of magnetic steel sheets and the stator core thereof
CA1257644A (en) Axisymmetric correction coil system for nmr magnets
JP2004255182A (en) Gradient magnetic field coil for magnetic resonance tomography apparatus and its production method
US4492890A (en) Stator winding providing magnetomotive force wave of reduced harmonic content
JP2000040631A (en) Transformer
JPH08126628A (en) Magnetic resonance tomographic imaging apparatus
US20040194293A1 (en) Manufacture of shim windings
JPS6240711A (en) Manufacture of doughnut-shaped winding
JPH0732096B2 (en) Superconducting device
US5623208A (en) Z-axis magnetic field gradient coil structure for magnetic resonance system
JPH05308017A (en) Gradient magnetic field generating equipment
JP2615579B2 (en) Superconducting magnet
JP4303837B2 (en) Coil manufacturing method
JP3350143B2 (en) Magnetic resonance imaging equipment
JP2000157511A (en) Device for forming magnetic field in gap
WO2005069466A1 (en) Stepping motor
JP2004073288A (en) Coil device
JP4004661B2 (en) Magnetic resonance imaging system
JPS62256209A (en) Thin-film magnetic head
JPH01166309A (en) Thin film magnetic head
JP3370924B2 (en) Winding method of split type superconducting coil
JPH0731121A (en) Stepping motor
JPH10155760A (en) Coil unit for generating magnetic field