JPH08125835A - Omniazimuth photographing device and omniazimuth image synthesizer - Google Patents

Omniazimuth photographing device and omniazimuth image synthesizer

Info

Publication number
JPH08125835A
JPH08125835A JP6260168A JP26016894A JPH08125835A JP H08125835 A JPH08125835 A JP H08125835A JP 6260168 A JP6260168 A JP 6260168A JP 26016894 A JP26016894 A JP 26016894A JP H08125835 A JPH08125835 A JP H08125835A
Authority
JP
Japan
Prior art keywords
camera
image
cameras
mirror
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6260168A
Other languages
Japanese (ja)
Other versions
JP3458486B2 (en
Inventor
Masabumi Yoshizawa
正文 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26016894A priority Critical patent/JP3458486B2/en
Publication of JPH08125835A publication Critical patent/JPH08125835A/en
Application granted granted Critical
Publication of JP3458486B2 publication Critical patent/JP3458486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a panorama image of high resolution and matched view point by dividing the periphery of the photographing device into plural directions, reflecting the images in the respective directions on a planar mirror and photographing those images with correspondent cameras. CONSTITUTION: This device is provided with a camera part 11 for which plural cameras are arranged on a circumference at equal intervals and the optical axes of all the cameras are matched with the normal direction of a circumferential plane where the cameras are arranged, regular polygonal corn shaped reflection mirror 12 joining plural planar mirrors paired with the respective cameras toward the outside, and image synthesizer 13. Then, the camera part and the reflection mirror are arranged so that the central axis of the camera part 11 can be matched with that of the reflection mirror 12, the apex direction of the reflection mirror 12 can be opposite to the photographing direction of the camera part 11 and a virtual image formed by the planar mirrors at the lens centers of cameras comes onto the central axis of the reflection mirror 12, and reflected images photographed on the planar mirrors by the cameras are joined by the image synthesizer 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、全方位を撮影したパノ
ラマ画像の撮影装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a panoramic image photographing apparatus which photographs all directions.

【0002】[0002]

【従来の技術】従来、空間中のある一点を視点としてそ
の周囲のパノラマ画像を一度に撮影する方法としては、
例えばMRIU’94IIpp.151−158に示さ
れているようなものがある。
2. Description of the Related Art Conventionally, as a method for taking a panoramic image of a surrounding point at a time from a certain point in space,
For example, MRIU'94IIpp. 151-158.

【0003】図5はこの従来の装置の構成図であり、5
1は撮影カメラ、52は双曲面形の鏡である。双曲面形
の鏡を鉛直下向きに、カメラを鉛直上向きにし、双曲面
の軸とカメラの光軸が一致し、かつカメラのレンズの中
心が双曲面の焦点と双対の位置になるように配置する。
鏡に反射しカメラに入射した画像を撮影することによ
り、側方、及び下方の映像を一度に撮影する。撮影した
画像に補正処理を施し、双曲面の焦点の位置に視点を置
いた時に得られる画像に変換する。
FIG. 5 is a block diagram of this conventional apparatus.
Reference numeral 1 is a photographing camera, and 52 is a hyperboloidal mirror. Place the hyperboloid mirror vertically downward and the camera vertically upward so that the axis of the hyperboloid and the optical axis of the camera coincide, and the center of the lens of the camera is at the dual position with the focal point of the hyperboloid. .
By capturing the image reflected by the mirror and entering the camera, the side and bottom images are captured at once. The captured image is subjected to correction processing and converted into an image obtained when the viewpoint is placed at the focal point of the hyperboloid.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記のよ
うな手法では、1枚の画像に周囲の全ての方向の情景を
写すので、一方向を普通にカメラで撮影した画像に比べ
て非常に解像度が落ちるという課題を有していた。
However, in the above-described method, since the scenes in all directions in the surroundings are shown in one image, the resolution is much higher than that in an image normally taken in one direction. It had the problem of falling.

【0005】[0005]

【課題を解決するための手段】本発明は、複数台のカメ
ラを円周上に等間隔に並べ、全てのカメラの光軸をカメ
ラを並べた円周面の法線方向に一致させたカメラ部と、
個々のカメラと対をなす複数の平面鏡を外向きに接合し
た正多角錐型の反射鏡を、前記反射鏡は前記カメラ部の
レンズ側にあって、前記カメラ部の円周の中心を通り法
線方向を向いた軸と前記反射鏡の中心軸が一致し、前記
カメラ部の撮影方向と前記反射鏡の頂点方向が逆向きで
あるとともに、対をなす前記カメラと前記平面鏡のそれ
ぞれの組において、前記カメラの光軸と前記反射鏡の中
心軸を通る平面が前記反射鏡の底辺の一つを二等分し、
前記平面鏡による前記カメラのレンズ中心の虚像が前記
反射鏡の中心軸上にあるように配置し、前記平面鏡の反
射像を前記カメラで撮影する全方位撮影装置である。
SUMMARY OF THE INVENTION The present invention is a camera in which a plurality of cameras are arranged at equal intervals on the circumference and the optical axes of all the cameras are aligned with the normal direction of the circumferential surface on which the cameras are arranged. Department,
A regular polygonal pyramid-shaped reflecting mirror in which a plurality of plane mirrors paired with each camera are joined outwardly, wherein the reflecting mirror is on the lens side of the camera unit and passes through the center of the circumference of the camera unit. The axis directed in the line direction and the central axis of the reflecting mirror are coincident with each other, and the photographing direction of the camera unit and the vertex direction of the reflecting mirror are opposite to each other, and in each pair of the camera and the plane mirror. A plane passing through the optical axis of the camera and the central axis of the reflecting mirror bisects one of the bottom sides of the reflecting mirror,
It is an omnidirectional photographing device in which a virtual image of the lens center of the camera by the plane mirror is arranged on the central axis of the reflecting mirror, and the reflected image of the plane mirror is taken by the camera.

【0006】[0006]

【作用】撮影装置の周囲を複数方向に分割してそれぞれ
の方向の画像を平面鏡に反射させ対応するカメラで撮影
することにより、各方向の画像の解像度を通常のカメラ
撮影の画像と同等に保つ。
By dividing the periphery of the photographing device into a plurality of directions and reflecting the images in the respective directions on the plane mirror and photographing them by the corresponding cameras, the resolution of the images in the respective directions is kept equal to that of a normal camera photographing. .

【0007】また、平面鏡を正多角錐型に配置して各カ
メラのレンズ中心の虚像を空間中の一点で一致させるこ
とにより、視点が一致した全周囲の画像を得る。
Further, by arranging the plane mirrors in the shape of a regular polygonal pyramid and matching the virtual images of the lens centers of the cameras at one point in space, an image of the entire circumference with matching viewpoints is obtained.

【0008】また、撮影した画像データを連結すること
により、パノラマ画像データを得る。
Further, panoramic image data is obtained by connecting the photographed image data.

【0009】また、複数台のビデオカメラで同時に撮影
することにより、全方位の動画像を得る。
Further, by shooting with a plurality of video cameras at the same time, moving images in all directions can be obtained.

【0010】また、撮影装置の周囲の一部を複数方向に
分割してそれぞれの方向の画像を平面鏡に反射させ対応
するカメラで撮影することにより、必要なだけの範囲の
パノラマ画像を得る。
Further, a part of the periphery of the photographing device is divided into a plurality of directions, and the images in the respective directions are reflected by a plane mirror and photographed by a corresponding camera to obtain a panoramic image in a necessary range.

【0011】[0011]

【実施例】図1は、本発明の第1の実施例における全方
位撮影装置及び全方位画像合成装置の構成図である。図
1において、11はカメラ部、12は反射鏡、13は画
像記録装置である。以下、その動作を説明する。
1 is a block diagram of an omnidirectional photographing apparatus and an omnidirectional image synthesizing apparatus according to a first embodiment of the present invention. In FIG. 1, 11 is a camera unit, 12 is a reflecting mirror, and 13 is an image recording device. The operation will be described below.

【0012】カメラ部11は、複数のカメラを鉛直上向
きに円周上に並べたものである。このカメラは、静止画
が出力できるものであればどのようなものでも良い。反
射鏡12は、カメラ部11のカメラの台数と同じ数の平
面鏡から構成され、1台のカメラと1枚の平面鏡で一つ
の対をなす。カメラ部11を構成するそれぞれのカメラ
は、対応する平面鏡に反射した周囲の情景を撮影する。
撮影された画像は記録装置13に送られ、そこで全画像
の接合を行なってパノラマ画像として記録する。
The camera section 11 is formed by arranging a plurality of cameras vertically on the circumference. This camera may be any camera as long as it can output a still image. The reflecting mirror 12 is composed of the same number of plane mirrors as the number of cameras of the camera unit 11, and one camera and one plane mirror form one pair. Each camera constituting the camera unit 11 captures the surrounding scene reflected by the corresponding plane mirror.
The captured images are sent to the recording device 13, where all the images are combined and recorded as a panoramic image.

【0013】図2は、反射鏡とカメラの位置関係を示し
たものである。(a)は、平面鏡を複数組み合わせた反
射鏡全体を鉛直上方から見た図であり、20は1枚の平
面鏡である。(b)は、一組の平面鏡とカメラについ
て、反射鏡の鉛直軸とカメラのレンズ中心を通る平面の
法線方向から見た位置関係を示したものであり、21が
レンズ、22が平面鏡である。(c)は1枚の平面鏡が
正面に来るように、反射鏡を水平方向から見た図であ
る。
FIG. 2 shows the positional relationship between the reflecting mirror and the camera. (A) is the figure which looked at the whole reflecting mirror which combined a plurality of plane mirrors from the perpendicular upper, and 20 is one plane mirror. (B) shows a positional relationship between a pair of plane mirrors and a camera as viewed from a direction normal to a vertical axis of a reflecting mirror and a plane passing through a lens center of the camera, where 21 is a lens and 22 is a plane mirror. is there. (C) is a view of the reflecting mirror as viewed from the horizontal direction so that one plane mirror comes to the front.

【0014】(a)についてまず説明する。撮影に使用
するカメラはすべて同種のものであり、その水平方向の
画角をφxとすると、ある鉛直軸を中心とする円周をθ
n<φxである角度θnで等分割するようにカメラを配
置する。この時、それぞれのカメラの光軸を鉛直上向
き、かつ画像面の垂直方向がカメラを並べた円周面の法
線方向に等しいようにカメラを配置する。配置したカメ
ラ群のレンズ中心を結び鉛直軸を中心とする円の半径を
dとする。このように配置したカメラ群の上方に、カメ
ラの台数と同じ数の平面鏡を正多角錐の側面に外向きに
張り合わせた形をした反射鏡を鉛直下向きで、軸がカメ
ラを配置した鉛直軸と等しく、かつそれぞれの平面鏡が
その頂角の二等分線で、対応するカメラの光軸と鉛直軸
を通る平面と交わるように配置する。以下に、この反射
鏡をどのように作成すればよいか、そのパラメータの計
算方法について述べる。
First, (a) will be described. All cameras used for shooting are of the same type, and if the horizontal angle of view is φx, the circumference around a certain vertical axis is θ.
The cameras are arranged so as to be equally divided at an angle θn where n <φx. At this time, the cameras are arranged such that the optical axis of each camera is vertically upward and the vertical direction of the image plane is equal to the normal direction of the circumferential surface on which the cameras are arranged. Let d be the radius of a circle connecting the lens centers of the arranged camera groups and having the vertical axis as the center. Above the group of cameras arranged in this way, a reflector with the same number of plane mirrors as the number of cameras attached to the side of a regular polygonal pyramid is directed vertically downward, and the axis is the vertical axis where the cameras are arranged. The plane mirrors are arranged so as to be equal to each other, and each plane mirror intersects with a plane that passes through the optical axis and the vertical axis of the corresponding camera at a bisector of its vertical angle. Below, how to make this reflector and how to calculate its parameters will be described.

【0015】次に(b)について説明する。一組のカメ
ラと平面鏡について鉛直軸とカメラの光軸を通る平面の
法線方向から見ると、平面鏡は直線となる。レンズの中
心を点P、点Pを通るカメラの光軸が平面鏡と交差する
点を点Qとするとき、点Pと点Qの距離をh、平面鏡の
鉛直軸に対する傾き角をθm、点Pの平面鏡による虚像
を点P’、カメラの垂直方向の画角をφy、点P’と点
Qを結ぶ線分が水平方向となす角をθyとする光学的関
係から、平面鏡に反射して点Pに入射する光は、点Pの
虚像である点P’に平面鏡がない場合に入射する光に等
しい。このことから、(b)のように配置したカメラで
撮影される映像は、点P’にレンズ中心を持ち、光軸が
P’Qに等しくかつ画像面の垂直方向が鉛直軸とレンズ
中心を通る平面に並行であるように配置した仮想的なカ
メラで撮影した画像に等しい。ただし、鏡による反射の
性質により、水平方向が反転した画像が得られる。
Next, (b) will be described. When viewed from the direction normal to the plane passing through the vertical axis and the optical axis of the camera about the pair of camera and plane mirror, the plane mirror is a straight line. When the point P is the center of the lens and the point Q is the point where the optical axis of the camera passing through the point P intersects the plane mirror, the distance between the points P and Q is h, the tilt angle of the plane mirror with respect to the vertical axis is θm, and the point P is The optical image of the plane mirror is point P ', the vertical angle of view of the camera is φy, and the angle formed by the line segment connecting point P'and point Q with the horizontal direction is θy. The light incident on P is equal to the light incident when there is no plane mirror at a point P ′ which is a virtual image of the point P. From this, the image taken by the camera arranged as shown in (b) has the lens center at the point P ′, the optical axis is equal to P′Q, and the vertical direction of the image plane is the vertical axis and the lens center. It is equivalent to an image taken by a virtual camera arranged parallel to the passing plane. However, an image in which the horizontal direction is reversed can be obtained due to the property of reflection by the mirror.

【0016】鉛直軸の周囲を水平方向からどれだけの仰
角を持たせて撮影するかはどのような画像が必要とされ
ているかによってあらかじめ決定される事項である。こ
れは点P’にレンズ中心を持つ仮想カメラの仰角θyに
等しい。したがってθyは必要とする画像の状態によっ
てあらかじめ指定する。
How much elevation angle is taken around the vertical axis from the horizontal direction is a matter that is decided in advance depending on what kind of image is required. This is equal to the elevation angle θy of the virtual camera having the lens center at the point P ′. Therefore, θy is designated in advance according to the required image state.

【0017】ここで、平面鏡の鉛直軸に対する傾き角θ
mは、 θm=(π/2−θy)/2 であり、欲しい画像を撮影するために決められる仰角θ
yから計算する。
Here, the tilt angle θ of the plane mirror with respect to the vertical axis
m is θm = (π / 2−θy) / 2, and the elevation angle θ determined to capture the desired image
Calculate from y.

【0018】全てのカメラと平面鏡の組に対して得られ
るレンズ中心の虚像点P’が空間中の一点で一致すれ
ば、あたかもその一点を視点としてその周囲を見回した
画像の一部をそれぞれのカメラに撮影することができ
る。(b)に示すように点P’がカメラを配置した半径
dの円周の鉛直軸上にあれば、装置の対象性から全ての
組に対して空間中の一点で一致させることができる。平
面鏡はカメラの光軸と鉛直軸を含む平面と垂直に交差す
るので、点P’はかならずこの平面上にある。したがっ
てカメラの光軸と点P’の距離がカメラを配置した円周
の半径に等しければ、点P’は必ず鉛直軸上にある。カ
メラの光軸と点P’の距離をd’とおくと、 P’Q=PQ=h,<PQP’=2*θm であるから、 d’=h*sin(2*θm) である。ここで、カメラのレンズ中心と平面鏡の距離h
を円周の半径dを使って h=d/sin(2*θm) とすれば d’=d となり、点P’を鉛直軸上に持ってくることができる。
If the virtual image point P'at the center of the lens obtained for all the sets of cameras and plane mirrors is coincident at one point in space, it is as if the one point is the viewpoint and a part of the image looking around is regarded as each. Can be taken by the camera. As shown in (b), if the point P ′ is on the vertical axis of the circumference of the radius d where the camera is arranged, all the sets can be matched at one point in space due to the symmetry of the device. Since the plane mirror perpendicularly intersects the plane containing the optical axis and the vertical axis of the camera, the point P'is always on this plane. Therefore, if the distance between the optical axis of the camera and the point P'is equal to the radius of the circumference on which the camera is arranged, the point P'is always on the vertical axis. Assuming that the distance between the optical axis of the camera and the point P ′ is d ′, P′Q = PQ = h and <PQP ′ = 2 * θm, and therefore d ′ = h * sin (2 * θm). Here, the distance h between the camera lens center and the plane mirror
If h = d / sin (2 * θm) using the radius d of the circumference, then d ′ = d, and the point P ′ can be brought on the vertical axis.

【0019】従ってレンズ中心と平面鏡の距離hは、カ
メラを配置した円の半径dと、平面鏡の鉛直軸に対する
傾きθmから決定される。
Therefore, the distance h between the lens center and the plane mirror is determined by the radius d of the circle in which the camera is arranged and the inclination θm of the plane mirror with respect to the vertical axis.

【0020】ところで、カメラの垂直方向の画角をφy
とすると、平面鏡の縦方向の長さを点Qを基準として上
方向にlu,下方向にldとおけば、それぞれ lu>h*sin(φy/2)/sin(θm−φy/
2) ld>h*sin(φy/2)/sin(θm+φy/
2) の長さを確保することにより、カメラで撮影する垂直方
向の画像を全て平面鏡に反射した画像にすることが可能
となる。
By the way, the vertical angle of view of the camera is φy.
Then, if the length of the plane mirror in the vertical direction is set as lu in the upward direction and ld in the downward direction with reference to the point Q, then lu> h * sin (φy / 2) / sin (θm−φy /
2) ld> h * sin (φy / 2) / sin (θm + φy /
By ensuring the length of 2), it becomes possible to make all the images in the vertical direction captured by the camera into images that are reflected by the plane mirror.

【0021】また、(c)は(b)の点P’、点Qを結
ぶ直線の法線方向から見た図であるが、平面鏡の水平方
向の長さは、上辺、底辺がそれぞれ lt=2d*tan(θm/2)+2lu*sin(θ
m)tan(θm/2) lb=2d*tan(θm/2)−2ld*sin(θ
m)tan(θm/2) となる。
Further, (c) is a view as seen from the normal direction of the straight line connecting the points P'and Q in (b). The horizontal length of the plane mirror is lt = 2d * tan (θm / 2) + 2lu * sin (θ
m) tan (θm / 2) lb = 2d * tan (θm / 2) -2ld * sin (θ
m) tan (θm / 2).

【0022】以上述べたように、半径dの円筒上に並べ
た複数のカメラに対し、撮影したい画像の仰角が決まれ
ば、必要な反射鏡の傾きと大きさ、カメラからの距離が
求まり、その反射鏡を用いれば視点が一致した全周囲の
分割画像を得ることができる。
As described above, if the elevation angle of the image to be photographed is determined for a plurality of cameras arranged on a cylinder having a radius of d, the necessary tilt and size of the reflecting mirror and the distance from the camera can be obtained. If a reflecting mirror is used, it is possible to obtain a divided image of the entire circumference with matching viewpoints.

【0023】カメラ部11の複数台のカメラは同時に撮
影を行ない、撮影された画像のデータは全方位画像合成
装置13に送られる。ここではまず切り出し部14が、
それぞれの画像において左右の端に写っている隣の平面
鏡に反射した不必要な像の部分を除去し、中央に写って
いる鏡像の部分のみを切り出す。次に反転部15がそれ
ぞれの画像に対して水平方向の反転を行ない、鏡像を正
常な像に変換する。次に接合部16は、反転部15が出
力する画像データに対し、ある一つのカメラから得られ
た画像に対してその右方向の画像データとして、光軸方
向からカメラ部を見た時に右まわりに隣接したカメラか
ら得られた画像データを連結する。ある一つのカメラを
基準として、そのカメラの左まわりに隣接したカメラか
ら得られた画像データを連結するまで全てのカメラから
得られた画像データに対して連結を行なう。連結された
データは、記録部17が記録し、出力に備える。
A plurality of cameras of the camera unit 11 simultaneously shoot images, and the data of the taken images are sent to the omnidirectional image synthesizer 13. First of all, the cutout section 14 is
In each image, unnecessary image portions reflected on the adjacent plane mirrors at the left and right edges are removed, and only the mirror image portion at the center is cut out. Next, the inverting unit 15 horizontally inverts each image to convert the mirror image into a normal image. Next, the splicing section 16 turns the image data output from the inverting section 15 to the right when the camera section is viewed from the optical axis direction, as image data in the right direction of the image obtained from a certain camera. The image data obtained from the cameras adjacent to is connected. With one camera as a reference, the image data obtained from all the cameras are connected until the image data obtained from the cameras adjacent to the left side of the camera are connected. The recording unit 17 records the combined data and prepares for output.

【0024】以上のように本実施例によれば、上記のよ
うな構成をした撮影装置、及び合成装置を用いることに
より、通常の撮影と同等の解像度を持つ全方位画像を得
ることができる。
As described above, according to the present embodiment, an omnidirectional image having a resolution equivalent to that of normal photographing can be obtained by using the photographing device and the synthesizing device having the above-mentioned configurations.

【0025】なお、本実施例ではカメラの光軸を鉛直上
向きとして説明したが、本撮影装置はどの方向を向いて
いても良く、その場合カメラの光軸と垂直な方向の全方
位画像が得られる。
In this embodiment, the optical axis of the camera has been described as vertically upward. However, the present photographing device may be oriented in any direction, in which case an omnidirectional image in a direction perpendicular to the optical axis of the camera can be obtained. To be

【0026】なお、本実施例ではカメラは静止画を出力
するものとしたが、ビデオカメラ、TVカメラ等、動画
が出力できるものを用いても良く、その場合得られる複
数方向の時系列画像に対して同時刻に撮影された画像の
連結を行なうことにより、全周の動画像が得られる。
In this embodiment, the camera outputs a still image, but a video camera, a TV camera or the like capable of outputting a moving image may be used, and in this case, the obtained time series images in a plurality of directions are obtained. On the other hand, by connecting images taken at the same time, a moving image of the entire circumference can be obtained.

【0027】図3は、本発明の第2の実施例における撮
影装置及び画像合成装置の構成図である。図3におい
て、31はカメラ部、32は反射鏡、33は画像記録装
置である。以下、その動作を説明する。
FIG. 3 is a block diagram of a photographing device and an image synthesizing device according to the second embodiment of the present invention. In FIG. 3, 31 is a camera unit, 32 is a reflecting mirror, and 33 is an image recording device. The operation will be described below.

【0028】カメラ部31は、複数のカメラを円弧上に
鉛直上向きにして並べたものである。このカメラは、静
止画が出力できるものであればどのようなものでも良
い。反射鏡32は、カメラ部31のカメラの台数と同じ
数の平面鏡から構成され、1台のカメラと1枚の平面鏡
で一つの対をなす。カメラ部31を構成するそれぞれの
カメラは、対応する平面鏡に反射した周囲の情景を撮影
する。撮影された画像は記録装置33に送られ、そこで
全画像の接合を行なってパノラマ画像として記録する。
The camera section 31 comprises a plurality of cameras arranged vertically on an arc. This camera may be any camera as long as it can output a still image. The reflecting mirror 32 is composed of the same number of plane mirrors as the number of cameras of the camera unit 31, and one camera and one plane mirror form one pair. Each camera that constitutes the camera unit 31 captures the surrounding scene reflected by the corresponding plane mirror. The captured images are sent to the recording device 33, where all the images are joined and recorded as a panoramic image.

【0029】図4は、反射鏡とカメラの位置関係を示し
たものである。(a)は、平面鏡を複数組み合わせた反
射鏡全体を鉛直上方から見た図であり、40は1枚の平
面鏡である。(b)は、一組の平面鏡とカメラについ
て、反射鏡の鉛直軸とカメラのレンズ中心を通る平面の
法線方向から見た位置関係を示したものであり、41が
レンズ、40が平面鏡である。(c)は1枚の平面鏡が
正面に来るように、反射鏡を水平方向から見た図であ
る。
FIG. 4 shows the positional relationship between the reflecting mirror and the camera. (A) is the figure which looked at the whole reflecting mirror which combined a plurality of plane mirrors from the perpendicular upper direction, and 40 is one plane mirror. (B) shows a positional relationship between a pair of plane mirrors and a camera as seen from a normal direction of a plane passing through the vertical axis of the reflecting mirror and the lens center of the camera, where 41 is a lens and 40 is a plane mirror. is there. (C) is a view of the reflecting mirror as viewed from the horizontal direction so that one plane mirror comes to the front.

【0030】(a)についてまず説明する。撮影に使用
するカメラはすべて同種のものであり、その水平方向の
画角をφxとする。撮影したい方向が水平にθhの角度
を持っているとすれば、中心角がθh、半径dである扇
型に対してθn<φxである角度θnで中心角を等分割
してできるそれぞれの扇型の弧の中点上にカメラレンズ
の中心が来るように複数のカメラを配置する。ここでd
は適当な定数である。この時、それぞれのカメラの光軸
を鉛直上向き、かつ画像面の垂直方向がカメラを並べた
円弧の法線方向に等しいようにカメラを配置する。カメ
ラを配置した扇型の中心を通る鉛直軸をカメラ部の中心
軸とする。
First, (a) will be described. The cameras used for shooting are all of the same type, and the angle of view in the horizontal direction is φx. If the direction to be photographed has a horizontal angle of θh, each fan formed by equally dividing the central angle by an angle θn with θn <φx with respect to a fan shape with a central angle of θh and a radius d. Position the cameras so that the center of the camera lens is on the midpoint of the arc of the mold. Where d
Is an appropriate constant. At this time, the cameras are arranged such that the optical axis of each camera is vertically upward and the vertical direction of the image plane is equal to the normal direction of the arc in which the cameras are arranged. The vertical axis that passes through the center of the fan shape where the camera is placed is the center axis of the camera section.

【0031】カメラの台数と同じ枚数の合同で左右対象
な台形の形状を持つ平面鏡を斜辺同士順に接合し、仮想
的な円錐の一部の側面上に張り合わせた形をした反射鏡
とする。この時、反射鏡の端は閉じない。また、それぞ
れの平面鏡の鏡面が円錐の外側に来るように接合する。
The same number of cameras as the number of congruent flat mirrors having a symmetrical trapezoidal shape are joined to each other in the order of their hypotenuses to form a reflecting mirror having a shape attached to a side surface of a part of a virtual cone. At this time, the end of the reflecting mirror is not closed. Also, the plane mirrors are joined so that the mirror surface of each plane mirror is outside the cone.

【0032】この反射鏡を、仮想的円錐の頂点を鉛直下
向きに、中心軸をカメラ部の中心軸と等しくなるように
配置する。この時、それぞれの平面鏡が、対応するカメ
ラの光軸と中心軸を通る平面と各平面鏡の上辺の垂直2
等分線で交わり、かつこの平面と平面鏡が垂直に交差す
るように配置する。
The reflecting mirror is arranged so that the apex of the virtual cone is vertically downward and the central axis is equal to the central axis of the camera section. At this time, each plane mirror is a plane that passes through the optical axis and center axis of the corresponding camera and the vertical 2
Arrange them so that they intersect with each other and the plane mirror and the plane mirror intersect vertically.

【0033】以下に、この反射鏡を具体的にどのように
作成すればよいか、そのパラメータの計算方法について
述べる。
Below, how to make this reflecting mirror concretely and how to calculate its parameters will be described.

【0034】次に(b)について説明する。一組のカメ
ラと平面鏡について鉛直軸とカメラの光軸を通る平面の
法線方向から見ると、平面鏡は直線となる。レンズの中
心を点P、点Pを通るカメラの光軸が平面鏡と交差する
点を点Qとするとき、点Pと点Qの距離をh、平面鏡の
鉛直軸に対する傾き角をθm、点Pの平面鏡による虚像
を点P’、カメラの垂直方向の画角をφy、点P’と点
Qを結ぶ線分が水平方向となす角をθyとする光学的関
係から、平面鏡に反射して点Pに入射する光は、点Pの
虚像である点P’に平面鏡がない場合に入射する光に等
しい。このことから、(b)のように配置したカメラで
撮影される映像は、点P’にレンズ中心を持ち、光軸が
P’Qに等しくかつ画像面の垂直方向が鉛直軸とレンズ
中心を通る平面に並行であるように配置した仮想的なカ
メラで撮影した画像に等しい。ただし、鏡による反射の
性質により、水平方向が反転した画像が得られる。
Next, (b) will be described. When viewed from the direction normal to the plane passing through the vertical axis and the optical axis of the camera about the pair of camera and plane mirror, the plane mirror is a straight line. When the point P is the center of the lens and the point Q is the point where the optical axis of the camera passing through the point P intersects the plane mirror, the distance between the points P and Q is h, the tilt angle of the plane mirror with respect to the vertical axis is θm, and the point P is The optical image of the plane mirror is point P ', the vertical angle of view of the camera is φy, and the angle formed by the line segment connecting point P'and point Q with the horizontal direction is θy. The light incident on P is equal to the light incident when there is no plane mirror at a point P ′ which is a virtual image of the point P. From this, the image taken by the camera arranged as shown in (b) has the lens center at the point P ′, the optical axis is equal to P′Q, and the vertical direction of the image plane is the vertical axis and the lens center. It is equivalent to an image taken by a virtual camera arranged parallel to the passing plane. However, an image in which the horizontal direction is reversed can be obtained due to the property of reflection by the mirror.

【0035】鉛直軸の周囲を水平方向からどれだけの仰
角を持たせて撮影するかはどのような画像が必要とされ
ているかによってあらかじめ決定される事項である。こ
れは点P’にレンズ中心を持つ仮想カメラの仰角θyに
等しい。したがってθyは必要とする画像の状態によっ
てあらかじめ指定する。
How much elevation angle is taken around the vertical axis from the horizontal direction is a matter that is determined in advance depending on what kind of image is required. This is equal to the elevation angle θy of the virtual camera having the lens center at the point P ′. Therefore, θy is designated in advance according to the required image state.

【0036】ここで、平面鏡の鉛直軸に対する傾き角θ
mは、 θm=(π/2−θy)/2 であり、欲しい画像を撮影するために指定される仰角θ
yから計算する。
Here, the tilt angle θ of the plane mirror with respect to the vertical axis
m is θm = (π / 2−θy) / 2, and the elevation angle θ specified to capture the desired image
Calculate from y.

【0037】全てのカメラと平面鏡の組に対して得られ
るレンズ中心の虚像点P’が空間中の一点で一致すれ
ば、あたかもその一点を視点としてその周囲を見回した
画像の一部をそれぞれのカメラに撮影することができ
る。(b)に示すように点P’がカメラを配置した半径
dの円弧の中心軸上にあれば、装置の対象性から全ての
組に対して空間中の一点で一致させることができる。平
面鏡はカメラの光軸と中心軸を含む平面と垂直に交差す
るので、点P’はかならずこの平面上にある。したがっ
てカメラの光軸と点P’の距離がカメラを配置した円弧
の半径に等しければ、点P’は必ず中心軸上にある。カ
メラの光軸と点P’の距離をd’とおくと、 P’Q=PQ=h,<PQP’=2*θm であるから、 d’=h*sin(2*θm) である。ここで、カメラのレンズ中心と平面鏡の距離h
を円弧の半径dを使って h=d/sin(2*θm) とすれば d’=d となり、点P’を中心軸上に持ってくることができる。
If the virtual image point P'at the center of the lens obtained for all the sets of cameras and plane mirrors coincides at one point in space, it is as if the one point is the viewpoint and a part of the image looking around is regarded as a part. Can be taken by the camera. As shown in (b), if the point P'is on the center axis of the arc having the radius d in which the camera is arranged, it is possible to match all the sets at one point in space due to the symmetry of the device. Since the plane mirror intersects the plane including the optical axis of the camera and the central axis at right angles, the point P'is always on this plane. Therefore, if the distance between the optical axis of the camera and the point P'is equal to the radius of the arc in which the camera is arranged, the point P'is always on the central axis. Assuming that the distance between the optical axis of the camera and the point P ′ is d ′, P′Q = PQ = h and <PQP ′ = 2 * θm, and therefore d ′ = h * sin (2 * θm). Here, the distance h between the camera lens center and the plane mirror
If h = d / sin (2 * θm) using the radius d of the arc, then d ′ = d and the point P ′ can be brought on the central axis.

【0038】従ってレンズ中心と平面鏡の距離hは、カ
メラを配置した円の半径dと、平面鏡の中心軸に対する
傾きθmから決定される。ところで、カメラの垂直方向
の画角をφyとすると、平面鏡の縦方向の長さを点Qを
基準として上方向にlu,下方向にldとおけば、それ
ぞれ lu>h*sin(φy/2)/sin(θm−φy/
2) ld>h*sin(φy/2)/sin(θm+φy/
2) の長さを確保することにより、カメラで撮影する垂直方
向の画像を全て平面鏡に反射した画像にすることが可能
となる。
Therefore, the distance h between the lens center and the plane mirror is determined from the radius d of the circle in which the camera is arranged and the inclination θm with respect to the center axis of the plane mirror. By the way, assuming that the vertical angle of view of the camera is φy, if the length of the plane mirror in the vertical direction is set to be lu upward and ld downward based on the point Q, then lu> h * sin (φy / 2 ) / Sin (θm-φy /
2) ld> h * sin (φy / 2) / sin (θm + φy /
By ensuring the length of 2), it becomes possible to make all the images in the vertical direction captured by the camera into images that are reflected by the plane mirror.

【0039】また、(c)は(b)の点P’、点Qを結
ぶ直線の法線方向から見た図であるが、平面鏡の水平方
向の長さは、上辺、底辺がそれぞれ lt=2d*tan(θm/2)+2lu*sin(θ
m)tan(θm/2) lb=2d*tan(θm/2)−2ld*sin(θ
m)tan(θm/2) となる。
Further, (c) is a view as seen from the normal direction of the straight line connecting the points P'and Q in (b). The horizontal length of the plane mirror is lt = 2d * tan (θm / 2) + 2lu * sin (θ
m) tan (θm / 2) lb = 2d * tan (θm / 2) -2ld * sin (θ
m) tan (θm / 2).

【0040】以上述べたように、半径dの円弧上に並べ
た複数のカメラに対し、撮影したい画像の仰角が決まれ
ば、必要な反射鏡の傾きと大きさ、カメラからの距離が
求まり、その反射鏡を用いれば視点が一致した周囲の分
割画像を得ることができる。
As described above, if the elevation angle of the image to be photographed is determined for a plurality of cameras arranged on a circular arc of radius d, the necessary tilt and size of the reflecting mirror and the distance from the camera can be obtained. If a reflecting mirror is used, it is possible to obtain a divided image of the surroundings with matching viewpoints.

【0041】カメラ部31の複数台のカメラは同時に撮
影を行ない、撮影された画像のデータは画像合成装置3
3に送られる。ここではまず切り出し部34が、それぞ
れの画像において左右の端に写っている隣の平面鏡に反
射した不必要な像の部分を除去し、中央に写っている鏡
像の部分のみを切り出す。次に反転部35がそれぞれの
画像に対して水平方向の反転を行ない、鏡像を正常な像
に変換する。次に接合部36は、反転部35が出力する
画像データに対し、中心軸から見て左端にあるカメラか
ら得られた画像に対してその右方向の画像データとし
て、右まわりに順に隣接したカメラから得られた画像デ
ータを、カメラが配置された順に連結する。連結された
データは、記録部37が記録し、出力に備える。
A plurality of cameras in the camera section 31 simultaneously shoot images, and the data of the taken images are taken by the image synthesizing device 3.
Sent to 3. Here, the clipping unit 34 first removes the unnecessary image portion reflected by the adjacent plane mirrors at the left and right ends of each image, and clips only the mirror image portion at the center. Next, the inverting unit 35 horizontally inverts each image to convert the mirror image into a normal image. Next, the splicing unit 36, as the image data in the right direction of the image data output from the reversing unit 35, is obtained from the camera at the left end when viewed from the central axis, and the image data output from the camera that is adjacent to the camera in the clockwise direction in order. The image data obtained from are connected in the order in which the cameras are arranged. The recording unit 37 records the combined data and prepares for output.

【0042】以上のように本実施例によれば、上記のよ
うな構成をした撮影装置、及び合成装置を用いることに
より、通常の撮影と同等の解像度を持ち、かつ必要なだ
けの広さの画像を得ることができる。
As described above, according to the present embodiment, by using the photographing device and the synthesizing device having the above-mentioned configurations, the same resolution as that of the normal photographing is obtained and the width is as wide as necessary. Images can be obtained.

【0043】なお、本実施例ではカメラの光軸を鉛直上
向きとして説明したが、本撮影装置はどの方向を向いて
いても良く、その場合カメラの光軸と垂直な方向の画像
が得られる。
In the present embodiment, the optical axis of the camera is described as vertically upward, but the present photographing apparatus may be oriented in any direction, in which case an image in a direction perpendicular to the optical axis of the camera can be obtained.

【0044】なお、本実施例ではカメラは静止画を出力
するものとしたが、ビデオカメラ、TVカメラ等、動画
が出力できるものを用いても良く、その場合得られる複
数方向の時系列画像に対して同時刻に撮影された画像の
連結を行なうことにより、動画像が得られる。
In this embodiment, the camera outputs a still image, but a video camera, a TV camera or the like capable of outputting a moving image may be used. In this case, the obtained time series images in a plurality of directions are obtained. On the other hand, a moving image is obtained by connecting images taken at the same time.

【0045】[0045]

【発明の効果】本発明によれば、複数台のカメラを用い
ることにより解像度が高く視点が一致したパノラマ画像
を得ることができ、利用者に情報量の多い映像を提供す
ることができるので、その実用的効果は大きい。
According to the present invention, by using a plurality of cameras, it is possible to obtain a panoramic image having a high resolution and matching viewpoints, and it is possible to provide a user with a video having a large amount of information. Its practical effect is great.

【0046】また、本発明によれば、複数台のビデオカ
メラを用いることによりパノラマ動画像を得ることがで
きるので、その視覚的効果は大きい。
Further, according to the present invention, since a panoramic moving image can be obtained by using a plurality of video cameras, its visual effect is great.

【0047】また、本発明によれば、撮影装置の周囲の
必要な範囲だけを選択的に撮影することができるので、
その実用的効果は大きい。
Further, according to the present invention, it is possible to selectively photograph only a necessary range around the photographing device.
Its practical effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における全方位撮影装置
及び全方位画像合成装置の構成図
FIG. 1 is a configuration diagram of an omnidirectional photographing device and an omnidirectional image synthesizing device according to a first embodiment of the present invention.

【図2】本発明の第1の実施例における反射鏡とカメラ
の配置図
FIG. 2 is a layout diagram of a reflecting mirror and a camera according to the first embodiment of the present invention.

【図3】本発明の第2の実施例における撮影装置及び画
像合成装置の構成図
FIG. 3 is a configuration diagram of a photographing device and an image synthesizing device according to a second embodiment of the present invention.

【図4】本発明の第2の実施例における反射鏡とカメラ
の配置図
FIG. 4 is a layout diagram of a reflecting mirror and a camera according to a second embodiment of the present invention.

【図5】従来の全方位撮影装置の構成図FIG. 5 is a block diagram of a conventional omnidirectional imaging device.

【符号の説明】[Explanation of symbols]

11 カメラ部 12 反射鏡 13 全方位画像合成装置 14 切り出し部 15 反転部 16 接合部 17 記録部 20 平面鏡 21 カメラレンズ 11 camera section 12 reflecting mirror 13 omnidirectional image synthesizing apparatus 14 clipping section 15 reversing section 16 joining section 17 recording section 20 plane mirror 21 camera lens

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】複数台のカメラを円周上に等間隔に並べ、
全てのカメラの光軸をカメラを並べた円周面の法線方向
に一致させたカメラ部と、 個々のカメラと対をなす複数の平面鏡を外向きに接合し
た正多角錐型の反射鏡を具備し、 前記反射鏡は前記カメラ部のレンズ側にあって、前記カ
メラ部の円周の中心を通り法線方向を向いた軸と前記反
射鏡の中心軸が一致し、前記カメラ部の撮影方向と前記
反射鏡の頂点方向が逆向きであるとともに、対をなす前
記カメラと前記平面鏡のそれぞれの組において、前記カ
メラの光軸と前記反射鏡の中心軸を通る平面が前記反射
鏡の底辺の一つを二等分し、前記平面鏡による前記カメ
ラのレンズ中心の虚像が前記反射鏡の中心軸上にあり、
前記平面鏡の反射像を前記カメラで撮影する全方位撮影
装置。
1. A plurality of cameras are arranged at equal intervals on a circumference,
A camera unit in which the optical axes of all the cameras are aligned with the normal direction of the circumferential surface where the cameras are arranged, and a regular polygonal pyramid-shaped reflecting mirror in which a plurality of plane mirrors paired with each camera are joined outward The reflecting mirror is on the lens side of the camera unit, and an axis directed through a center of a circumference of the camera unit and directed in a normal direction is coincident with a central axis of the reflecting mirror. Direction and the vertex direction of the reflecting mirror are opposite to each other, and in each pair of the camera and the plane mirror forming a pair, the plane passing through the optical axis of the camera and the central axis of the reflecting mirror is the base of the reflecting mirror. One of the two is bisected, the virtual image of the lens center of the camera by the plane mirror is on the central axis of the reflecting mirror,
An omnidirectional photographing device for photographing a reflection image of the plane mirror with the camera.
【請求項2】請求項1記載の全方位撮影装置によって撮
影された複数の画像データから中央部に写っている鏡像
部分のデータをそれぞれ切り出す切り出し部と、 前記切り出し部が切り出した鏡像部分のデータから画面
の水平方向を反転した画像のデータを生成する反転部
と、 隣接したカメラで撮影された画像から前記反転部が生成
した反転画像データの接合を行なう接合部と、 接合したデータを記録する記録部とを備えた全方位画像
合成装置。
2. A cutout part for cutting out data of a mirror image part shown in the central part from a plurality of image data taken by the omnidirectional image pickup device according to claim 1, and data of a mirror image part cut out by the cutout part. The reverse part that generates image data in which the horizontal direction of the screen is reversed, the joint part that joins the reverse image data generated by the reverse part from the images captured by the adjacent cameras, and the joined data is recorded. An omnidirectional image synthesizing device including a recording unit.
【請求項3】カメラ部を、複数台のビデオカメラを円周
上に等間隔に並べ、全てのビデオカメラの光軸をビデオ
カメラを並べた円周面の法線方向に一致させたカメラ部
で置き換えたことを特徴とする請求項1記載の全方位撮
影装置。
3. A camera section in which a plurality of video cameras are arranged at equal intervals on a circumference, and the optical axes of all the video cameras are aligned with the normal direction of the circumferential surface on which the video cameras are arranged. The omnidirectional photographing device according to claim 1, wherein the omnidirectional photographing device is replaced with.
【請求項4】請求項3記載の全方位撮影装置によって撮
影された複数の時系列画像データから中央部に写ってい
る鏡像部分のデータをそれぞれ切り出す切り出し部と、 前記切り出し部が切り出した鏡像部分のデータから画面
の水平方向を反転した画像のデータを生成する反転部
と、 同時刻に隣接したカメラで撮影された画像から前記反転
部が生成した反転画像データを接合する接合部と、接合
したデータを記録する記録部とを備えた全方位画像合成
装置。
4. A cutout part for cutting out data of a mirror image part shown in the central part from a plurality of time-series image data taken by the omnidirectional image pickup device according to claim 3, and a mirror image part cut out by the cutout part. The image is inverted from the image data in the horizontal direction to generate image data, and the image data captured by adjacent cameras at the same time is combined with the inverted image data generated by the image inversion unit. An omnidirectional image synthesizing device including a recording unit that records data.
【請求項5】複数台のカメラを円周の一部をなす円弧上
に等間隔に並べ、全てのカメラの光軸をカメラを並べた
円周面の法線方向に一致させたカメラ部と、 個々のカメラと対をなす複数の平面鏡を外向きに接合し
て正多角錐の一部の側面の形状に等しくした反射鏡を具
備し、 前記反射鏡は前記カメラ部のレンズ側にあって、前記カ
メラ部の円弧の中心を通り法線方向を向いた軸と前記反
射鏡の中心軸が一致し、前記反射鏡の鏡面が前記カメラ
部の方を向くとともに、対をなす前記カメラと前記平面
鏡のそれぞれの組において、前記カメラの光軸と前記カ
メラ部の円弧の中心軸をる平面が前記平面鏡と垂直に交
わり、前記平面鏡による前記カメラのレンズ中心の虚像
が前記カメラ部の円弧の中心軸上にあり、前記平面鏡の
反射像を前記カメラで撮影する撮影装置。
5. A camera unit in which a plurality of cameras are arranged at equal intervals on an arc forming a part of the circumference, and the optical axes of all the cameras are aligned with the normal direction of the circumferential surface on which the cameras are arranged. A plurality of plane mirrors that are paired with individual cameras are joined outwardly, and a reflecting mirror is provided which has a shape of a side surface of a regular polygonal pyramid, and the reflecting mirror is on the lens side of the camera unit. An axis directed through a center of an arc of the camera unit and directed in a normal direction coincides with a central axis of the reflecting mirror, a mirror surface of the reflecting mirror faces the camera unit, and a pair of the camera and the camera In each set of plane mirrors, a plane that is the optical axis of the camera and the central axis of the arc of the camera section intersects perpendicularly with the plane mirror, and the virtual image of the lens center of the camera by the plane mirror is the center of the arc of the camera section. On-axis, a reflection image of the plane mirror is taken by the camera. Imaging apparatus for photographing.
【請求項6】請求項5記載の撮影装置によって撮影され
た複数の画像データから中央部に写っている鏡像部分の
データをそれぞれ切り出す切り出し部と、 前記切り出し部が切り出した鏡像部分のデータから画面
の水平方向を反転した画像のデータを生成する反転部
と、 隣接したカメラで撮影された画像から前記反転部が生成
した反転画像データの接合を行なう接合部と、 接合したデータを記録する記録部から構成される画像合
成装置。
6. A cutout unit for cutting out data of a mirror image portion shown in the central portion from a plurality of image data taken by the image pickup apparatus according to claim 5, and a screen from the data of the mirror image portion cut out by the cutout unit. An inversion unit that generates image data in which the horizontal direction is inverted, a joining unit that joins the inverted image data generated by the inversion unit from images captured by adjacent cameras, and a recording unit that records the joined data. Image synthesizing device.
JP26016894A 1994-10-25 1994-10-25 Omnidirectional imaging device and omnidirectional image synthesis device Expired - Fee Related JP3458486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26016894A JP3458486B2 (en) 1994-10-25 1994-10-25 Omnidirectional imaging device and omnidirectional image synthesis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26016894A JP3458486B2 (en) 1994-10-25 1994-10-25 Omnidirectional imaging device and omnidirectional image synthesis device

Publications (2)

Publication Number Publication Date
JPH08125835A true JPH08125835A (en) 1996-05-17
JP3458486B2 JP3458486B2 (en) 2003-10-20

Family

ID=17344274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26016894A Expired - Fee Related JP3458486B2 (en) 1994-10-25 1994-10-25 Omnidirectional imaging device and omnidirectional image synthesis device

Country Status (1)

Country Link
JP (1) JP3458486B2 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010082993A (en) * 2000-02-22 2001-08-31 이연옥 A device of feeding the three-dimensional image into-computer and a method of transmitting data
JP2001346200A (en) * 2000-06-02 2001-12-14 Fuji Heavy Ind Ltd Image segmentation/display system
US6386719B1 (en) 2001-03-14 2002-05-14 Enroute, Inc. Precision mounting of front surface mirrors
US6560413B1 (en) 2001-03-14 2003-05-06 Enroute, Inc. High-precision panoramic imaging system
JP2004032782A (en) * 2002-06-27 2004-01-29 Microsoft Corp All-direction camera and system for microphone array
US7495694B2 (en) 2004-07-28 2009-02-24 Microsoft Corp. Omni-directional camera with calibration and up look angle improvements
WO2009081498A1 (en) * 2007-12-26 2009-07-02 Shimadzu Corporation Organism image capturing device
US7576766B2 (en) 2005-06-30 2009-08-18 Microsoft Corporation Normalized images for cameras
US7593057B2 (en) 2004-07-28 2009-09-22 Microsoft Corp. Multi-view integrated camera system with housing
US7602412B2 (en) 2002-06-21 2009-10-13 Microsoft Corporation Temperature compensation in multi-camera photographic devices
US7630571B2 (en) 2005-09-15 2009-12-08 Microsoft Corporation Automatic detection of panoramic camera position and orientation table parameters
JP2010166596A (en) * 1998-09-17 2010-07-29 Yissum Research Development Co Of The Hebrew Univ Of Jerusalem Ltd System and method for generating and displaying panoramic image and moving image
US7768544B2 (en) 2005-01-21 2010-08-03 Cutler Ross G Embedding a panoramic image in a video stream
US7782357B2 (en) 2002-06-21 2010-08-24 Microsoft Corporation Minimizing dead zones in panoramic images
US7812882B2 (en) 2004-12-30 2010-10-12 Microsoft Corporation Camera lens shuttering mechanism
US7936374B2 (en) 2002-06-21 2011-05-03 Microsoft Corporation System and method for camera calibration and images stitching
JP2011160177A (en) * 2010-02-01 2011-08-18 Mitsui Eng & Shipbuild Co Ltd Photographing device and underwater robot loaded with the photographing device
US8024189B2 (en) 2006-06-22 2011-09-20 Microsoft Corporation Identification of people using multiple types of input
US8165416B2 (en) 2007-06-29 2012-04-24 Microsoft Corporation Automatic gain and exposure control using region of interest detection
US8219387B2 (en) 2007-12-10 2012-07-10 Microsoft Corporation Identifying far-end sound
JP4983929B2 (en) * 2007-12-26 2012-07-25 株式会社島津製作所 Biological image acquisition device
US8245043B2 (en) 2007-06-15 2012-08-14 Microsoft Corporation Audio start service for Ad-hoc meetings
US8300080B2 (en) 2007-06-29 2012-10-30 Microsoft Corporation Techniques for detecting a display device
US8314829B2 (en) 2008-08-12 2012-11-20 Microsoft Corporation Satellite microphones for improved speaker detection and zoom
US8330787B2 (en) 2007-06-29 2012-12-11 Microsoft Corporation Capture device movement compensation for speaker indexing
US8433061B2 (en) 2007-12-10 2013-04-30 Microsoft Corporation Reducing echo
US8526632B2 (en) 2007-06-28 2013-09-03 Microsoft Corporation Microphone array for a camera speakerphone
US8744069B2 (en) 2007-12-10 2014-06-03 Microsoft Corporation Removing near-end frequencies from far-end sound
US9294672B2 (en) 2014-06-20 2016-03-22 Qualcomm Incorporated Multi-camera system using folded optics free from parallax and tilt artifacts
US9374516B2 (en) 2014-04-04 2016-06-21 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US9383550B2 (en) 2014-04-04 2016-07-05 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US9386222B2 (en) 2014-06-20 2016-07-05 Qualcomm Incorporated Multi-camera system using folded optics free from parallax artifacts
US9398264B2 (en) 2012-10-19 2016-07-19 Qualcomm Incorporated Multi-camera system using folded optics
US9485495B2 (en) 2010-08-09 2016-11-01 Qualcomm Incorporated Autofocus for stereo images
US9541740B2 (en) 2014-06-20 2017-01-10 Qualcomm Incorporated Folded optic array camera using refractive prisms
US9549107B2 (en) 2014-06-20 2017-01-17 Qualcomm Incorporated Autofocus for folded optic array cameras
CN107272322A (en) * 2017-08-04 2017-10-20 追光人动画设计(北京)有限公司 The eyes panoramic shooting array system reflected based on light
US9819863B2 (en) 2014-06-20 2017-11-14 Qualcomm Incorporated Wide field of view array camera for hemispheric and spherical imaging
US9832381B2 (en) 2014-10-31 2017-11-28 Qualcomm Incorporated Optical image stabilization for thin cameras
US10013764B2 (en) 2014-06-19 2018-07-03 Qualcomm Incorporated Local adaptive histogram equalization
US10178373B2 (en) 2013-08-16 2019-01-08 Qualcomm Incorporated Stereo yaw correction using autofocus feedback
CN109788180A (en) * 2019-02-28 2019-05-21 深圳市共进电子股份有限公司 A kind of filming apparatus and detection device
CN110213564A (en) * 2019-05-06 2019-09-06 深圳市华芯技研科技有限公司 A kind of omnibearing stereo photographic device and its system and method
US10951859B2 (en) 2018-05-30 2021-03-16 Microsoft Technology Licensing, Llc Videoconferencing device and method

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012257329A (en) * 1998-09-17 2012-12-27 Yissum Research Development Co Of The Hebrew Univ Of Jerusalem Ltd System and method for generating and displaying panoramic image and moving image
JP2010166596A (en) * 1998-09-17 2010-07-29 Yissum Research Development Co Of The Hebrew Univ Of Jerusalem Ltd System and method for generating and displaying panoramic image and moving image
KR20010082993A (en) * 2000-02-22 2001-08-31 이연옥 A device of feeding the three-dimensional image into-computer and a method of transmitting data
JP2001346200A (en) * 2000-06-02 2001-12-14 Fuji Heavy Ind Ltd Image segmentation/display system
US6386719B1 (en) 2001-03-14 2002-05-14 Enroute, Inc. Precision mounting of front surface mirrors
US6560413B1 (en) 2001-03-14 2003-05-06 Enroute, Inc. High-precision panoramic imaging system
US7602412B2 (en) 2002-06-21 2009-10-13 Microsoft Corporation Temperature compensation in multi-camera photographic devices
US7936374B2 (en) 2002-06-21 2011-05-03 Microsoft Corporation System and method for camera calibration and images stitching
US7782357B2 (en) 2002-06-21 2010-08-24 Microsoft Corporation Minimizing dead zones in panoramic images
JP2004032782A (en) * 2002-06-27 2004-01-29 Microsoft Corp All-direction camera and system for microphone array
US7495694B2 (en) 2004-07-28 2009-02-24 Microsoft Corp. Omni-directional camera with calibration and up look angle improvements
US7593057B2 (en) 2004-07-28 2009-09-22 Microsoft Corp. Multi-view integrated camera system with housing
US7593042B2 (en) 2004-07-28 2009-09-22 Microsoft Corporation Maintenance of panoramic camera orientation
US7812882B2 (en) 2004-12-30 2010-10-12 Microsoft Corporation Camera lens shuttering mechanism
US7768544B2 (en) 2005-01-21 2010-08-03 Cutler Ross G Embedding a panoramic image in a video stream
US7576766B2 (en) 2005-06-30 2009-08-18 Microsoft Corporation Normalized images for cameras
US7630571B2 (en) 2005-09-15 2009-12-08 Microsoft Corporation Automatic detection of panoramic camera position and orientation table parameters
US8510110B2 (en) 2006-06-22 2013-08-13 Microsoft Corporation Identification of people using multiple types of input
US8024189B2 (en) 2006-06-22 2011-09-20 Microsoft Corporation Identification of people using multiple types of input
US8245043B2 (en) 2007-06-15 2012-08-14 Microsoft Corporation Audio start service for Ad-hoc meetings
US8526632B2 (en) 2007-06-28 2013-09-03 Microsoft Corporation Microphone array for a camera speakerphone
US8330787B2 (en) 2007-06-29 2012-12-11 Microsoft Corporation Capture device movement compensation for speaker indexing
US8749650B2 (en) 2007-06-29 2014-06-10 Microsoft Corporation Capture device movement compensation for speaker indexing
US8614734B2 (en) 2007-06-29 2013-12-24 Microsoft Corporation Techniques for detecting a display device
US8165416B2 (en) 2007-06-29 2012-04-24 Microsoft Corporation Automatic gain and exposure control using region of interest detection
US8300080B2 (en) 2007-06-29 2012-10-30 Microsoft Corporation Techniques for detecting a display device
US8433061B2 (en) 2007-12-10 2013-04-30 Microsoft Corporation Reducing echo
US8744069B2 (en) 2007-12-10 2014-06-03 Microsoft Corporation Removing near-end frequencies from far-end sound
US8219387B2 (en) 2007-12-10 2012-07-10 Microsoft Corporation Identifying far-end sound
US20110164124A1 (en) * 2007-12-26 2011-07-07 Kentaro Hizume Biological image acquisition device
WO2009081969A1 (en) * 2007-12-26 2009-07-02 Shimadzu Corporation Biological image acquisition device
WO2009081498A1 (en) * 2007-12-26 2009-07-02 Shimadzu Corporation Organism image capturing device
JP4983929B2 (en) * 2007-12-26 2012-07-25 株式会社島津製作所 Biological image acquisition device
US8842173B2 (en) * 2007-12-26 2014-09-23 Shimadzu Corporation Biological image acquisition device
US8314829B2 (en) 2008-08-12 2012-11-20 Microsoft Corporation Satellite microphones for improved speaker detection and zoom
US9071895B2 (en) 2008-08-12 2015-06-30 Microsoft Technology Licensing, Llc Satellite microphones for improved speaker detection and zoom
JP2011160177A (en) * 2010-02-01 2011-08-18 Mitsui Eng & Shipbuild Co Ltd Photographing device and underwater robot loaded with the photographing device
US9485495B2 (en) 2010-08-09 2016-11-01 Qualcomm Incorporated Autofocus for stereo images
US9398264B2 (en) 2012-10-19 2016-07-19 Qualcomm Incorporated Multi-camera system using folded optics
US9838601B2 (en) 2012-10-19 2017-12-05 Qualcomm Incorporated Multi-camera system using folded optics
US10165183B2 (en) 2012-10-19 2018-12-25 Qualcomm Incorporated Multi-camera system using folded optics
US10178373B2 (en) 2013-08-16 2019-01-08 Qualcomm Incorporated Stereo yaw correction using autofocus feedback
US9374516B2 (en) 2014-04-04 2016-06-21 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US9973680B2 (en) 2014-04-04 2018-05-15 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US9383550B2 (en) 2014-04-04 2016-07-05 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US9860434B2 (en) 2014-04-04 2018-01-02 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US10013764B2 (en) 2014-06-19 2018-07-03 Qualcomm Incorporated Local adaptive histogram equalization
US9733458B2 (en) 2014-06-20 2017-08-15 Qualcomm Incorporated Multi-camera system using folded optics free from parallax artifacts
US9541740B2 (en) 2014-06-20 2017-01-10 Qualcomm Incorporated Folded optic array camera using refractive prisms
US9819863B2 (en) 2014-06-20 2017-11-14 Qualcomm Incorporated Wide field of view array camera for hemispheric and spherical imaging
US9843723B2 (en) 2014-06-20 2017-12-12 Qualcomm Incorporated Parallax free multi-camera system capable of capturing full spherical images
US9854182B2 (en) 2014-06-20 2017-12-26 Qualcomm Incorporated Folded optic array camera using refractive prisms
US9386222B2 (en) 2014-06-20 2016-07-05 Qualcomm Incorporated Multi-camera system using folded optics free from parallax artifacts
US9549107B2 (en) 2014-06-20 2017-01-17 Qualcomm Incorporated Autofocus for folded optic array cameras
US9294672B2 (en) 2014-06-20 2016-03-22 Qualcomm Incorporated Multi-camera system using folded optics free from parallax and tilt artifacts
US10084958B2 (en) 2014-06-20 2018-09-25 Qualcomm Incorporated Multi-camera system using folded optics free from parallax and tilt artifacts
US9832381B2 (en) 2014-10-31 2017-11-28 Qualcomm Incorporated Optical image stabilization for thin cameras
CN107272322A (en) * 2017-08-04 2017-10-20 追光人动画设计(北京)有限公司 The eyes panoramic shooting array system reflected based on light
US10951859B2 (en) 2018-05-30 2021-03-16 Microsoft Technology Licensing, Llc Videoconferencing device and method
CN109788180A (en) * 2019-02-28 2019-05-21 深圳市共进电子股份有限公司 A kind of filming apparatus and detection device
CN109788180B (en) * 2019-02-28 2024-03-29 深圳市共进电子股份有限公司 Shooting device and detection equipment
CN110213564A (en) * 2019-05-06 2019-09-06 深圳市华芯技研科技有限公司 A kind of omnibearing stereo photographic device and its system and method
CN110213564B (en) * 2019-05-06 2021-08-27 深圳市华芯技研科技有限公司 Omnibearing stereo camera device and system and method thereof

Also Published As

Publication number Publication date
JP3458486B2 (en) 2003-10-20

Similar Documents

Publication Publication Date Title
JP3458486B2 (en) Omnidirectional imaging device and omnidirectional image synthesis device
US7837330B2 (en) Panoramic three-dimensional adapter for an optical instrument and a combination of such an adapter and such an optical instrument
US7553023B2 (en) Multi-dimensional imaging apparatus, methods, and systems
US6856472B2 (en) Panoramic mirror and system for producing enhanced panoramic images
JP2006039564A (en) Camera system and panoramic camera system
RU2000117577A (en) GENERAL DIRECTIONAL IMAGE DEVICE
WO2001024515A1 (en) Tracking camera
GB2354390A (en) Wide-angle image capture apparatus
JPH0767020A (en) Compound eye type optical system
KR101469361B1 (en) Apparatus for panorama image acquisition
JP2003344773A (en) Photographing device
JP3714200B2 (en) Imaging device
JP2001258050A (en) Stereoscopic video imaging device
JP3872250B2 (en) Wide angle imaging device
JP4781537B2 (en) Camera system and display device
JP2022514766A (en) A device equipped with a multi-aperture image pickup device for accumulating image information.
JP2002229138A (en) Image pickup device
JP2003512783A (en) Camera with peripheral vision
JPH09214992A (en) Image pickup device
KR200378726Y1 (en) A full direction panorama camera device using a conical mirror
KR200378727Y1 (en) A full direction panorama replaying device using a conical mirror
JPH09230517A (en) Method and device for taking panoramic picture
JP2002244235A (en) Omniazimuth image pickup unit
KR200358848Y1 (en) The camera for keeping watch toward all derections
JPH1152502A (en) Panoramic photographing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees